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Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful
to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing
methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper,
we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named
BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD,
are constructed by multilevel HaarWavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic
and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two
BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the
proposed BSTKS can detect abrupt change more quickly and efficiently than KS, 𝑡-statistic (𝑡), and Singular-Spectrum Analyses
(SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four
methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric
time series signals.

1. Introduction

Abrupt change detection is to identify abrupt changes in
the statistical properties of a signal series, which occur
at unknown instants [1–3]. These changes are interesting
because they are indicative of qualitative transitions in the
data generation mechanism (DGM) underlying the signals.
Currently, CP detection has attracted considerable atten-
tion in the fields of data mining and statistics, and it has
been widely studied in many real-world problems, such
as atmospheric and financial analyses [1], fault detection
in engineering system [4, 5], climate change detection [6],
genetic time series analyses [7], signal segmentation [8, 9],
and intrusion detection in computer network [4].

In community of statistics, some nonparametric ap-
proaches for CP detection have been widely explored. For
example, KS statistic quantifies a distance between the
empirical distribution function of the sample and the cumu-
lative distribution function of the reference distribution or

between the empirical distribution function of two samples
[10, 11]. Also, KS statistic and its modified versions are
broadly investigated on many application fields, for example,
testing hypotheses regarding activation in blood oxygenation
level-dependent functional MRI data [12], modeling the
cumulative distribution function of rub-induced AE signals,
quantifying the goodness of fit to offer a suitable signal feature
for diagnosis [13], as well as abrupt change detecting on
EEG signals [14], and gene expression time series [15]. Mean-
while, as for the model-related statistic approaches, some
modified cumulative sum (CUSUM) methods provide the
asymptotic distributions of test statistics and the consistency
of procedures and behave better in finite samples and have
a higher stability with respect to the time of change than
ordinary CUSUM procedures [16].The CUSUMmethod and
its revised versions have been widely applied to detect the
structural breaks in the parameters of stochastic models,
as well as the abrupt changes in the regression parameters
of multiple time series regression models, such as multiple

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 8343187, 16 pages
http://dx.doi.org/10.1155/2016/8343187

http://dx.doi.org/10.1155/2016/8343187


2 Computational Intelligence and Neuroscience

CP detection in biological sequences [17], abrupt change
detection in the regression parameters of a set of capital
asset pricing data related to the Fama-French extension of
the CAPM [16], and abrupt change detection in a shape-
restricted regression model [18].

On the other hand, SSA is a powerful technique for
time series analyses. SSA is nonparametric and requires no
prior knowledge on the properties of time series signal [19].
The main idea of SSA is applied in the principal compo-
nent analyses on the trajectory matrix with subsequent
reconstruction of the original time series. SSA has been
proved to be very successful and has already become a
standard tool in the analyses of climatic [10], meteorological,
and geophysical time series [11, 19]. Currently, SSA has been
successfully applied in the real time series recordings, for
example, abrupt change analyses on EMG-onset detection
[12] and CP detection in time series [13]. Although SSA is a
model-free method, it is not scalable to large-scale datasets,
because it is time-consuming and sometimes invalid for time
series analyses with less significant data fluctuation.

In addition, Wavelet Transform (WT) is another impor-
tant tool for time series analyses [14, 15, 20–23]. WT has been
widely applied in anomaly detection, time series prediction,
image processing, and noise reduction [15, 23–25]. WT can
represent general function at different scales and positions in
a versatile and sophisticated manner, so that the data distri-
bution features can be easily extracted from different time or
space scales [25, 26]. As a simple WT, Haar Wavelet (HW)
owns some attractive features including fast implementation
and ability to analyze the local features. HW is very useful
to find abrupt changes of discontinuity and high frequency
in time series, so it is a potential candidate in modern
electrical and computer engineering applications, such as sig-
nal and image compression, eye detection [27], abnormality
detection on time series [28, 29], and abrupt change detec-
tion on autoregressive conditional heteroscedastic processes
[30].

However, all of these methods above are time-consuming
and sometime invalid for abrupt change detection near
the left or the right boundary, especially for insignificant
data fluctuation in large-scale time series. To resolve these
problems, we propose a fast framework for CP detection
based on binary search trees and a modified KS statistic,
termed BSTKS for short. In this novel method, first, two
BSTs are derived from a diagnosed time series. Second,
three search criteria are introduced in terms of the statistic
and variance fluctuations between two adjacent time series
segments, and then an optimal search path is detected from
the root to leaf nodes of two BSTs. Last, the proposed BSTKS
and other KS, 𝑡, and SSA methods are tested on both the
synthetic time series and real EEG recordings and evaluated
in terms of computation time, hit rate, error, accuracy, and
area under curve (AUC) of ReceiverOperatingCharacteristic
(ROC) curve analyses.

In general, for a certain bioelectric signal, an abrupt
changemeans an important transition of biological functions
or health states before and after a strong attack or an
acute perturbation from internal or external environment.
Therefore, it is very necessary to not only discern abrupt

change from all kinds of physiological and psychological
time series signals, but also inspect the significant fluctu-
ation between adjacent time series segments with different
scales. The following sections focused on not only presenting
the framework of the proposed BSTKS method through
theoretical foundation, simulation, and evaluation, but also
discussing how it can more quickly and efficiently detect
abrupt change on both synthetic and real bioelectric EEG
signals than other existing KS, 𝑡, and SSA methods. The
rest of this paper is organized as follows. Section 2 gives
the preliminary of abrupt change by introducing the statistic
and variance fluctuations between two adjacent time series
segments. Section 3 implements the integrated framework
of the BSTKS method in terms of three search criteria in
detail. Section 4 provides some representative experiments by
using the synthetic time series and real EEG recordings and
then analyzes the performance of BSTKS by comparing with
other KS, 𝑡, and SSA methods. Section 5 gives summary and
conclusion from previous sections.

2. Preliminary

2.1. Statistic Fluctuation. KS statistic is sensitive to differences
in both location and shape of the cumulative distribution
functions (c.d.f) of two samples. The null distribution of
KS statistic is calculated under the null hypothesis that the
two samples are drawn from the same distribution or one
sample is drawn from the reference distribution. To detect an
abrupt change from a diagnosed time series 𝑍, we define the
statistic fluctuation between two adjacent segments within 𝑍
by means of KS statistic as follows [1, 4, 19].

Definition 1. Supposing a time series sample, 𝑍 = {𝑧
1
, . . . ,

𝑧
𝑁
}, one observes

𝑍 = 𝑓(
𝑖

𝑛
) + 𝑋, 𝑖 = 1, . . . , 𝑁, (1)

where 𝑋 = {𝑥
𝑖
}
𝑖=1,...,𝑁

is a set of the discrete and centred i.i.d
random variables and𝑓 is a noisymean signal with unknown
distribution. The statistic fluctuation between two adjacent
segments 𝑍

𝐿
= {𝑧
𝑎
, . . . , 𝑧

𝑐
} and 𝑍

𝑅
= {𝑧
𝑐+1
, . . . , 𝑧

𝑏
} is defined

as

𝑆
𝑚𝑛
(𝑥) = (

𝑚𝑛

𝑚 + 𝑛
)

1/2

sup
𝑥∈𝑅


𝐹
𝑚
(𝑥) − 𝐺

𝑛
(𝑥)

, (2)

in which 𝐹
𝑚
(𝑥) and 𝐺

𝑛
(𝑥) are the c.d.f of 𝑍

𝐿
and 𝑍

𝑅
,

respectively; 𝑚 = 𝑐 − 𝑎, 𝑛 = 𝑏 − 𝑐 − 1, and 𝑚 + 𝑛 ≤ 𝑁.
Supposing the hypothesized 𝐹

𝑚
(𝑥) and 𝐺

𝑛
(𝑥) in (2) are not

available, we can derive the empirical cumulative distribution
functions (e.c.d.f) of 𝐹

𝑚
(𝑥) and𝐺

𝑛
(𝑥) from𝑍

𝐿
and𝑍

𝑅
.Then,

𝐹
𝑚
(𝑥) and 𝐺

𝑛
(𝑥) can be redefined as

𝐹
𝑚
(𝑥) = 𝑃

𝑚
(𝑍
𝐿
≤ 𝑥) =

1

𝑚

𝑐

∑

𝑖=𝑎

𝐼 (𝑧
𝑖
≤ 𝑥) ,

𝐺
𝑛
(𝑥) = 𝑃

𝑛
(𝑍
𝑅
≤ 𝑥) =

1

𝑛

𝑁

∑

𝑗=𝑐+1

𝐼 (𝑧
𝑗
≤ 𝑥) ,

(3)
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where 𝐹
𝑚
(𝑥) and 𝐺

𝑛
(𝑥) count the proportion of the sample

points below level 𝑥.

