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Purpose: Parkinson’s disease (PD) diagnosis algorithms based on quantitative
susceptibility mapping (QSM) and image algorithms rely on substantia nigra (SN)
labeling. However, the difference between SN labels from different experts (or
segmentation algorithms) will have a negative impact on downstream diagnostic tasks,
such as the decrease of the accuracy of the algorithm or different diagnostic results for
the same sample. In this article, we quantify the accuracy of the algorithm on different
label sets and then improve the convolutional neural network (CNN) model to obtain a
high-precision and highly robust diagnosis algorithm.

Methods: The logistic regression model and CNN model were first compared for
classification between PD patients and healthy controls (HC), given different sets of SN
labeling. Then, based on the CNN model with better performance, we further proposed
a novel “gated pooling” operation and integrated it with deep learning to attain a joint
framework for image segmentation and classification.

Results: The experimental results show that, with different sets of SN labeling that
mimic different experts, the CNN model can maintain a stable classification accuracy at
around 86.4%, while the conventional logistic regression model yields a large fluctuation
ranging from 78.9 to 67.9%. Furthermore, the “gated pooling” operation, after being
integrated for joint image segmentation and classification, can improve the diagnosis
accuracy to 86.9% consistently, which is statistically better than the baseline.

Conclusion: The CNN model, compared with the conventional logistic regression
model using radiomics features, has better stability in PD diagnosis. Furthermore,
the joint end-to-end CNN model is shown to be suitable for PD diagnosis from the
perspectives of accuracy, stability, and convenience in actual use.

Keywords: Parkinson’s disease, computer-assisted diagnosis, deep learning, stability, quantitative susceptibility
mapping, radiomics
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INTRODUCTION

Parkinson’s disease (PD) is a significant neurodegenerative
disease (Damier et al., 1999). The main symptoms of PD
include static tremor, bradykinesia, and myotonia. As the clinical
manifestations of PD are highly diverse among individual
patients, the diagnosis heavily depends on domain knowledge
and experience of the clinicians (Rodriguez-Oroz et al., 2009).
At present, the diagnosis process is typically based on clinical
assessment, which can be very time-consuming. From the first
clinic visit to finally reaching a diagnosis, it may take months to
sometimes even several years. Since the delay of diagnosis can
be detrimental to properly treating the patients, it is crucial to
shorten the time to derive a correct PD diagnosis.

Among many medical imaging modalities, magnetic
resonance imaging (MRI) has excellent soft-tissue contrast and
can be used to reveal the differences between PD patients and
healthy controls (HCs) based on the presence of abnormal image
cues (Tessa et al., 2014; Guan et al., 2017; Zeng et al., 2017;
Shu et al., 2020)—for instance, excessive iron deposition in the
substantia nigra (SN) regions of PD patients has become a strong
candidate for PD biomarkers (Haller et al., 2013). Particularly,
quantitative susceptibility mapping (QSM), as a newly emerging
tool to measure iron content in the basal ganglia (Shahmaei et al.,
2019), can visualize the high amount of iron in deep gray matter
clearly (He et al., 2017).

The intensity values in QSM images can be used as
quantitative descriptions for PD research (Ghassaban et al., 2019;
He et al., 2021). Intuitively, the more iron deposition there is,
the larger the intensity value in the QSM image (Langkammer
et al., 2012). Furthermore, for early PD patients, the midbrain
black iron deposit has been significantly increased, rendering a
high correlation with the severity of the motion symptoms of the
patients (He et al., 2015). Therefore, it is necessary and feasible to
investigate automatic diagnostics based on QSM to shorten and
quantify the diagnosis process.

Technically, there are two subtasks that are coupled in
addressing the QSM-based computer-assisted diagnosis of PD:
(1) SN labeling, for locating the region of interest, and (2) feature
extraction and classification, as detailed below:

(1) For SN labeling, one may employ either manual labeling of
SN or automatic segmentation (Dong et al., 2016; Zhang
et al., 2016). Manual labeling is often perceived as gold
standard in annotating medical images and widely adopted
in many studies, but the process is very time-consuming.
In order to reduce the time cost and importantly get
rid of the dependence on objective manual labeling in
practical application, automatic segmentation of SN has
provided an attractive alternative. The SN segmentation
based on iterative optimization (Visser et al., 2016a,b; Guo
et al., 2018) can achieve 75–79% in Dice score. Due to
the high contrast provided by QSM, Garzon et al. (2018)
proposed an SN segmentation method based on multi-atlas
registration. By registering and fusing multiple atlases, an
81% Dice score is reached for SN segmentation.

