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Aims To evaluate a deep-learning model (DLM) for detecting coronary stenoses in emergency room patients with acute chest 
pain (ACP) explored with electrocardiogram-gated aortic computed tomography angiography (CTA) to rule out aortic 
dissection.

Methods 
and results

This retrospective study included 217 emergency room patients (41% female, mean age 67.2 years) presenting with ACP 
and evaluated by aortic CTA at our institution. Computed tomography angiography was assessed by two readers, who rated 
the coronary arteries as 1 (no stenosis), 2 (<50% stenosis), or 3 (≥50% stenosis). Computed tomography angiography was 
categorized as high quality (HQ), if all three main coronary arteries were analysable and low quality (LQ) otherwise. 
Curvilinear coronary images were rated by a DLM using the same system. Per-patient and per-vessel analyses were con
ducted. One hundred and twenty-one patients had HQ and 96 LQ CTA. Sensitivity, specificity, positive predictive value, 
negative predictive value (NPV), and accuracy of the DLM in patients with high-quality image for detecting ≥50% stenoses 
were 100, 62, 59, 100, and 75% at the patient level and 98, 79, 57, 99, and 84% at the vessel level, respectively. Sensitivity was 
lower (79%) for detecting ≥50% stenoses at the vessel level in patients with low-quality image. Diagnostic accuracy was 84% 
in both groups. All 12 patients with acute coronary syndrome (ACS) and stenoses by invasive coronary angiography (ICA) 
were rated 3 by the DLM.

Conclusion A DLM demonstrated high NPV for significant coronary artery stenosis in patients with ACP. All patients with ACS and 
stenoses by ICA were identified by the DLM.
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Graphical Abstract

Study highlights and presentation of the study workflow. Showcase of a proximal RCA occlusion opportunisticall identified by the AI model in a 54 year-old 
male patient with acute chest pain. ACS, acute coronary syndrome; AI, artificial intelligence; CTA, computed tomography angiography; CX, circumflex 
artery; ECG, electrocardiogram; ICA, invasive coronary angiography; LAD, left anterior descending artery; MPR, multiplanar reconstruction; RCA, right 
coronary artery.

Keywords Computed tomography angiography • Cardiac-gated imaging techniques • Chest pain • Deep learning • Coronary 
artery disease

Introduction
Acute chest pain (ACP) is a common emergency that often prompts hos
pital admission.1,2 Life-threatening causes of ACP such as acute coronary 
syndrome (ACS), acute aortic syndrome (AAS), and pulmonary embol
ism must be identified promptly.3–5 However, the symptoms vary widely 
and overlap with those of benign conditions such as musculoskeletal pain, 
gastroesophageal reflux, and pleuritis. When the history, physical exam
ination, biomarkers, and electrocardiogram (ECG) fail to convincingly 
establish the diagnosis, imaging studies are valuable. Among them, 
ECG-gated aortic computed tomography angiography (CTA) plays a piv
otal role to rule out aortic dissection and is routinely performed.6–8

Electrocardiogram-gating attenuates aortic pulsation artefacts and 

visualizes the aortic root clearly, thereby aiding in the diagnosis of AAS. 
Even though beta-blockers and vasodilator preparation are generally 
not used in this emergency setting, coronary arteries may be visualized 
on computed tomography (CT) images and coronary stenoses identified, 
potentially leading to alternate diagnoses.9,10 However, physicians with 
dedicated experience in cardiac imaging are not always available during 
shifts. Moreover, emergency room radiologists often face overwhelming 
workloads, and analysing coronary CTA images is a time-consuming task.

Computer-assisted diagnosis solutions have been proposed previ
ously to support radiologists in identifying acute pathologies on CT 
images, such as pulmonary embolism or intra-cranial haemorrhage.11,12

Likewise, using deep-learning models (DLMs) for coronary CTA images 
could be promising in helping to avoid the oversight of coronary 
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stenoses. In stable patients, seen in non-emergent settings and explored 
with dedicated cardiac CT, several DLMs have been reported to per
form at least as well as specialized physicians for detecting coronary 
stenoses.13–20 Yet, no large-scale study has assessed the performance 
of DLMs to identify coronary stenoses in patients seen in the emer
gency room and explored with an ECG-gated aortic CTA to rule out 
aortic dissection.

The objective of this retrospective observational work was therefore 
to evaluate the performance of a DLM for detecting coronary artery 
stenosis in patients who presented to the emergency room for ACP 
and underwent routine ECG-gated aortic CTA to rule out aortic dis
section. Our working hypothesis was that a DLM would perform 
well in detecting coronary artery disease, thus potentially improving 
diagnosis confidence for human analysis.