Hypothesis 1. In order to discern an abrupt change on 𝑍

in terms of statistic fluctuation defined above, we intro-
duce KS test for two adjacent segments 𝑍

𝐿
and 𝑍

𝑅
in 𝑍

as

(𝐻
0
) if 𝑆
𝑚𝑛
(𝑧
𝑐
) ≤ 𝛿, no abrupt change occurs in 𝑍;

(𝐻
1
) if 𝑆
𝑚𝑛
(𝑧
𝑐
) > 𝛿, abrupt change occurs in 𝑍,

in which 𝛿 ∈ 𝑅 is a threshold of the statistic fluctuationwithin
𝑍 belonging to an identical distribution. Then, we test (𝐻

0
)

against (𝐻
1
) from observations. If an abrupt change 𝑐 occurs

in𝑍, there exists a value 𝑐 satisfying 𝑆
𝑚𝑛
(𝑧
𝑐
) > 𝛿, 𝑧

𝑐
∈ [𝑧
1
, 𝑧
𝑁
],

and 𝛿 ∈ 𝑅. In this hypothesis, we assume that the number, the
location, and the size of the function 𝑓 in (1) are unknown,
and the upper bound of the statistic fluctuation 𝛿 is supposed
to be known.

2.2. Variance Fluctuation. Provided the statistic fluctuation
defined in (2) is insignificant enough, it is difficult to detect
abrupt change near the left or the right boundary within 𝑍,
especially when sample size 𝑁 gets smaller. Therefore, we
need to introduce another variable to calculate the variance
fluctuation between two adjacent parts within a time series
sample.

Definition 2. Supposing two adjacent segments 𝑍
𝐿
= {𝑧
𝑎
,

. . . , 𝑧
𝑐
} and 𝑍

𝑅
= {𝑧
𝑐+1
, . . . , 𝑧

𝑏
} in 𝑍 = {𝑧

1
, . . . , 𝑧

𝑁
}, the

variance fluctuation between 𝑍
𝐿
and 𝑍

𝑅
is defined as

𝐷
𝑚𝑛
(𝑐) = sup

1≤𝐿,𝑅≤𝑁



1

𝑚

𝑐

∑

𝐿=𝑎

𝑧
𝐿
−
1

𝑛

𝑏

∑

𝑅=𝑐+1

𝑧
𝑅



, (4)

in which𝑚 = 𝑐 − 𝑎, 𝑛 = 𝑏 − 𝑐 − 1, and𝑚 + 𝑛 ≤ 𝑁.

Hypothesis 2. (𝐻
0
) If 𝐷

𝑚𝑛
(𝑐) ≤ 𝛽, no abrupt change occurs

at 𝑐 in 𝑍; (𝐻
1
) if 𝐷

𝑚𝑛
(𝑐) > 𝛽, abrupt change occurs at 𝑐 in

𝑍.
Here, 𝛽 ∈ 𝑅 is a variance threshold of time series 𝑍

which obeys an identical distribution. If there exists a value
𝑐 satisfying𝐷

𝑚𝑛
(𝑐) > 𝛽, 𝑧

𝑐
∈ [𝑧
1
, 𝑧
𝑁
], then an abrupt change

occurs at 𝑐 in 𝑍.

3. Method

3.1. Two BSTs’ Construction. In the first part of the proposed
BSTKS method, two BSTs, that is, BSTcA and BSTcD, are
constructed from a time series sample 𝑍, by using multilevel
HWT. Generally, as shown in Figure 1, a discrete time
series signal 𝑍 = {𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑁
} can be decomposed into

the 𝑘th-level trend cA𝑘 and 𝑘-level fluctuations, that is,
cD1, cD2, . . . , cD𝑘, 𝑘 = 1, 2, . . . , log

2
𝑁. The 𝑘-level HWT is

the mapping𝐻
𝑘
defined as [13]

𝑍
𝐻𝑘

→ (cA𝑘 | cD𝑘 | cD𝑘−1 | ⋅ ⋅ ⋅ | cD2 | cD1) , (5)

Z

cA2

cAk

cA3

cAk−1

cDk

cDk−1

cD3

cD2

cD1

cA1

Figure 1: The diagram of a discrete time series 𝑍 decomposition by
𝑘-level HWT, which is composed of 𝑘-level cA and cD, that is, the
average and difference coefficient vectors.

and then, the mapping𝐻
𝑘
can be represented by the approxi-

mation and detail coefficientmatrices, termedMcA andMcD
as follows:

McA =

[
[
[
[

[

cA
1,1

⋅ ⋅ ⋅ cA
1,𝑁

.

.

. cA
𝑘,𝑗

.

.

.

cA
𝑀,1

0 0

]
]
]
]

]

,

McD =

[
[
[
[

[

cD
1,1

⋅ ⋅ ⋅ cD
1,𝑁

.

.

. cD
𝑘,𝑗

.

.

.

cD
𝑀,1

0 0

]
]
]
]

]

,

(6)

where 0 ≤ 𝑘 ≤ 𝑀 = log
2
𝑁 and 1 ≤ 𝑗 ≤ 𝑁/2𝑘.

Supposing the size of a diagnosed𝑍 is divisible 𝑘 times by
2, the 𝑗th element cA

𝑘,𝑗
in cA𝑘 and the 𝑗th element cD

𝑘,𝑗
in

cD𝑘 can be denoted as

cA
𝑘,𝑗
=

1

(√2) ∧ 𝑘

(

𝑏

∑

𝑖=𝑎

𝑧
𝑖
) ,

cD
𝑘,𝑗
=

1

(√2) ∧ 𝑘

(

𝑐

∑

𝐿=𝑎

𝑧
𝐿
−

𝑏

∑

𝑅=𝑐+1

𝑧
𝑅
) ,

(7)

where 1 ≤ 𝑘 ≤ log
2
𝑁 and 2𝑘(𝑗 − 1) + 1 ≤ 𝑖 ≤ 𝑗 ∗ 2

𝑘; 𝑎 =
2
𝑘
(𝑗 − 1) + 1, 𝑐 = 2𝑘(𝑗 − 1) + 2(𝑘−1), and 𝑏 = 2𝑘 ∗ 𝑗.
During two BSTs’ construction, as shown in Figure 2, the

non-leaf nodes in BSTcA and BSTcD are assembled by the 𝑘-
level coefficient vectors of McA and McD, respectively; and
then the leaf nodes are derived directly from the original time
series 𝑍. Therefore, the features of abrupt change in 𝑍 can be
reflected and distributed into the different non-leaf nodes of
BSTcA and BSTcD, in accordance with the 𝑘 level coefficient
vectors in McA and McD.

3.2. CP Detection Based on Three Search Criteria. To find an
optimal path towards the potential CP within a given time
series 𝑍 quickly and efficiently, some search criteria need to
be introduced, and then the data exceptions can be detected
from the root to leaf nodes of two BSTs. As for the statistic
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cAk,j

cAk−1,2j−1

cA1,1 cA1,2

Z1 Z2 Z3 Z4 ZN−3 ZN−2 ZN−1

· · ·

· · ·

Hk

Hk−1

H1

cAk−1,2j

cA1,N/2−1 cA1,N/2

ZN...