(2) For feature extraction and classification, enabled by
sophisticated machine learning methods, one may develop
automatic diagnosis methods based on QSM imaging data
and SN labeling. In addition to first-order features such
as the mean value of image intensities, researchers extract
105 radiomics features to characterize iron deposition
changes within the SN (Cheng et al., 2019). After feature
selection, the support vector machine model is employed to
complete the classification between idiopathic PD and HC
and reaches an accuracy of 88%. In our previous work, we
apply a convolutional neural network (CNN) to the entire
SN region for feature extraction and PD/HC classification
(Xiao et al., 2019). We further combine CNN features and
conventional radiomics features into a hybrid framework
and obtain 90% accuracy in PD diagnosis. All these results
demonstrate that the machine learning algorithm can solve
this clinical usage effectively.

Based on the achievement mentioned above, Figure 1
summarizes the current typical framework for QSM-based PD
diagnosis, consisting of two consecutive steps. In the first
step of SN labeling, one may adopt conventional manual
labeling or automatic labeling algorithms. In the second step of
feature extraction and classification, one may extract radiomics
features given the labeled SN regions and then use the classical
logistic regression (LR) model to complete the diagnosis.
Alternatively, we can use CNN to complete the whole diagnosis
task automatically.

However, a problem that is often neglected in the
abovementioned methods is that SN labeling usually comes
from different sources, and the slight difference in SN labeling
could considerably affect classification accuracy and consistency.
Hence, it is essential to quantify and improve the robustness
of the abovementioned diagnostic model regarding labeling
variation. The model is expected to meet the following two
requirements: (1) A model trained well on manual labeling
should not have obvious performance degradation on automatic
labeling, as automatic labeling is convenient to use after
deploying the trained model to clinical practice; and (2) the
trained model should be robust and make same judgment on the
same patient, even though two different sources of labeling (e.g.,
from two different doctors) are considered.

As such, this study aims to prospectively investigate the
stability of the abovementioned PD diagnosis model, especially
with respect to SN labeling. Specifically, we divide our work into
the following three parts:

(1) We first compare two different classification schemes, i.e.,
LR and CNN, when different sets of SN labeling are
provided. The goal here is to verify whether CNN, a
recently popular approach, can deliver better stability than
the classical LR model in PD/HC classification, given SN
contours of various sources.

(2) We further propose a novel “gated pooling” operation
and integrate it with the CNN model. We show that
the CNN model can then effectively improve the PD/HC
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FIGURE 1 | The framework of the quantitative susceptibility mapping-based Parkinson’s disease diagnosis model.

classification performance, in which gated pooling can
further mitigate the instability caused by SN labeling.

(3) Finally, we combine the two steps of labeling and
classification into a unified CNN model, with the help
of gated pooling. We demonstrate that the end-to-
end deep learning achieves not only accurate but also
stable PD diagnosis, regardless of manual or automatic
labeling of the SNs.

Based on these three parts, the final aim is to quantify the
stability of the current diagnosis algorithm and provide a fully
automatic PD/HC diagnosis solution that is highly accurate,
robust, and repeatable.

MATERIALS AND METHODS

We first prepare the data and set up the models to be
analyzed in sections “Data Collection” and “Setup of Labeling
and Classification Models,” respectively. Then, in section
“Classification Stability Due to Labeling” and “Classification
Intrasubject Instability Due to Labeling,” the stability analysis
with respect to SN labeling is detailed. In section “Joint
Learning for Labeling and Classification,” we further combine
the two steps of labeling and classification into a unified deep
learning framework.