Methods
This single-centre, retrospective, observational study was approved by the 
local ethics committee (ID 2022-01814). In compliance with Swiss law on 
retrospective analyses of de-identified health data, the committee waived 
the requirement for informed consent.

Study population
Figure 1 is the patient flow chart. We searched the institutional database and 
reviewed the records of consecutive patients who underwent CTA to as
sess ACP at the emergency room of our institution between January 2020 
and May 2022. During the image analysis process, we excluded patients with 
CTA evidence of coronary stenting or bypass surgery, failed arterial 
bolus-chasing [aortic density values beneath 200 Hounsfield unit (HU)], 
or destructive respiratory artefacts precluding cardiac volume analysis.

Data collection
For each patient, we used standardized forms to collect age, sex, body mass 
index, mean heart rate during CTA, blood troponin and brain natriuretic 
peptide (BNP) levels, and glomerular filtration rate (GFR) estimated using 
the CKD-EPI creatinine equation. We recorded the presence of diabetes, 
hypertension, and dyslipidaemia, as well as the discharge diagnosis estab
lished on the basis of all available data. When invasive coronary angiography 
(ICA) was performed after CTA, the report was collected.

Image acquisition
The same, third-generation, dual-source CT scanner (SOMATOM Force; 
Siemens Healthineers, Erlangen, Germany) and imaging protocol used for 
suspected aortic dissection were used in all included patients. No beta- 
blockers or sublingual nitrates were administered.

A high-pitch cardiac scan with prospective ECG gating was acquired be
fore contrast administration to identify intramural haematoma. A prospect
ive ECG-gated high-pitch helical scan encompassing the whole aorta was 
then acquired in breath-hold at 60% of the R–R interval. Scanner 
parameters were as follows: 0.6 mm collimation, 3.2 helicoidal pitch, 
70–120 kV tube voltage, and 162–499 mAs tube current–time product. 
Iodinated contrast (Acupaque 350; GE Healthcare AG, Glattbrugg, 
Switzerland) was injected intravenously at a fixed volume of 80 mL and a 
flow rate of 4–5 mL/s, using a power injector, followed by 20 mL of saline 
chaser. The acquisitions were triggered through bolus tracking using a re
gion of interest in the ascending aorta and a threshold of 100 HU with a 
fixed 10 s delay. In addition, the scanner automatically performed smaller 
field of view (FOV) reconstructions dedicated to the ascending aorta and 
aortic root visualization with the following parameters: 512-by-512 matrix 
reconstruction, Bv36d convolution kernel, 19 × 19 cm FOV, and 0.6 mm 
section thickness.

Image analysis
The ROIs were traced manually by one author (M.B.) on the enhanced CT 
images of the ascending aorta to record mean attenuation (HUs). Calcium 

scores were extracted automatically from the unenhanced CT images on a 
dedicated platform (SyngoVia, version VB20A; Siemens Healthineers).

Two radiologists (C.G.G. and J.-F.D.) with respectively 2 and 20 years of 
experience in cardiac imaging (equivalent to Society of Cardiovascular 
Computed Tomography Levels 2 and 3, respectively) interpreted the CT 
data sets by consensus. Both readers had only basic experience with the 
DLM under evaluation. The reading was performed using the smaller 
FOV reconstructions of the aortic root that were loaded on the same plat
form. Readers reviewed the axially enhanced coronary images, multiplanar 
reconstruction (MPR) images, and curvilinear MPR images of the left anter
ior descending artery, circumflex artery (CX), and right coronary artery 
using the dedicated platform.

Patients were classified as having low-quality (LQ) CTA images if at least 
one artery was not analysable and as having high-quality (HQ) CTA images if 
all three arteries were analysable. Minimal artefacts not interfering with the 
analysis did not change the HQ status. Figure 2 shows examples of CTA 
images from patients in the HQ and LQ groups.

Each analysable coronary artery was graded on a three-point scale using a 
simplified CAD-RADS (Coronary Artery Disease-Reporting and Data 
System) classification,21 as follows: (i) no stenosis; (ii) 1–49% stenosis; and 
(iii) 50% stenosis or more. In the HQ group, a global score (1, 2, or 3) 
was attributed to each patient on the basis of the highest class among the 
three arteries.