· · ·

(a)

Hk

Hk−1

H1
· · ·

· · ·

· · ·

cDk,j

cDk−1,2j−1 cDk−1,2j

cD1,1 cD1,2 cD1,N/2−1 cD1,N/2

Z1 Z2 Z3 Z4 ZN−3 ZN−2 ZN−1 ZN...

(b)

Figure 2: The diagrams of two binary trees, BSTcA and BSTcD, which are constructed by McA and McD, as well as the original time series
𝑍.

fluctuation within BSTcA, first, a new variable 𝑧
𝑘,𝑗

is defined
according to a current non-leaf node cA

𝑘,𝑗
in BSTcA,

𝑧
𝑘,𝑗
=
1

2
𝑘
(

𝑏

∑

𝑖=𝑎

𝑧
𝑖
) =

(√2) ∧ 𝑘

2
𝑘

cA
𝑘,𝑗
, (8)

where 1 ≤ 𝑘 ≤ log
2
𝑁, 1 ≤ 𝑗 ≤ 𝑁/2

𝑘; 𝑎 = 2
𝑘
(𝑗 − 1) + 1,

𝑏 = 2
𝑘
∗ 𝑗, and 𝑎 ≤ 𝑖 ≤ 𝑏. Then, the statistic fluctuation

between two adjacent segments 𝑍
𝐿
= {𝑧
𝑎
, . . . , 𝑧

𝑐
} and 𝑍

𝑅
=

{𝑧
𝑐+1
, . . . , 𝑧

𝑏
} can be defined by a modified KS statistic as

𝑆


𝑚𝑛
(𝑘, 𝑗) = (

𝑛𝑚

𝑛 + 𝑚
)

1/2

⋅



{
1

𝑛

𝑐

∑

𝑖𝐿=𝑎

𝐼 (𝑧
𝑖𝐿
≤ 𝑧
𝑘,𝑗
) −

1

𝑚

𝑏

∑

𝑖𝑅=𝑐+1

𝐼 (𝑧
𝑖𝑅
≤ 𝑧
𝑘,𝑗
)}



,

(9)

in which 𝑧
𝑘,𝑗

is a new element defined in (8); 𝑚 and 𝑛 stand
for the sizes of 𝑍

𝐿
and 𝑍

𝑅
, respectively; 1 ≤ 𝑘 ≤ log

2
𝑁, 1 ≤

𝑗 ≤ 𝑁/2
𝑘
; 𝑎 = 2

𝑘
(𝑖−1)+1, 𝑏 = 2𝑘𝑗, and 𝑐 = 2𝑘(𝑗−1)+2(𝑘−1).

𝑆


𝑚𝑛
(𝑘, 𝑗) measures the e.c.d.f difference between 𝑍

𝐿
and 𝑍

𝑅
,

and the larger 𝑆
𝑚𝑛
(𝑘, 𝑗) means the more significant statistic

fluctuation between 𝑍
𝐿
and𝑍

𝑅
. Therefore, a potential abrupt

change might occur at 𝑐 in 𝑍 with more probability.

Definition 3. For a current non-leaf node cA
𝑘,𝑗

in BSTcA,
with its left and right-child nodes cA

𝑘−1,2𝑗−1
and cA

𝑘−1,2𝑗
, the

distance of e.c.d.f, 𝑆
𝑘,𝑗;𝐿

, and 𝑆
𝑘,𝑗;𝑅

can be defined as

𝑆
𝑘,𝑗;𝐿

= 𝑆


𝑚𝑛
(𝑘, 𝑗; 𝑘 − 1, 2𝑗 − 1) = (

𝑛𝑚

𝑛 + 𝑚
)

1/2

⋅



1

𝑛
(

𝑏

∑

𝑖=𝑎

𝐼 (𝑧
𝑖
≤ 𝑧
𝑘,𝑗
)) −

1

𝑚

𝑐

∑

𝑖𝐿=𝑎

𝐼 (𝑧
𝑖𝐿
≤ 𝑧
𝑘,𝑗
)



= (
𝑛𝑚

𝑛 + 𝑚
)

1/2

𝑊



1

𝑛
(

𝑏

∑

𝑖=𝑎

𝐼 (𝑧
𝑖
≤ cA
𝑘,𝑗
))

−
1

𝑚

𝑐

∑

𝑖𝐿=𝑎

𝐼 (𝑧
𝑖𝐿
≤ cA
𝑘,𝑗
)



,

S
𝑘,𝑗;𝑅

= 𝑆


𝑚𝑛
(𝑘, 𝑗; 𝑘 − 1, 2𝑗) = (

𝑛𝑚

𝑛 + 𝑚
)

1/2

⋅



1

𝑛
(

𝑏

∑

𝑖=𝑎

𝐼 (𝑧
𝑖
≤ 𝑧
𝑘,𝑗
)) −

1

𝑚

𝑏

∑

𝑖𝑅=𝑐+1

𝐼 (𝑧
𝑖𝑅
≤ 𝑧
𝑘,𝑗
)



= (
𝑛𝑚

𝑛 + 𝑚
)

1/2

𝑊



1

𝑛
(

𝑏

∑

𝑖=𝑎

𝐼 (𝑧
𝑖
≤ cA
𝑘,𝑗
))

−
1

𝑚

𝑏

∑

𝑖𝑅=𝑐+1

𝐼 (𝑧
𝑖𝑅
≤ cA
𝑘,𝑗
)



,

(10)

where 2 ≤ 𝑘 ≤ log
2
𝑁, 1 ≤ 𝑗 ≤ 𝑁/2

𝑘; 𝑎 = 2
𝑘
(𝑗 − 1) + 1,

𝑏 = 2
𝑘
𝑗, 𝑐 = 2

𝑘
(𝑗 − 1) + 2

(𝑘−1); 𝑛 = 2
𝑘, 𝑚 = 2

𝑘−1; and
𝑊 = (√2) ∧ 𝑘/2

𝑘. To estimate an optimal path towards the
potential change position within𝑍, without loss of generality,
the first search criterion is introduced based on the statistic
fluctuations 𝑆

𝑘,𝑗;𝐿
and 𝑆
𝑘,𝑗;𝑅

.

Criterion 1. Given two statistic fluctuation variables 𝑆
𝑘,𝑗;𝐿

and
𝑆
𝑘,𝑗;𝑅

in accordance with two non-leaf child nodes cA
𝑘−1,2𝑗−1

and cA
𝑘−1,2𝑗

of the current selected node cA
𝑘,𝑗

in BSTcA, and
2 ≤ 𝑘 ≤ log

2
𝑁,
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(a) if (𝑆
𝑘,𝑗;𝐿

> 𝑆
𝑘,𝑗;𝑅

) ∧ (𝑆
𝑘,𝑗;𝐿

> 𝐶(𝛼)) holds true, then the
left-child node cA

𝑘−1,2𝑗−1
is selected and involved into

the current search path; meanwhile, the right-child
cA
𝑘−1,2𝑗

is discarded;

(b) if (𝑆
𝑘,𝑗;𝑅

> 𝑆
𝑘,𝑗;𝐿

) ∧ (𝑆
𝑘,𝑗;𝑅

> 𝐶(𝛼)) holds true, then
the right-child node cA

𝑘−1,2𝑗
is selected and involved

into the current search path;meanwhile, the left-child
cA
𝑘−1,2𝑗−1

is discarded.