Data Collection
This study was approved by the local ethics committee in Ruijin
Hospital, Shanghai Jiao Tong University School of Medicine. All
participants provided written informed consent. The recruitment
and MRI scanning of the participant are the same as shown in
a prior study (He et al., 2020). In this study, in total, 87 right-
handed PD participants (age: 60.9 ± 8.1 years; man/woman:
41/46) from local movement disorder outpatient clinics were
recruited. All PD participants were diagnosed according to the
United Kingdom Parkinson’s Disease Society Brain Bank criteria
(Hughes et al., 1992). Demographic information, including
sex, age, and education, was collected for each participant.
Disease severity was evaluated using Hoehn and Yahr staging,

and motor disability was assessed using the motor portion of
the Unified Parkinson’s Disease Rating Scale—III in the ON
medication state. The inclusion criteria for the PD group were
a diagnosis of idiopathic PD. The exclusion criteria were as
follows: (1) secondary parkinsonism which was caused by the
use of drugs (e.g., antipsychotics, antiemetics, and drugs that
deplete dopamine) and atypical parkinsonian symptoms (such
as progressive supranuclear palsy, multiple system atrophy,
dementia with Lewy bodies, and corticobasal syndrome); (2)
Mini-Mental State Exam (MMSE) score lower than 24; (3) a
history of cerebrovascular disease, seizures, brain surgery, brain
tumor, moderate-to-severe head trauma, or hydrocephalus; or
(4) treatment with antipsychotic drugs or with any other drug
possibly affecting the clinical evaluation. For HCs, 53 sex- and
age-matched right-handed participants (age: 62.9 ± 7.1 years;
man/woman: 24/29) were recruited from the local community.
The inclusion criteria for the control group were as follows:
(1) normal movement function and neurological status, (2)
absence of neurological or psychiatric disease, and (3) a MMSE
score equal or greater than 24. The demographic and clinical
characteristics are shown in Supplementary Table 1.

All participants were imaged with a 3T scanner (Signa HDxt;
GE Healthcare) equipped with an eight-channel receive-only
head coil. A 3D multi-echo gradient echo (GRE) sequence was
used to acquire images suitable for measurement of R2∗ with the
following parameters: repetition time (TR) = 59.3 ms, number
of echoes = 16, first echo time = 2.7 ms, echo spacing = 2.9 ms,
flip angle (FA) = 12◦, field of view = 220 × 220 mm2,
resolution = 0.86 × 0.86 × 1.0 mm3, sensitivity encoding
acceleration factor = 2, and total acquisition time = 10 min,
42 s. Whole-brain anatomical images were acquired with a
T1-weighted fast-spoiled GRE sequence for common space
registration. The imaging parameters for this sequence were as
follows: TR = 5.5 ms, TE = 1.7 ms, inversion time = 450 ms,
resolution = 1× 1× 1 mm3, and FA = 12◦.

The QSM image reconstruction was performed according to
a previous study (Li et al., 2011). Briefly, all phase images were
averaged and filtered with SHARP, and the susceptibility maps
were derived from the frequency map iLSQR (the regularization
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FIGURE 2 | The architecture of SN2 used for substantia nigra labeling.

threshold for Laplace filtering was set at 0.04) (Li et al., 2011). The
unit of susceptibility was given in parts per billion. As a summary,
the data and subjects used here were the same with our previous
work (Xiao et al., 2019).

Setup of Labeling and Classification
Models
There are two major ways for SN labeling and PD/HC
classification, respectively, in this study. We set up the
corresponding labeling and classification (including feature
extraction) implementations in advance.

First, the labeling step can either accommodate manual
labeling or be adopted by the cutting-edge learning-based
segmentation tools. For manual labeling particularly, the contour
of the SN of our data was drawn manually by a neuroradiologist
with 10 years of neuroimaging experience. The expert labeling
is regarded as ground truth. Then, for automatic labeling,
we adopt and improve V-net to achieve a state-of-the-art
performance (Dong et al., 2016; Visser et al., 2016a,b; Garzon
et al., 2018; Guo et al., 2018). The architecture of V-net (Milletari
et al., 2016) has been widely used in various medical image
segmentation tasks. In our implementation, we delete all pooling
operations in V-net, which reduces image spatial resolution
and may hurt the contouring precision of SN. Meanwhile,
we have replaced all residual blocks (He et al., 2016) with
densely connected blocks (Huang et al., 2017), which further
promotes visual feature fusion at various scales in the network
(Jegou et al., 2017).