To assess inter-rater agreement, we used a random sample of 20% of the 
overall population. At least 3 months after the first reading, the images for 
these patients were assessed again by the same two readers by consensus, 
using the same scoring system as for the first reading.

Deep-learning model
The previously described CorEx model (version 1.0; Spimed-AI, 
Bourg-la-Reine, France) was used.20 Briefly, this model was trained 
using the Inception-v3 convolutional neural network developed by 
Google22 over a cohort of 400 coronary CTA cases. Training weights 
were initialized using a random normal function, and the first layers of 
the model were expanded to improve low-level feature detection. The 
softmax function was employed for output activation. As input, the mod
el accepts curved MPR images comprising radial reconstructions 40° 
apart over the full vessel circumference (9 images per vessel, i.e. 27 
images per patient). The model applies the simplified CAD-RADS classi
fication described above and assigns each class a probability for the input 
vessel.

For the present study, the curved MPR images were created automat
ically from enhanced CT images as described above and exported, with
out prior modification, by one of the readers (C.G.G.) to a local server 
harbouring the DLM. The class for each vessel (1, 2, or 3) predicted by 
the DLM to be most likely and the global class for each patient (1, 2, or 
3) were recorded. Both processing of MPR images and collection of sten
osis classes were performed later and at a distance from the human 
grading.

Statistical analysis
Quantitative variables had a non-normal distribution, as assessed using the 
Shapiro–Wilk test, were described as median [interquartile range (IQR)], 
and then compared between the HQ and the LQ groups by applying the 
non-parametric Mann–Whitney U test. Categorical variables were de
scribed as number (%) and compared between the HQ and the LQ groups 
using Pearson’s χ2 test with Yates’ continuity correction. Categorical vari
ables with fewer than five values were not compared. Deep-learning model 
output was compared with the results of the consensus evaluation by the 
two readers (ground truth) taken as the reference standard for each vessel 
and each patient. Sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and accuracy were calculated for each 
DLM analysis. Inter-reader agreement on the random subsample was as
sessed by computing Cohen’s kappa coefficient. P-values of 0.05 or less 
were considered significant. Statistical analysis was conducted using 
RStudio (2022.07.0 + 548) for R (R Foundation for Statistical Computing, 
Vienna, Austria) and Python (v. 3.9.12, Python Software Foundation, 
Wilmington, DE, USA).
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Results
We included 217 patients, whose main characteristics are reported in 
Table 1. Among them, 121 were in the HQ group and 96 in the LQ 
group. The heart rate was significantly higher in the LQ group. None 
of the other parameters differed between groups.

Performance of the deep-learning model 
in the high-quality group
Of the 121 patients, 43 (36%) were Class 3 (stenosis ≥50%) by human 
reading. All 43 were identified by the DLM. Of the 78 remaining pa
tients, 40 (51%) were Class 1 and 38 (49%) Class 2 by human reading, 

Figure 1 Patient flow chart. Emergency room patients sent to the radiology department for assessment of acute chest pain were included. Patients 
with prior coronary interventions or corrupt image quality were excluded.
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whereas 7 (9%) were Class 1, 41 (52%) Class 2, and 30 (38%) Class 3 by 
DLM reading. Consequently, the sensitivity, specificity, PPV, NPV, and 
accuracy of the DLM in detecting patients rated Class 3 (≥50% sten
osis) were 100, 62, 59, 100, and 75%, respectively (Table 2). Per-class 
comparisons between DLM and expert consensus are reported in 
Figure 3.

Of the 363 coronary arteries, 80 (22%) were rated Class 3 (≥50% 
stenosis) by human reading. The DLM accurately identified 78 (97%) 
of these vessels and categorized the remaining two vessels as Class 2. 
Of the 283 (78%) vessels classified as Class 1 (n = 168) or Class 2 
(n = 115) by human reading, 225 (79%) were also Class 1 or 2 according 
to the DLM and 58 (21%) were Class 3. Consequently, the sensitivity, 

Figure 2 Examples of curvilinear reconstructions in groups with high- and low-quality images. Reconstructions of the left anterior descending artery 
(A and D), circumflex artery (B and E), and right coronary artery (C and F ) in a patient with high-quality images (top) and another with low-quality images 
(bottom). In patients with high-quality images, the readers and deep-learning model assigned the left anterior descending artery, circumflex artery, and 
right coronary artery to Classes 2, 2, and 1, respectively. In a patient with low-quality images, the readers considered that the left anterior descending 
artery and circumflex artery were analysable but that the right coronary artery was not, due to extensive motion artefacts (arrows, F ). The readers and 
deep-learning model assigned the left anterior descending artery to Class 3 (significant stenosis in the middle segment, arrow, D) and the circumflex 
artery to Class 2.
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specificity, PPV, NPV, and accuracy of the DLM in detecting vessels with 
≥50% stenoses (i.e. Class 3) were 98, 79, 57, 99, and 84%, respectively 
(Table 2). Per-class comparisons between DLM and expert consensus 
are reported in Figure 3. Examples of mismatch between DLM and hu
man readings are reported in Figure 4.