Proof. For a selected non-leaf node cA
𝑘,𝑗

in BSTcA, as shown
in Figure 3, the original time series 𝑍 is divided equally into
two adjacent segments 𝑍

𝐿
and 𝑍

𝑅
, which are covered by

two non-leaf child nodes cA
𝑘−1,2𝑗−1

and cA
𝑘−1,2𝑗

, respectively.
According to the definitions of 𝑆

𝑘,𝑗;𝐿
and 𝑆

𝑘,𝑗;𝑅
in (10), the

satisfied 𝑆
𝑘,𝑗;𝐿

> 𝑆
𝑘,𝑗;𝑅

indicates that the statistic fluctuation
within 𝑍

𝐿
is more significant than that one within 𝑍

𝑅
; that

is, a potential abrupt change might be contained in 𝑍
𝐿
with

more probability than in 𝑍
𝑅
, and vice versa. Furthermore, if

𝑆
𝑘,𝑗;𝐿

> 𝐶(𝛼) holds true, then (𝐻
1
) of Hypothesis 1 is satisfied;

that is, abrupt change occurs in𝑍
𝐿
, and vice versa, where𝐶(𝛼)

is the critical value predefined in an identical distribution and
𝛼 is the significance level. Therefore, one of the two child
nodes cA

𝑘−1,2𝑗−1
and cA

𝑘−1,2𝑗
is selected and involved into

the current search path; meanwhile, the remaining one is
discarded. Once the statistic fluctuation is significant enough,
an optimal search path can be detected byCriterion 1 from the
top to the last non-leaf level in BSTcA. However, the search
procedure is probably forced to cease because the statistic
fluctuation is so insignificant that Criterion 1 is invalid for
detecting it, especially for the left or the right boundary when
sample 𝑍 is with smaller size 𝑁. Therefore, it is necessary
to introduce another search criterion based on the variance
fluctuations within BSTcD.

Definition 4. For a current non-leaf node cD
𝑘,𝑗

in BSTcD,
with its left and right-child nodes cD

𝑘−1,2𝑗−1
and cD

𝑘−1,2𝑗
,

respectively, the variance fluctuations 𝐷
𝑘,𝑗;𝐿

and 𝐷
𝑘,𝑗;𝑅

are
defined in terms of (4) as

𝐷
𝑘,𝑗;𝐿

= 𝐷


𝑚𝑛
(𝑘, 𝑗; 𝑘 − 1, 2𝑗 − 1) = (

𝑛𝑚

𝑛 + 𝑚
)

1/2

⋅





1

𝑛
{(

𝑐

∑

𝑖𝐿=𝑎

𝑧
𝑖𝐿
) − (

𝑏

∑

𝑖𝑅=𝑐+1

𝑧
𝑖𝑅
)}



−



1

𝑚
{(

𝑙𝑐

∑

𝐿𝑎=𝑎

𝑧
𝐿𝑎
) − (

𝑐

∑

𝐿𝑏=𝑙𝑐+1

𝑧
𝐿𝑏
)}





= (
𝑛𝑚

𝑛 + 𝑚
)

1/2



𝑁

(cD
𝑘,𝑗
)

−

𝑀

(cD
𝑘−1,2𝑗−1

)



,

𝐷
𝑘,𝑗;𝑅

= 𝐷


𝑚𝑛
(𝑘, 𝑗; 𝑘 − 1, 2𝑗) = (

𝑛𝑚

𝑛 + 𝑚
)

1/2

⋅





1

𝑛
{(

𝑐

∑

𝑖𝐿=𝑎

𝑧
𝑖𝐿
) − (

𝑏

∑

𝑖𝑅=𝑐+1

𝑧
𝑖𝑅
)}



cAk,j

cAk−1,2j−1
cAk−1,2j

ZL ZRZ = {ZL, ZR}

Figure 3: The scheme of Criterion 1 based on the statistic fluctua-
tions within BSTcA. In terms of this criterion, the left or right-child
node, that is, cA

𝑘,2𝑗−1
or cA

𝑘,2𝑗
, might be selected to be involved in

the current search path; meanwhile the remaining one is discarded.
Thereafter, an optimal path towards the potential abrupt change in
𝑍 is expected to be obtained from BSTcA, after log

2
𝑁 binary search

steps.

−



1

𝑚
{(

𝑟𝑐

∑

𝑅𝑎=𝑐+1

𝑧
𝑅𝑎
) − (

𝑏

∑

𝑅𝑏=𝑟𝑐+1

𝑧
𝑅𝑏
)}





= (
𝑛𝑚

𝑛 + 𝑚
)

1/2



𝑁

(cD
𝑘,𝑗
)

−

𝑀

(cD
𝑘−1,2𝑗

)



,

(11)

where 2 ≤ 𝑘 ≤ log
2
𝑁, 1 ≤ 𝑗 ≤ 𝑁/2𝑘; 𝑎 = 2𝑘(𝑗−1)+1, 𝑏 = 2𝑘𝑗,

𝑐 = 2
𝑘
(𝑗−1)+2

(𝑘−1); 𝑙𝑐 = 2𝑘(𝑗−1)+2(𝑘−2), 𝑟𝑐 = 𝑐+2(𝑘−2); 𝑛 = 2𝑘,
𝑚 = 2

𝑘−1; and𝑁 = (√2) ∧ 𝑘/2𝑘,𝑀 = (√2) ∧ (𝑘 − 1)/2(𝑘−1).
Suppose Criterion 1 is invalid as (𝑆

𝑘,𝑗;𝐿
= 𝑆
𝑘,𝑗;𝑅

) ‖

(max(𝑆
𝑘,𝑗;𝐿

, 𝑆
𝑘,𝑗;𝑅

) ≤ 𝐶(𝛼)) holds true; the second search
criterion needs to be introduced in terms of the two variance
fluctuation variables𝐷

𝑘,𝑗;𝐿
and𝐷

𝑘,𝑗;𝑅
as follows.

Criterion 2. Given two variance fluctuation variables 𝐷
𝑘,𝑗;𝐿

and 𝐷
𝑘,𝑗;𝑅

according to the two non-leaf child nodes
cD
𝑘−1,2𝑗−1

and cD
𝑘−1,2𝑗

of the selected node cD
𝑘,𝑗

in BSTcD,
and 2 ≤ 𝑘 ≤ log

2
𝑁,

(a) if (𝐷
𝑘,𝑗;𝐿

> 𝐷
𝑘,𝑗;𝑅

) ∧ (𝐷
𝑘,𝑗;𝐿

> 𝐶(𝛽)) holds true, then
the left-child node cA

𝑘−1,2𝑗−1
in BSTcA is accordingly

selected and involved into the current search path;
meanwhile the right one is ignored;

(b) if (𝐷
𝑘,𝑗;𝐿

< 𝐷
𝑘,𝑗;𝑅

) ∧ (𝐷
𝑘,𝑗;𝑅

> 𝐶(𝛽)) holds true, then
the right-child node cA

𝑘−1,2𝑗
in BSTcA is accordingly

selected and involved into the current search path;
meanwhile the left one is ignored.

Proof. Similarly, as illustrated in Figure 4, the satisfied
(𝐷
𝑘,𝑗;𝐿

> 𝐷
𝑘,𝑗;𝑅

) in Criterion 2 means that the variance
fluctuations within 𝑍

𝐿
are stronger than that one within

𝑍
𝑅
, in terms of the definitions of 𝐷

𝑘,𝑗;𝐿
and 𝐷

𝑘,𝑗;𝑅
in (11).

That is, a potential abrupt change might exist in 𝑍
𝐿
with

more probability than in 𝑍
𝑅
, and vice versa. Meanwhile,

if 𝐷
𝑘,𝑗;𝐿

> 𝐶(𝛽) holds true, then (𝐻
1
) in Hypothesis 2 is

satisfied; that is, abrupt change occurs in 𝑍
𝐿
, and vice versa,

where 𝐶(𝛽) is the critical value predefined in an identical
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ZL ZRZ = {ZL, ZR}

cDk,j

cDk−1,2j−1
cDk−1,2j

Figure 4: The scheme of Criterion 2 based on the variance
fluctuations within BSTcD. Supposing Criterion 1 is invalid for
insignificant statistic fluctuation within BSTcA, Criterion 2 ensures
that one of the two non-leaf child nodes cA

𝑘−1,2𝑗−1
and cA

𝑘−1,2𝑗

can also be selected from BSTcA, in accordance with the variance
fluctuation within BSTcD.Therefore, the search procedure can keep
going forward, to the potential abrupt change in 𝑍.

distribution and 𝛽 is the significance level. As a result, one of
the two non-leaf child nodes cA

𝑘−1,2𝑗−1
and cA

𝑘−1,2𝑗
in BSTcA

can be accordingly selected, and the other one is neglected.
Therefore, if Criterion 1 is invalid for less significant statistic
fluctuation within BSTcA, Criterion 2 ensures that the search
procedure can keep going forward to the potential abrupt
change in 𝑍, especially when abrupt change occurs near the
left or the right boundary of 𝑍 with smaller size𝑁.