The whole pipeline of our SN segmentation network (namely
SN2) follows a robust coarse-to-fine manner as in Figure 2.
The coarse segmentation includes two parallel modules, i.e., (1)
initial segmentation block and (2) distance regression block,
both of which follow the same V-net architecture. The initial
segmentation block outputs the probability map of SN. The
distance regression block estimates the distance from each point
in the image to the nearest boundary of SN. If a point is inside
SN, the sign of the distance is then negative. If the point is
outside SN, the distance is positive. By using both blocks, we can
suppress possible false-positive errors in the segmentation results.
The outputs of the initial segmentation block and the distance
regression block are concatenated in the channel dimension

for further convolution, followed by softmax to derive the
fine segmentation.

Our experiments show that our SN2 can achieve the Dice
coefficient of 87.2%, compared to 83% of the original V-Net. The
Dice coefficient, which is a typical indicator for segmentation
quality, measures how close the outputs of SN2 are compared
to the ground-truth labeling of the expert radiologist. To
our knowledge, the Dice coefficient by SN2 is superior to
most existing automatic labeling (Garzon et al., 2018). For
convenience, we denote the manual labeling as L1.000 and the
outputs of SN2 as L0.872, with the subscripts indicating the
corresponding Dice coefficients with respect to the ground-
truth labeling.

In order to investigate the impact of labeling upon feature
extraction and classification, we need to generate a series of SN
labeling with a different precision, which can help us track the
effects of SN labeling on the performance of PD/HC diagnosis.
Using a popular registration algorithm SyN (Avants et al., 2008),
we can obtain a deformation field that can align L1.000 and
L0.872. By changing the magnitude of this deformation field
(i.e., by changing the iterative callbacks in SyN) and apply
them to warp L1.000, we can generate a set of SN labeling with
various precisions. Specifically, the resulting SN labeling sets are
L0.975, L0.946, L0.920, and L0.897, where different subscripts show
the corresponding Dice coefficient relative to L1.000. Since the
deformation field is smooth, the SN sets can be perceived as a
sequence of gradual deviation from manual labeling to automatic
labeling. We visualize a typical example of the abovementioned
process in Figure 3.

Second, we consider two options for feature extraction
and classification, i.e., radiomics features + LR and CNN-
based PDNet. The two options, which are illustrated in
Figures 4A,B, have both shown effectiveness for PD/HC
classification. As in Figure 4A, the LR model relies on radiomics
features. Given two sets of SN labeling (e.g., L1.000 and L∗ ∈
{L1.000, L0.975, L0.946, L0.920, L0.897, L0.872}), we first mask out the
SN region from the original QSM image and then extract
radiomics features using Pyradiomics (van Griethuysen et al.,
2017). In total, 2,210 first-order shape and texture radiomics
features in seven categories are extracted, including the following:
first-order, n = 432; shape feature, n = 26; gray-level co-
occurrence matrix, n = 24; gray-level dependence matrix, n = 528;
gray-level run-length matrix, n = 384; gray-level size-zone
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FIGURE 3 | Examples of the substantia nigra labels in different sets.

FIGURE 4 | Illustrations of implementation schemes for feature extraction and classification for PD/HC diagnosis. (A) Radiomics features + LR: features are
extracted from QSM images with SN labels (ICC: intraclass correlation coefficient, RFE: recursive feature elimination). (B) PDNet: a deep learning network consisting
of feature extractor and classifier, which are further detailed in the right panel of the figure. (C) PDNet + Gated Pooling: the Gated Pooling operation is integrated with
PDNet, which is also detailed in the right-bottom of the figure, for better classification performance. “Conv”, “BN” and “GAP” stand for convolution, batch
normalization, and global average pooling, respectively, in the figure. The number of channels (e.g., 6), kernel size (e.g., 5 × 5 × 5), and stride (e.g., 1) in each
convolution layer of PDNet are shown as “6@5 × 5 × 5 -1”.