Performance of the deep-learning model 
in the low-quality group
No patient class was assigned by human readers to this group of pa
tients because of partially non-analysable coronary arteries. Of the 96 

patients, 2 (2%) were assigned by the DLM to Class 1, 19 (20%) to 
Class 2, and 75 (78%) to Class 3.

Of the 288 vessels, 134 vessels (46%) were considered 
non-analysable by human reading. Among them, 11 (8%) were 
assigned by the DLM to Class 1, 39 (29%) to Class 2, and 84 (63%) 
to Class 3.

Of the 154 analysable vessels, 47 (31%) were assigned to Class 3 
(≥50% stenosis) by human reading; among them, 37 (79%) were 
DLM Class 3 and 10 (21%) were DLM Class 2. Of the 107 (69%) vessels 
assigned to Class 1 or 2 by human reading, 92 (86%) were DLM Class 1 
or 2 and 15 (14%) were DLM Class 3. Consequently, the sensitivity, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Main features of the patients at emergency department presentation

Variablesa Overall HQ group LQ group P-value
(n = 217) (n = 121) (n = 96)

Females, n (%) 89 (41) 52 (43) 37 (38) 0.60
Age, years 68 (57–80) 69 (58–82) 67 (57–77) 0.43

Body mass index, kg/m2 26.2 (22.9–29.0) 26.6 (23.1–29.2) 25.6 (21.6–28.0) 0.11

Cardiovascular risk factors, n (%)
Diabetes 39 (18.0) 22 (18.2) 17 (17.8) 0.99

Hypertension 154 (71.0) 88 (72.7) 66 (68.8) 0.41

Dyslipidaemia 64 (29.5) 33 (27.3) 31 (32.3) 0.51
Laboratory parametersb

Troponin, ng/L 20 (8–57) 21 (8–54) 18 (7–64) 0.92

BNP, ng/L 551 (137–1855) 796 (263–2377) 324 (75–1215) 0.07
Glomerular filtration rate, mL/min/1.73 m2 81 (58–98) 82 (60–99) 78 (50–95) 0.16

Heart rate, b.p.m. 72 (61–86) 65 (58–83) 78 (68–88) <0.01

Coronary artery calcium Agatston score 86 (0–465) 65 (0–496) 95 (2–448) 0.51
Blood pool attenuation, HU 426 (330–552) 437 (343–564) 437–145 0.10

Discharge diagnosis, n (%)

Gastrointestinal condition 34 (15.7) 15 (12.4) 19 (19.8) 0.19
Acute aortic syndrome 20 (9.2) 8 (6.6) 12 (12.5) 0.21

Acute aortic disorder 13 (6.0) 9 (7.4) 4 (4.2) 0.47

Heart failure 20 (9.2) 11 (9.1) 9 (9.4) 0.99
ACS [(N)STEMI, unstable angina] 17 (7.8) 9 (7.4) 8 (8.3) 0.75

Chest wall pain 17 (7.8) 10 (8.3) 7 (7.3) 0.99

Hypertensive crisis 12 (5.5) 10 (8.3) 2 (2.1) 0.09
Pneumonia 9 (4.2) 5 (4.1) 4 (4.2) NA

Pericarditis 7 (3.2) 5 (4.1) 2 (2.1) NA

Pulmonary embolism 5 (2.3) 3 (2.5) 2 (2.1) NA
Panic disorder 3 (1.4) 2 (1.7) 1 (1.0) NA

Otherc 60 (27.6) 30 (24.8) 30 (31.3) 0.37

aQuantitative variables are reported as median (IQR). 
bBased on available data, carried out at admission to the emergency department. 
cNo identified cause or condition that does not typically manifest as chest pain (e.g. electrolyte disturbances).
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Table 2 Performance of the deep-learning model at patient and vessel levels in the two image-quality groups

Image-quality group Level Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

High quality Patient 100 62 59 100 75

Vessel 98 79 57 99 84
Low quality Patient — — — — —

Vessel 79 86 71 90 84
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specificity, PPV, NPV, and accuracy of the DLM in detecting ≥50% sten
oses (i.e. Class 3) in analysable vessels were 79, 86, 71, 90, and 84%, re
spectively (Table 2). Per-class comparisons between DLM and expert 
consensus are reported in Figure 3.