Based on Criterions 1 and 2 above, a search path can
be obtained from the top root to the last non-leaf levels
of BSTcA. In order to estimate an abrupt change from
the original elements of 𝑍, another criterion needs to be
introduced to discern which one can be selected from two
adjacent leaf nodes in BSTcA.

Definition 5. Supposing the current node cA
𝑘,𝑗

is selected in
the last non-leaf level of BSTcA, 𝑘 = 1, with two child leaf
nodes 𝑧

2𝑗−1
and 𝑧
2𝑗
, two statistic fluctuation variables𝐷

𝐿
and

𝐷
𝑅
are defined based on KS test as

𝐷
𝐿
= 𝐷
𝑚𝑛
(𝑧
𝐿
) = (

𝑚𝑛

𝑚 + 𝑛
)

1/2

𝐹
𝑚
(𝑧
𝐿
) − 𝐺
𝑛
(𝑧
𝐿
)


= (
𝑚𝑛

𝑚 + 𝑛
)

1/2

⋅



{

{

{

1

𝑚

2𝑗−1

∑

𝑖=1

𝐼 (𝑧
𝑖
≤ 𝑧
𝐿
) −

1

𝑛

𝑁

∑

ℎ=2𝑗

𝐼 (𝑧
ℎ
≤ 𝑧
𝐿
)

}

}

}



,

𝐷
𝑅
= 𝐷
𝑚𝑛
(𝑧
𝑅
) = (

𝑚𝑛

𝑚 + 𝑛
)

1/2

𝐹
𝑚
(𝑧
𝑅
) − 𝐺
𝑛
(𝑧
𝑅
)


= (
𝑚𝑛

𝑚 + 𝑛
)

1/2

⋅



{

{

{

1

𝑚

2𝑗

∑

𝑖=1

𝐼 (𝑧
𝑖
≤ 𝑧
𝑅
) −

1

𝑛

𝑁

∑

ℎ=2𝑗+1

𝐼 (𝑧
ℎ
≤ 𝑧
𝑅
)

}

}

}



,

(12)

where 𝑧
𝐿
= 𝑧
2𝑗−1

and 𝑧
𝑅
= 𝑧
2𝑗
; 𝐹
𝑚
(𝑧) and 𝐺

𝑛
(𝑧) refer to

the e.c.d.f of 𝑍
𝐿
= {𝑧
1
, . . . , 𝑧

𝑚
} and 𝑍

𝑅
= {𝑧
𝑚+1

, . . . , 𝑧
𝑁
},

respectively;𝑚 = 2𝑗 − 1 or 2𝑗 and 𝑛 = 𝑁 − 𝑚.
Consider that the largest statistic fluctuation between

𝐹
𝑚
(𝑥) and 𝐺

𝑛
(𝑥) is achieved either before or after one of the

jumps, that is,

sup
𝑥∈R


𝐺
𝑛
(𝑥) − 𝐹

𝑚
(𝑥)


= max
1≤𝑖≤𝑛

{

{

{


𝐹
𝑚
(𝑧
−

𝑖
) − 𝐺
𝑛
(𝑧
−

𝑖
)


before the 𝑖th jump

𝐹
𝑚
(𝑧
𝑖
) − 𝐺
𝑛
(𝑧
𝑖
)


after the 𝑖th jump.

(13)

Then, another two variables𝐷−
𝐿
and𝐷−

𝑅
are defined as

𝐷
−

𝐿
= 𝐷
𝑚𝑛
(𝑧
−

𝐿
) = (

𝑚𝑛

𝑚 + 𝑛
)

1/2

𝐹
𝑚
(𝑧
−

𝐿
) − 𝐺
𝑛
(𝑧
−

𝐿
)


= (
𝑚𝑛

𝑚 + 𝑛
)

1/2

⋅



{

{

{

1

𝑚

2𝑗−1

∑

𝑖=1

𝐼 (𝑧
𝑖
< 𝑧
𝐿
) −

1

𝑛

𝑁

∑

ℎ=2𝑗

𝐼 (𝑧
ℎ
< 𝑧
𝐿
)

}

}

}



,

𝐷
−

𝑅
= 𝐷
𝑚𝑛
(𝑧
−

𝑅
) = (

𝑚𝑛

𝑚 + 𝑛
)

1/2

𝐹
𝑚
(𝑧
−

𝑅
) − 𝐺
𝑛
(𝑧
−

𝑅
)


= (
𝑚𝑛

𝑚 + 𝑛
)

1/2

⋅



{

{

{

1

𝑚

2𝑗−1

∑

𝑖=1

𝐼 (𝑧
𝑖
< 𝑧
𝑅
) −

1

𝑛

𝑁

∑

ℎ=2𝑗

𝐼 (𝑧
ℎ
< 𝑧
𝑅
)

}

}

}



.

(14)

Therefore, the maximal statistic fluctuations 𝐷
𝐿
and 𝐷

𝑅
can

be selected from𝐷
−

𝐿
and𝐷

𝐿
, as well as𝐷−

𝑅
and𝐷

𝑅
. Then, the

third search criterion is introduced in terms of𝐷
𝐿
and𝐷

𝑅
as

follows.

Criterion 3. Given 𝐷
𝐿
and 𝐷

𝑅
in accordance with two child

leaf nodes 𝑧
2𝑗−1

and 𝑧
2𝑗
of the selected non-leaf node cA

𝑘,𝑗
in

BSTcA, 𝑘 = 1,

(a) if (max(𝐷
𝐿
, 𝐷


𝑅
) = 𝐷



𝐿
)∧(𝐷


𝐿
> 𝐶(𝛾)) holds true, then

the left leaf node 𝑧
2𝑗−1

in 𝑍 is taken as the estimated
CP, and the right one is neglected;

(b) if (max(𝐷
𝐿
, 𝐷


𝑅
) = 𝐷



𝑅
)∧(𝐷


𝑅
> 𝐶(𝛾)) holds true, then

the right leaf node 𝑧
2𝑗
in 𝑍 is taken as the estimated

CP, and the left one is neglected;
(c) otherwise, no abrupt change is detected from 𝑍.

Proof. Obviously, if max(𝐷
𝐿
, 𝐷


𝑅
) > 𝐶(𝛾) is satisfied in

Criterion 3, then the statistic fluctuation overtakes the critical
value 𝐶(𝛾) which is given in an identical data distribution,
and 𝛾 is the significance level. Therefore, one of the two leaf
nodes 𝑧

2𝑗−1
and 𝑧
2𝑗
is taken as the estimatedCPwithin𝑍.

Supposing a non-leaf node cA
𝑘,𝑗

is selected in BSTcA, the
statistic and variance fluctuations are accordingly calculated
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between two adjacent segments 𝑍
𝐿
and 𝑍

𝑅
. Meanwhile, the

search procedure is implemented from the root to non-leaf
nodes in the last second level of BSTcA, in terms of Criterions
1 and 2.Then, the estimated CP can be obtained from the leaf
nodes in BSTcA, by using Criterion 3. Thereafter, an optimal
path towards a potential CPwithin𝑍 is detected fromBSTcA,
after about log

2
𝑁 binary search steps.

3.3. Methods Compared with BSTKS. There are many meth-
ods proposed for abrupt change detection in time series,
and the following are some typical methods, to evaluate the
proposed BSTKS framework.