FIGURE 5 | Unified deep learning framework for the automatic diagnosis of Parkinson’s disease.

matrix, n = 384; and neighborhood gray-tone difference matrix,
n = 120. Detailed descriptions of these radiomics features are
available at https://pyradiomics.readthedocs.io/en/latest/index.

html. To obtain the radiomics feature with high stability between
L1.000 and L∗, intraclass correlation coefficients (ICC) (2,1)
estimates are calculated on these feature values based on the
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FIGURE 6 | Classification areas-under-curve of logistic regression and PDNet.

assumption of single rater, absolute agreement, and two-way
random effects (Koo and Li, 2017). A subset of these radiomics
features with ICC > 0.8 is preserved. Then, we use the LR
model combined with the recursive feature elimination strategy
to complete the final feature selection and model training on the
features extracted from L 1.000.

For the CNN-based PDNet model (c.f. Figure 4B), we
can divide it into PDNet-Extractor and PDNet-Classifier,
respectively. PDNet-Extractor encodes the input image (masked
by the SN labeling first) to a multi-channel feature maps,
which avoids using the human-engineered radiomics features
as in the previous LR model. Note that PDNet-Extractor
considers image cues in the SN region only since the region
contains critical information to PD diagnosis. Given the feature
maps from PDNet-Extractor, PDNet-Classifier can complete the
classification task and derive PD diagnosis after proper pooling
operation (e.g., global average pooling, or GAP, in Figure 4B).
The detailed network structure of PDNet is shown in Figure 4.

Classification Stability Due to Labeling
It is hypothesized that the stability of PD/HC classification,
as a second step in the pipeline of Figure 1, highly depends
on the quality of the SN labeling in the first step. To
quantitatively investigate the impact of labeling upon feature
extraction and classification, we need to investigate the
accuracy of the classification model on different SN labeling.
First of all, we prepare the well-trained diagnosis model
(Figures 4A,B) on L1.000 as described in section “Setup of
Labeling and Classification Models.” After that, by applying L∗ ∈

{L1.000, L0.975, L0.946, L0.920, L0.897, L0.872} to the classification
models, we can then track the impact of SN labeling on the
performance of PD/HC diagnosis. The performance comparisons
between the models in Figures 4A,B are summarized in section
“Population-Level Classification Stability.”

Classification Intrasubject Instability Due
to Labeling
While our later experimental results suggest that PDNet delivers
higher PD/HC classification accuracy than the conventional LR
model in the overall population level, the deep learning network
still suffers from intrasubject instability. Given the gradually
changing SN labeling, the same subjects can be correctly classified
sometimes yet fail at other times. The inconsistent classification
becomes a significant challenge when applying a diagnosis model
to practice since it is unknown what kind of SN labeling is
needed per patient.

The abovementioned inconsistency may originate from the
way the SN labeling is used by PDNet. Following the approach
in Xiao et al. (2019), we can set the region out of SN to zero,
which makes the edges of SN have a sharp contrast in the input
to PDNet. The sharp contrast pushes the convolution to produce
active output, which dramatically affects the decision-making
process of the CNN model. Therefore, the edge appearance of SNs
in different labeling sets contribute highly to the inconsistency
of classification.

To mitigate this issue, we propose the gated pooling operation
and improve the PDNet as in Figure 4C. We input the original
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QSM image nearby the SN region to the PDNet-Extractor. On the
feature maps from PDNet-Extractor, we collect the high-order
features within the SN labeling and perform average pooling to
derive a feature vector. The abovementioned process, which is
termed as gated pooling, replaces GAP compared to Figure 4B.
After gated pooling, the feature vector is sent to the PDNet-
Classifier for classification. With Gated Pooling, the SN edge
impact can be effectively alleviated.

Joint Learning for Labeling and
Classification
Since Gated Pooling can bridge labeling and classification, we
further implement a unified CNN model for joint learning of the
labeling and classification tasks in an end-to-end fashion.

As in Figure 5, we integrate SN2 into the classification model
by gated pooling. Note that the fine segmentation is represented
by the probability map. We fuse the probability map to the feature
maps of the PDNet-Extractor in the following way:

feature vector , mean
(
δ
(
p
)
× feature map

)
,

whereδ
(
p
)
=


1 p > 0.6,

5p−2 0.6 ≥ p > 0.4,

0 p ≤ 0.4.

Here p is the probability of the voxel belonging to SN. We can
view this operation as a different version of gated pooling. After
that, the PDNet-Classifier maps the feature vector to a diagnostic
result. We can train the abovementioned network in an end-to-
end manner.

EXPERIMENTAL VALIDATION

Following the same experimental setting as that of Xiao et al.
(2019), we have performed a sevenfold nested cross-validation.
For the 140 subjects collected, we randomly select 100 subjects
as the training set, 20 subjects as the validation set, and the rest
of the 20 subjects as the testing set in each fold. The validation
set is used for hyper-parameter tuning only, and the testing set
is used for performance evaluation. The nested cross-validation
is permutated 50 times, and the measures reported below are
collected from all 50 permutations.

Population-Level Classification Stability
To verify that the CNN-based PDNet can deliver better stability
than LR in PD/HC classification, we train the radiomics features
+ LR model (Figure 4A) and PDNet model (Figure 4B) on the
labels of L1.000. Then, we test with different sets of labels generated
in section “Setup of Labeling and Classification Models.”

It can be seen from Figure 6 and Table 1 that, as the SN
labeling deviates from L1.000 with decreasing Dice scores, the
classification accuracy of the LR model based on radiomics
features has a clear downward trend. This implies that LR model
based on the radiomics feature is not robust to the differences
between different SN labeling. The CNN-based classification
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TABLE 2 | Classification consistency for two sets of labeling.

Dice=0.872 Dice=0.897 Dice=0.920 Dice=0.946 Dice=0.975 Dice=1.000 CCI=1.000

Dice=0.872 0.970 0.960 0.951 0.930 0.926

Dice=0.897 0.987 0.980 0.969 0.948 0.932

Dice=0.920 0.982 0.995 0.979 0.958 0.950

Dice=0.946 0.981 0.990 0.991 0.967 0.951

Dice=0.975 0.973 0.982 0.983 0.990 0.974

Dice=1.000 0.971 0.980 0.981 0.986 0.994  CCI=0.900
 

For models with or without gated pooling, we calculate the logistic regression (CCIs) using any pair of label sets to extract substantia nigra (SN)—for example,
theCCI (L1.000, L0.872 ) in the upper-right corner means the classification consistency index when we useL1.000 andL0.872 to extract SN. The CCIs in the upper triangle
and lower triangle are corresponding to the models in Figures 4B,C, respectively. The closer the color is to orange, the closer the value is to 1 and the closer the color is
to blue, the closer the value is to 0.9.

TABLE 3 | Comparisons of different diagnosis networks.

SN labels used in training/in
testing/network architecture

Accuracy
(mean/Std/p-value)

AUC
(mean/Std/p-value)

BAC
(mean/Std/p-value)

Sensitivity
(mean/Std/p-value)

Specificity
(mean/Std/p-value)

L1.000/L1.000/Figure 4C 0.872/0.064/0.004 0.944/0.042/<0.001 0.877/0.062/0.019 0.923/0.079/0.002 0.831/0.110/0.175

L1.000/L0.872/Figure 4C 0.859/0.061/– 0.931/0.049/– 0.866/0.061/– 0.904/0.078/– 0.829/0.116/–

L0.872/L0.872/Figure 4C 0.827/0.075/0.004 0.921/0.052/0.053 0.832/0.073/0.002 0.890/0.089/0.087 0.775/0.119/0.003

L1.000/none/Figure 5 0.869/0.057/0.017 0.936/0.045/0.016 0.872/0.057/0.057 0.910/0.077/0.088 0.834/0.098/0.131

We have trained four logistic regression models for comparative experiments. There are two options for extracting the substantia nigra: manual labeling (L1.000) or
automatic labeling (L0.872). For training the network, we have two options: (1) training the segmentation network and classification network separately as in Figure 4C and
then combining them together for testing and (2) end-to-end training as shown in Figure 5. As an example, the model in Figure 4C trained on the label set L1.000 and
tested on L0.872 is denoted as “L1.000/L0.872/Figure 4C”. The p-value has been updated by the multiple-comparison correction.

model, on the other hand, yields a relatively good stability
across different sets of SN labeling. The produced classification
areas-under-curve (AUCs), for example, are fluctuating slightly,
given different SN labeling with different precision. All these
phenomena enlighten us that, in the practical application of the
classification model based on radiomics features, we need to
further consider the impact caused by different labeling. On the
contrary, the CNN-based model is less sensitive to the variation
induced by the SN labeling, while its classification accuracy can
be attained in a more stable way.