KS Statistic (see [31]). In this method, a diagnosed time series
𝑍 is divided into two adjacent segments 𝑍

𝐿
= {𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
}

and𝑍
𝑅
= {𝑧
𝑚+1

, 𝑧
𝑚+2

, . . . , 𝑧
𝑁
}, and thenKS statistic is applied

to calculate the statistic distance between 𝑍
𝐿
and 𝑍

𝑅
as

𝐷
𝑚𝑛
(𝑥) = (

𝑚𝑛

𝑁
)

1/2

sup
𝑥∈𝑅


𝐹
𝑛
(𝑥) − 𝐺

𝑚
(𝑥)


= (
𝑚𝑛

𝑁
)

1/2

sup
𝑥∈𝑅



𝑛

∑

𝑅=𝑚+1

𝐼 (𝑧
𝑅
< 𝑥) −

𝑚

∑

𝐿=1

𝐼 (𝑧
𝐿
< 𝑥)



,

(15)

where 𝐹
𝑛
(𝑥) and 𝐺

𝑚
(𝑥) stand for the e.c.d.f of 𝑍

𝐿
, and 𝑍

𝑅
,

respectively; 𝑁 = 𝑚 + 𝑛, 𝑁 is the total length of 𝑍, and 𝑚
refers to a current test position within 𝑍.

t-Statistic (see [32]). 𝑡 also known asWelch’s 𝑡-test is used only
when the two population variances are assumed different (the
two sample sizesmay ormay not be equal) and hencemust be
estimated separately. Suppose a diagnosed 𝑍 is divided into
𝑍
𝐿
= {𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
} and 𝑍

𝑅
= {𝑧
𝑚+1

, 𝑧
𝑚+2

, . . . , 𝑧
𝑁
}. Then,

𝑡-statistic is calculated as

𝑡 =
𝑍
𝐿
− 𝑍
𝑅

𝑆
𝑍𝐿−𝑍𝑅

, 𝑆
𝑍𝐿−𝑍𝑅

= √
𝑆
2

1

𝑚
+
𝑆
2

2

𝑛
, (16)

where 𝑍
𝐿
and 𝑍

𝑅
are the sample means of 𝑍

𝐿
and 𝑍

𝑅
,

respectively; 𝑆 is an unbiased estimator of the standard
deviation, 𝑁 = 𝑚 + 𝑛, and 𝑚 and 𝑛 are the sizes of two
segments 𝑍

𝐿
and 𝑍

𝑅
, respectively.

SSA (see [12, 13, 33]). In SSA method, a windowed portion is
chosen within a time series 𝑍 = {𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑁
}, where 𝑁 is

large enough and a window width 𝑚 and the lag parameter
𝑀 are set such that 𝑀 = 𝑚/2, 𝐾 = 𝑚 − 𝑀 + 1. For
each 𝑛 = 0, 1, . . . , 𝑁 − 𝑚 − 𝑀, this method takes an
interval of the time series [𝑛 + 1, 𝑛 + 𝑚] and then defines the
𝑀 × 𝐾 trajectory matrix 𝑋𝑛 and describes the structure of
the windowed portion as an 𝐿-dimensional subspace. If the
structure changes further, it will not be well described by the
computed subspace.Then, the distance between this subspace
and the new trajectory vectors will increase; therefore, this
increase will signal that an abrupt change occurs in 𝑍.

4. Results and Discussion

In this section, the proposed BSTKS is evaluated on the
synthetic time series and real EEG recordings with different

Table 1: The averaged results on four methods with datasets 𝐺
1
to

𝐺
7
.

Time Hit rate Error Accuracy AUC
BSTKS .0063 .4797 38.5268 .9018 .8922
KS .3537 .0841 38.7321 .8804 .8984
𝑡 1.0068 .0168 56.3036 .8878 .7960
SSA 1.5218 .0583 41.9464 .8762 .9941

size𝑁. By comparing with existing KS, 𝑡, and SSA methods,
the efficiency, sensitivity, and performance are analyzed in
terms of the computation time, error and accuracy, hit rate,
and AUC of ROC analyses. Furthermore, the novelty of our
algorithm and necessity for real application are discussed in
the following paragraphs.

4.1. CPDetection on Synthetic Time Series. In our simulations,
some typical time series samples were derived from the
normally distributed datasets (mean, 𝑢 = 0, and standard
deviation, sd = 1). Each diagnosed sample of size 𝑁 is
composed of a normal segment of size 𝑘 and an adjacent
segment of size𝑁−𝑘, in which the abnormal part is simulated
by adding a constant variation V into the random numbers of
size 𝑁 − 𝑘. The proposed BSTKS and other three methods,
namely, KS, 𝑡, and SSA, were tested, respectively, on 200
samples which were derived from each time series group 𝐺

𝑖

with𝑁
𝑖
= 2 ∧ (4+𝑖), 𝑖 = 1, 2, . . . , 7, and V

𝑖
= 𝑑(1+ log

2
(𝑘−4)),

where 𝑘 = log
2
(𝑁
𝑖
) and 𝑑 = 1.0. For each sample in 𝐺

𝑖
, a

series of test positions were arranged by 𝐶𝑃𝐾
𝑗
= 𝑗 ∗ (2 ∧

(𝑘 − 4)), 𝑘 ≥ 5, and 𝑗 = 1, 2, . . . , 15.
First, simulations were carried out according to different

value of sample size 𝑁
𝑖
and test position 𝐶𝑃𝐾

𝑗
. The average

analyses on four methods were listed in Table 1, and the
results of simulations on datasets 𝐺

1
–𝐺
7
were illustrated in

Figure 5. In general, our BSTKS is the most promising with
the shortest computation time, the highest hit rate, the small-
est error, and the highest accuracy out of all four methods.
Particularly, as sample size𝑁 increases from𝑁

1
to𝑁
7
, all four

methods take longer time for bigger𝑁, and BSTKS is always
the fastest one. Meanwhile, BSTKS owns the highest level of
hit rate against the low tracks of other three methods; and
BSTKS is much more efficient with the smallest error and the
highest accuracy, though all four methods tend to be better
with𝑁 increasing.However, BSTKShas smallerAUCofROC
analyses, that is, bigger search space, than SSA and KS.

Second, simulations were carried out based on the
datasets 𝐺

1
, 𝐺
4
, and 𝐺

7
. The proposed BSTKS and other

three methods were tested according to the different value
of variance V = 𝑑(1 + log 2(𝑘 − 4)), 𝑘 = 5, 8, 11, and
𝑑 = 0.5, 1.0, 2.0, 3.0, respectively. The average results of four
methods on 𝐺

1
, 𝐺
4
, and 𝐺

7
were summarized in Table 2, and

the typical simulations were selected on 𝐺
4
and represented

in Figure 6. Generally, when V gets larger, all fourmethods get
better hit rate, accuracy, and AUC of ROC analysis, except for
longer computation time for bigger size 𝑁. Compared with
other three methods, the proposed BSTKS is more encourag-
ing because of the shortest computation time, especially when
𝑁 gets bigger, as well as the highest hit rate and accuracy,
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Figure 5: The simulations on 𝐺
1
to 𝐺
7
with size𝑁 from 25 to 211. (a) The results in terms of computation time, hit rate, error and accuracy,

and AUC of ROC analyses. (b) The average analyses on BSTKS and other three methods. In the histograms, “1,” “2,” “3,” and “4” stand for
BSTKS, KS, 𝑡, and SSA, respectively.

especially when𝑁 gets smaller. Moreover, the simulations on
𝐺
4
with different variance V (Figure 6) explicitly illustrate that

BSTKS has the best performance when V gets larger, in terms
of the shortest time and the biggest increase of the hit rate out
of fourmethods. For the accuracy andAUC, both BSTKS and
KS keep higher sensitivity than 𝑡 and SSA, as V increases from
0.5 to 3.0.Moreover, the simulations on𝐺

1
and𝐺

7
were omit-

ted, because similar results can be obtained like 𝐺
4
above.