Intrasubject Classification Consistency
When using different testing labeling with a trained classification
model, the same subject may get different diagnosis results, which
is a manifestation of intrasubject instability. To quantify this
instability, we define the classification consistency index (CCI).
First, if a subject yields the same diagnosis result given two
available SN labels, we count the subject as “1,” otherwise it is
“0.” Then, we summarize all subjects in a testing set and compute
the CCI measure by normalizing upon the size of the testing
set. In this way, CCI tells the diagnosis consistency of a certain
classifier when tested with multiple subjects, if the testing labels
are generated in two different ways.

The upper triangle of Table 2 shows the CCIs
of PDNet in Figure 4B. For any pair of labeling
in {L1.000, L0.975, L0.946, L0.920, L0.897, L0.872}, PDNet suffers

from intrasubject inconsistency to a certain extent. Taking the
number of CCI (L0.872, L1.000) = 0.926 in the upper right
corner of Table 2 as an example, we trained 50 models as shown
in Figure 4B through different data splits. Then, on the test set
(20 test samples in each split, 50 ∗ 20 = 1,000 samples for all 50
models), the SN area was extracted by the labeling with L1.000
accuracy (Dice = 1.000 in the Y-coordinate) and L0.872 accuracy
(Dice = 0.827 in the X-coordinate), respectively, and then sent
to the corresponding trained model. Only about 926 samples
out of the 1,000 test samples shown have the same classification
results under the two SN labels, which corresponds to 0.926
(926/1,000) in the upper-right corner of Table 2. The values in
the upper-right section of Table 2 can be interpreted in the same
way. It can be found that the model in Figure 4B will be affected
by the difference between labeling. This obviously hinders the
application of the algorithm in real scenarios.

Following the same experimental setup detailed above,
we verify PDNet after integrating “gated pooling” (c.f. the
model in Figure 4C). The results are then provided in the
lower triangle of Table 2 accordingly. Corresponding to the
CCI (L0.872, L1.000) = 0.926 of Figure 4B, our proposed method
in Figure 4C get CCI (L1.000, L0.872) = 0.971 in the lower left
corner of Table 2, which is higher than the number of 926 for the
model in Figure 4B.

In summary, all CCIs from Figure 4C has increased
in comparison to those in Figure 4B, indicating the
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contribution of “gated pooling” in boosting intrasubject
classification consistency.

Unified Framework for Automatic
Diagnosis
Based on section “Joint Learning for Labeling and Classification,”
we implement an end-to-end diagnosis framework (as in
Figure 5) combining both labeling and classification tasks
together. We aim to prove that an end-to-end system is better
than independently calling segmentation and classification tasks.
For comparison, we have trained multiple PDNets integrating
gated pooling for PD/HC classification (as in Figure 4C). Their
differences come from using different training settings and labels,
with the detailed configurations shown in Table 3.

• Row 1: The PDNet adopts expert labeling in both training
and testing—that is, if this network is applied to clinical
practice for PD/HC diagnosis, an expert will have to label
the SN regions for the entire training set in advance.
Then, given a new patient for test, the (same) expert needs
to label the SN region following the same protocol with
the training data.
• Row 2: A more convenient way in practice is that the

expert labels the SN regions for the training set, from which
not only the classification task but also the segmentation
task can be trained. Thus, in the testing stage, a new
patient will not be manually labeled; the SN label will
instead be generated automatically (i.e., at the quality level
corresponding to L 0.872).
• Row 3: We also replace the labels in training PDNet with

the automatic labeling results. By comparing with row 1,
we can further verify the impact when the SN labels are
generated in an inconsistent way during the training and
testing of PDNet.
• Row 4: The proposed unified architecture not only

considers classification (as in the three previous rows)
but also integrates segmentation. Thus, expert labeling is
needed only in training. In testing, the patient will be
labeled automatically inside the network, without need of
external input.