Third, simulations were implemented based on different
CP test positions within 𝐺

1
and 𝐺

4
. The proposed BSTKS

and other three methods were analyzed according to the
different value of test positionCPK and variance V.The results
of simulations on 𝐺

1
and 𝐺

4
were illustrated in Figure 7,

and the results near the left and right boundaries in 𝐺
1

and 𝐺
4
were summarized in Table 3. In general, all four

methods tend to be better, when 𝑁 increases under a fixed
V, or when V increases under a fixed 𝑁. Meanwhile, for
test position CPK near the left and right boundaries, the

proposed BSTKS produces better performance than other
three methods, because of the highest hit rate, the smallest
error in all four methods, and higher accuracy and AUC than
𝑡 and SSA. Moreover, the simulations on 𝐺

1
and 𝐺

4
near the

left and right boundaries were illustrated in Figure 8 in detail.
In terms of the distribution of estimated CP (e-CP), PDF of e-
CP, and AUC of ROC analysis, these simulations indicate that
BSTKS is more sensitive for both left and right boundaries
than other three methods, especially when sample size𝑁 and
variance V get smaller.

Therefore, all simulation results above suggest that our
proposed BSTKS is an encouraging and efficient method
for abrupt change detection from the synthetic time series
datasets, because of the shortest computation time, the
highest hit rate, and accuracy out of four methods, especially
for less significant statistic fluctuation when 𝑁 gets smaller,
as well as for less significant variance fluctuation when𝑁 gets
bigger, and V gets smaller.



Computational Intelligence and Neuroscience 9

Table 2: The summary of simulations according to different variances in 𝐺
1
, 𝐺
4
, and 𝐺

7
.

Items
Methods

𝑁 = 2
5

𝑁 = 2
8

𝑁 = 2
11

BSTKS KS 𝑡 SSA BSTKS KS 𝑡 SSA BSTKS KS 𝑡 SSA

𝑑 = 0.5

Time .018 .035 .227 .116 .029 .335 1.85 2.81 .060 6.96 17.2 24.6
Hit rate .046 .005 .010 .038 .093 .093 .005 .025 .106 .056 .006 .034
Accuracy .792 .515 .792 .748 .984 .995 .905 .899 .999 .999 .944 .884
AUC .694 .694 .644 .997 .954 .951 .978 .971 .983 1.00 .999 1.00

𝑑 = 1.0

Time .018 .034 .223 .113 .031 .356 1.97 2.98 .061 7.09 18.1 26.5
Hit rate .086 .013 .007 .035 .041 .001 .099 .142 .135 .045 .000 .035
Accuracy .846 .552 .839 .756 .998 .998 .939 .974 .999 .999 .940 .986
AUC .695 .695 .851 .997 .993 .992 .997 .991 .992 1.00 .998 1.00

𝑑 = 2.0

Time .018 .035 .229 .115 .031 .345 1.91 2.88 .065 7.60 19.7 29.1
Hit rate .165 .061 .007 .049 .181 .090 .000 .049 .167 .028 .000 .053
Accuracy .927 .737 .958 .765 .998 .997 .971 .983 .999 .999 .984 .997
AUC .754 .754 .908 .997 .998 .999 .996 1.00 .995 1.00 .999 1.00

𝑑 = 3.0

Time .019 .037 .245 .125 .034 .382 2.08 3.28 .067 8.08 20.5 31.4
Hit rate .225 .086 .002 .037 .189 .084 0.00 .046 .169 .035 0.00 .045
Accuracy .942 .818 .952 .773 .997 .996 .986 .983 .999 .999 .991 .998
AUC .857 .938 .655 .997 1.00 .996 .728 .100 1.00 .999 .467 1.00

Table 3: The summary of simulations on 𝐺
1
and 𝐺

4
near the left and right boundaries according to different variance 𝑑.

Items
Methods

𝑁 = 2
5, 𝐶𝑃𝐾 = 8 𝑁 = 2

5, 𝐶𝑃𝐾 = 24 𝑁 = 2
8, 𝐶𝑃𝐾 = 16 𝑁 = 2

8, 𝐶𝑃𝐾 = 240

BSTKS KS 𝑡 SSA BSTKS KS 𝑡 SSA BSTKS KS 𝑡 SSA BSTKS KS 𝑡 SSA

𝑑 = 0.5

Hit rate .200 .055 .036 .160 .215 .060 .010 0.0 .230 .160 0.0 0.0 .265 .165 0.0 .065
Error 2 20 8 3 3 7 8 12 24 1 134 49 28 21 102 33
Accuracy .937 .375 .750 .906 .906 .781 .750 .625 .960 .996 .476 .808 .891 .918 .601 .871
AUC .635 .963 .641 .978 .656 .987 .599 .978 .599 .946 .780 .797 .750 .884 .564 .797

𝑑 = 1.0

Hit rate .515 .160 .040 .295 .485 .190 .005 0.0 .490 .195 0.0 0.0 .535 .175 .025 .100
Error 0 10 4 2 0 3 8 12 1 0 112 10 0 1 90 1
Accuracy 1.0 .687 .875 .937 1.0 .906 .750 .625 .996 1.0 .562 .960 1.00 .996 .648 .996
AUC .831 .883 .641 .978 .922 .927 .599 .978 .864 .986 .780 .829 .999 .988 .657 .911

𝑑 = 2.0

Hit rate .655 .240 0.0 .220 .725 .175 0.0 0.0 .510 .160 0.0 0.0 .530 .150 .005 .065
Error 0 6 1 2 0 1 4 12 0 0 107 5 0 1 36 4
Accuracy 1.00 .812 .968 .937 1.0 .968 .875 .625 1.0 1.0 .582 .980 1.0 .996 .859 .984
AUC .976 .979 .770 .978 .938 .875 .808 .978 .978 .985 .780 .999 1.0 .990 .752 .995

𝑑 = 3.0

Hit rate .715 210 0.0 .265 .730 .215 0.0 0.0 .530 .195 0.0 0.0 .545 .145 0.0 .060
Error 0 6 1 2 0 1 1 13 0 0 119 5 0 2 11 4
Accuracy 1.0 .812 .968 .937 1.0 .968 .968 .593 1.0 1.0 .535 .980 1.0 .992 .957 .984
AUC .999 .960 .770 .978 .996 .822 .808 .978 .999 .940 .780 .999 1.0 .990 .752 .998

4.2. Abrupt Change Analyses on EEG Recordings. To verify
the proposed method further, we take some representative
samples from the CHBMIT Scalp EEG Database. In the
PhysioBank platform, the CHBMIT Scalp EEG Database
(CHBMIT) was collected at the Children’s Hospital Boston;
it consists of EEG recordings from pediatric subjects with

intractable seizures [34, 35]. In this CHBMIT EEG database,
some subjects were monitored up to several days after
withdrawal of antiseizure medication in order to characterize
their seizures and assess their candidacy for surgical interven-
tion. Based on these EEG recordings in the CHBMIT EEG
database, as well as some existing experiments in [36–39],
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Figure 6: The simulations on 200 samples in 𝐺
4
with different variances. Under different variances V from 0.5 to 3.0, (a) the computation

time, (b) the hit rate, (c) the error, (d) the accuracy, and (e) the AUC of ROC analysis, for BSTKS, KS, 𝑡, and SSA, respectively. In all “mean”
histograms, “1,” “2,” “3,” and “4” in 𝑥-axis stand for BSTKS, KS, 𝑡, and SSA methods, respectively.

the proposed BSTKS and other three methods were tested
according to different value of test position CPK and sample
size𝑁.

First, a diagnosed EEG sample 𝑍 = [𝑍
𝐿
, 𝑍
𝑅
] was assem-

bled from two significantly different segments, in which
𝑍
𝐿
= {𝑧
1
, . . . , 𝑧

𝐶𝑃𝐾
} and 𝑍

𝑅
= {𝑧
𝐶𝑃𝐾+1

, . . . , 𝑧
𝑁
} were derived

from chb01 04 edfm and chb01 05 edfm, respectively. Then,
BSTKS and other threemethodswere tested on the assembled
EEG recordings 𝑍

1
–𝑍
8
, respectively, according to the differ-

ent value of assigned test position CPK and sample size 𝑁.
The results of abrupt change detection on these assembled
EEG samples were illustrated in Figure 8 and summarized
in Table 4. Generally speaking, all four methods can roughly
estimate the assigned test position from each assembled EEG
recording and then divide it into two adjacent segments
𝑍
𝐿
and 𝑍

𝑅
. It is worth stressing that the proposed BSTKS

can discern the different EEG segments accurately with the
smallest error and the highest accuracy out of four methods.
Also, BSTKS is the most efficient and encouraging with the
shortest time in all four methods.

Moreover, for CPK near the left and right boundaries in
𝑍
1
–𝑍
8
, BSTKS has much better sensitivity than other KS,

𝑡, and SSA methods because of the smallest error and the
highest accuracy, especially for less statistic fluctuation when
𝑁 gets smaller, as well as less significant variance fluctuation
when 𝑁 gets bigger. Supposing the assembled EEG sample
indicates that a sharp transition of one’s mental situation

occurs before and after a sudden attack or acute stimulation,
it is meaningful to estimate the location of the abrupt
change and the maximal difference of data distribution exists
between two adjacent EEG segments. These experiments
above suggest that the proposed BSTKS can successfully
detect the change position where a sudden change occurs
under a potential mental shock, more quickly and efficiently
than KS, 𝑡, and SSA methods.

Second, the original EEG samples 𝑍
1
–𝑍
6
were selected

directly from different recordings in the chb01 05 edfm; then
the proposed BSTKS and other three methods were tested
according to different sample size 𝑁. Because the distance
of e.c.d.f (V.e.c.d.f) can partly reflect the data fluctuation
between two adjacent EEG segments, we use this V.e.c.d.f
variable to distinguish different performance of BSTKS and
other three methods. The results of abrupt change analyses
on these original EEG recordings were shown in Figure 9
and summarized in Table 5. For all methods above, they can
estimate an abrupt change from each of these original EEG
samples 𝑍

1
–𝑍
6
and then divide it into two adjacent EEG

segments. Comparedwith other threemethods, the proposed
BSTKS is encouraging for the shortest time out of four
methods. Moreover, BSTKS has bigger V.e.c.d.f than 𝑡 and
SSA,whichmeans that it canmore reasonably distinguish two
adjacent EEG segments with different state of mental health.
Although KS has the biggest V.e.c.d.f in all four methods, it
takes much more search time than BSTKS, especially when
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Figure 7: The simulations on 𝐺
1
and 𝐺

4
according to the different variance V and test position CPK. The results were shown in (a) 𝐺

1
with

𝑁 = 32 and V = 0.5, (b) 𝐺
4
with𝑁 = 256 and V = 0.5, (c) 𝐺

1
with𝑁 = 32 and V = 2.0, and (d) 𝐺

4
with𝑁 = 256 and V = 2.0, in terms of e-CP,

hit rate, error, accuracy, and AUC, respectively.
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Figure 8: The results of CP detection on the assembled EEG samples 𝑍
1
–𝑍
4
with different value of sample size 𝑁 and test position CPK.

For 𝑍
1
–𝑍
4
with different𝑁 from 27 to 210, (a1–a4) the assembled EEG samples 𝑍

1
–𝑍
4
with the assigned test position CPK, (b1–b4) the e-CP,

(c1–c4) the error of e-CP, (d1–d4) the accuracy of e-CP, and (e1–e4) the computation time. In the 𝑥-axis of (b–e), the methods “1,” “2,” “3,”
and “4” stand for BSTKS, KS, 𝑡, and SSA, respectively.
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Figure 9:The analyses of abrupt change on the original EEG samples, by BSTKS, KS, 𝑡, and SSA, respectively. (a–f)The results of CP detection
from the original EEG recordings 𝑍

1
–𝑍
6
, with𝑁 from 29 to 214, respectively.

sample size𝑁 is getting larger. In addition, 𝑡 needs the longest
search time out of fourmethods, and it is invalid occasionally,
for example, for 𝑍

1
, 𝑍
5
, and 𝑍

6
.

For these original EEG recordings with intractable
seizures, it is of great concern to predict when and where
a significant change happens from these EEG signals. This
abrupt change probably indicates that a patient encounters
a vertical transition from a previous mental status, and it
is very important and helpful for diagnosing the patients
with intractable seizures.These experiments on original EEG
samples above indicate that the proposed BSTKS can not only

accurately detect the change position, but also estimate the
maximal difference of data distribution existing between two
adjacent EEG segments, more quickly and efficiently than
existing KS, 𝑡, and SSA methods.

5. Conclusion

In this paper, a novel BSTKS method is proposed based
on binary search trees and a modified KS statistic. In this
method, two BSTs were constructed from a diagnosed time
series by multilevel HWT, and then an optimal search path
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Table 4: The summary of abrupt change detection on 𝑍
1
–𝑍
8
.

M
𝑍

Mean𝑁 27 28 29 210 27 28 29 210

𝐶𝑃𝐾 25 50 100 200 100 200 400 900

e-CP

BSTKS 25 50 100 276 100 200 376 900 NA
KS 29 36 95 206 34 92 301 795 NA
𝑡 24 255 31 1023 31 199 33 1023 NA

SSA 32 55 398 1007 106 208 500 907 NA

Err

BSTKS 0 0 0 76 0 0 24 0 12.5
KS 4 14 5 6 66 108 99 105 50.9
𝑡 1 205 69 823 69 1 367 123 207.3

SSA 7 5 298 807 6 8 100 7 154.8

Acc

BSTKS 1.0 1.0 1.0 .93 1.0 1.0 .95 1.0 .98
KS .97 .94 .99 .99 .48 .57 .81 .89 .83
𝑡 .99 .20 .86 .20 .46 .99 .28 .88 .61

SSA .94 .97 .42 .21 .94 .97 .80 .99 .78

Time

BSTKS .023 .031 0.034 .036 .028 .033 .035 .038 .032
KS .019 .021 .038 .049 .020 .029 .039 .052 .033
𝑡 .03 .063 .088 .170 .031 .050 .081 .174 .086

SSA .037 .071 .126 .239 .035 .065 .118 .245 .117

Table 5: The summary of CP detection from the original EEG
samples 𝑍

1
–𝑍
6
.

M N Mean
29 210 211 212 213 214

e-CP

BSTKS 328 316 1286 2633 4352 6224 NA
KS 348 317 1342 2252 4673 5947 NA
𝑡 511 314 17 4095 10 16383 NA

SSA 426 854 90 2634 408 11271 NA

V.e.c.d.f

BSTKS .0649 .2608 .2822 .0997 .1318 .0388 .1464
KS .4603 .3829 .4407 .3050 .3325 .2234 .3574
𝑡 0 .1257 .5384 0 0 0 .1106

SSA .1368 .0850 .1260 .0745 .0212 .0012 .0741

Time

BSTKS .020 .020 .024 .030 .019 .0320 .0241
KS .016 .041 .112 .466 1.461 5.638 1.289
𝑡 .072 .137 .281 .913 1.726 4.709 1.306

SSA .107 .209 .415 1.103 1.769 3.548 1.192

is detected from the root to leaf nodes of two BSTs in
terms of three search criteria. The novelty of the proposed
method is addressed by comparing with other KS, 𝑡, and
SSA methods, and simulations on the synthetic time series
indicate that the proposed BSTKS is more efficient due to
the shortest time, the highest hit rate, and the smallest
error and highest accuracy out of four methods. Meanwhile,
BSTKS has better sensitivity than KS near the left and right
boundaries, because of shorter search time, higher hit rate,
and bigger AUC, especially when sample size𝑁 gets smaller
with less significant statistic fluctuation. In addition, the
necessity of the proposed method in the real domain is
analyzed on real EEG recordings, and the results indicate

that the proposed method can successfully discern an abrupt
change and then obviously distinguish two adjacent EEG
segments from the real EEG recordings. Through inspecting
the significant fluctuation between adjacent segments signals,
it is encouraging further for useful information inspection
on all kinds of physiological and psychological time series
signals. In a word, our BSTKS is a novel, efficient, and
promising method for abrupt change analysis, and it is very
helpful for useful information inspection on all kinds of real
time series with different scales.
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