Referring to PDNet in Figure 4C, the model trained and tested
on both the expert labeling performs well (row 1 in Table 3). By
using the automatic labeling to replace the expert labeling for test
(row 2 in Table 3), the PDNet suffers from a slight degradation
of the classification performance (i.e., the classification accuracy
dropping from 0.872 ± 0.064 to 0.859 ± 0.061, p = 0.004, from
matched-samples t-test after multiple-comparison correction).
Here the results reported in Table 3 are collected from sevenfold
nested cross-validation with 50 permutations. This performance
drop is reasonable because the test labels are of different quality
with the training labels as in row 2.

By using our proposed method in Figure 5, the accuracy
increases from 0.859 ± 0.061 (row 2 in Table 3) to 0.869 ± 0.057
(row 4 in Table 3, p = 0.017 from matched-samples t-test
after multiple-comparison correction). Note that our approach
eliminates the performance drop, which can be attributed to

the joint training of segmentation network and classification
network. Meanwhile, no external labeling is required for the
entire diagnostic process, which makes our method convenient
to use if deployed in clinical practice.

A more meaningful comparison is between row 1 and row
4. Our proposed method can achieve the classification accuracy
that is comparable to the PDNet with expert labeling in both
training and testing (row 1 in Table 3). While no accuracy
difference is detected statistically, our method does not need
human participation in the whole diagnosis process, which
eliminates the influence of subjective factors on the diagnosis
results. This provides a feasible scheme for the application of the
algorithm in real scenes.

In row 3, we replace the SN labeling in the training stage
with the automatic labeling results. Compared to row 1, the
classification performance further drops (i.e., 0.872 ± 0.064 vs.
0.827 ± 0.075 in accuracy, p = 0.004 from matched-samples
t-test after multiple-comparison correction). The results imply
that precise expert labeling is critical to train a well-functioning
classification model.

DISCUSSION AND CONCLUSION

The wider clinical use of QSM-based classification algorithm
for PD/HC is contingent on understanding the robustness of
the combination of SN labeling, image feature extraction, and
classification algorithm. The relatively poor performance of
“radiomics + LR” can be explained by two factors: (1) the high
sensitivity of radiomics features on small target regions (Li et al.,
2019) and (2) the low robustness of the LR model in handling
different sources of region labeling. SN is a tiny basal nucleus, and
the area around the edge of SN has sharp contrast in image cues.
Influenced by this, the intensity-based radiomics features have
significant fluctuations, even though the region labeling changes
subtly. The LR model, which is modeled as a shallow combination
of the radiomics features, obviously suffers from the instability of
extracted features.

For the CNN model, the PDNet (Figure 4B) shows a high
classification accuracy in section “Population-Level Classification
Stability,” proving that the image features learned automatically
through the network are better than the radiomics features.
Simultaneously, PDNet (Figure 4C) integrated with “gated
pooling” performs better in classification consistency. However,
due to the lack of cooperation between SN labeling and PD
diagnosis, the simple combination still brings some performance
degradation. Therefore, it is necessary to build a unified end-to-
end framework integrating segmentation and diagnosis for the
final clinical application, as shown in Figure 5.

This study still has some limitations. The amount of data used
in this article is limited, and we also did collect an independent
test set. These may affect the generalization performance of
our conclusions. For this, we will collect more data for further
verification in the follow-up work and improve our CNN
framework (Zhang et al., 2017).

Meanwhile, this study has only used a single-center dataset.
As QSM imaging technology progresses continuously, there are
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several different protocols and reconstruction methods, which
may affect the diagnosis algorithm. Practically, it is not possible to
collect datasets for all settings and then use the collected data to
tune the learning-based diagnosis model. The common features
underlying the disease of PD are instead expected to be captured,
while the diagnosis model can be trained more robustly through
“domain adaptation”—that is, one may transfer the learned image
features from existing datasets to a new set, such that the data
from different domains or sources can be mixed together for
larger data size and better modeling.

In general, this work shows that the CNN model, compared
with the LR model based on radiomics features, has better
stability in different SN labeling sources. Furthermore, the
gated pooling operation provides the CNN model with higher
prediction consistency without losing classification accuracy.
Benefitting from this capability, our proposed unified framework
for automatic diagnosis network in Figure 5 achieves a state-
of-the-art performance in terms of accuracy, stability, and
prediction consistency.
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