Performance in patients diagnosed with 
acute coronary syndrome
A final discharge diagnosis of ACS was recorded for 17 (7.8%) pa
tients, including 16 with myocardial infarction (non-ST-elevation 
myocardial infarction, NSTEMI: 10/16, ST-elevation myocardial 

infarction, STEMI: 6/16) and 1 with unstable angina. No patient 
had an ACS due to or associated with AAS. Three patients did 
not qualify for ICA: one patient had malignant embolism, another 
had no coronary stenosis by CTA and low troponin levels, and 
the third haemodynamic instability followed by death in the emer
gency room. Of the remaining 14 patients, 12 had ≥50% stenosis or 
occlusion. All 12 were assigned to Class 3 by the DLM (5 in the HQ 
group and 7 in the LQ group). At the vessel level, sensitivity, speci
ficity, PPV, NPV, and accuracy of the DLM for detecting Class 3 
stenoses were 93, 85, 90, 87, and 89%, respectively (Graphical 
Abstract); in the HQ group, corresponding values were 100, 

Figure 3 Distribution of patients and vessels across stenosis grades in both high-quality (first two lines) and low-quality (bottom line) groups. Patients 
in the low-quality group (bottom line) had at least one vessel deemed uninterpretable so that patient-level comparisons were not feasible. 
Consequently, low-quality cases were assessed only at the vessel level. The results are presented as confusion matrices of classes assigned by the readers 
and deep-learning model. In the first column, Classes 1 and 2 are collapsed into a single group with non-significant (<50%) or no stenosis. The second 
column reports the confusion matrix for each individual stenosis class.

AI-based opportunistic detection of coronary artery stenosis                                                                                                                                7



89, 86, 100, and 93%, respectively, and in the LQ group, they 
were 88, 75, 88, 75, and 83%, respectively. Table 3 provides 
further details. Illustrated case-based examples are presented in 
Figures 5 and 6.

Reproducibility
Inter-reader agreement between first and second readings for detect
ing Class 3 (≥50%) stenosis was high at both the patient (κ = 0.79) 
and vessel (κ = 0.84) levels. Inter-reader agreement for specific sten
osis classes was slightly lower (patient level, κ = 0.72; and vessel level, 
κ = 0.65).

Discussion
This retrospective single-centre study evaluated the performance 
of a recently introduced DLM for coronary stenosis identification 
in a cohort of emergency room patients with ACP who underwent 
diagnostic CTA. To our knowledge, this is the first study reporting 
the use of a DLM for coronary stenosis detection on CTA 
images acquired in an acute emergency room setting, with CTA 
protocols that were not optimized for evaluating the coronary 
artery. The main results were as follows: (i) sensitivity and NPV 
were high in patients with HQ images; (ii) all patients with subse
quently identified ACS and stenoses by ICA in both the HQ 

Figure 4 Examples of a mismatch between human analysis and deep-learning model at vessel level. (A and B) Stenosis of the distal part of the right 
coronary artery caused by a soft plaque (arrow heads), classified as Class 3 by the human reader and Class 2 by the deep-learning model. (C and D) Left 
anterior descending artery without significant stenosis but sparsely calcified plaques (arrows), rated Class 2 by the human reader and Class 3 by the 
deep-learning model.
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and the LQ groups were assigned to Class 3 (≥50% stenosis) by 
the DLM.

Our DLM was recently introduced by Paul et al.,20 who reported 
slightly lower sensitivity (93%) but higher specificity (97%) compared 
with our results. In this initial study, the patients had chronic chest 
pain or cardiovascular risk factors and underwent optimized coronary 
CTA, potentially explaining the higher specificity. In addition, the DLM 
used was trained over CTA images from scanners from different ven
dors and using partly different CT parameters than the ones used in 
this study. This could have influenced its performance over our data 
set. From a more general point of view, the performance characteristics 
of the DLM in both image-quality groups in the current study compare 
favourably with those reported for other DLMs applied to dedicated 
coronary CTA performed in non-emergent settings, whose sensitivity 
and specificity for detecting ≥50% stenosis ranged from 58 to 
95%.14,15,17–19,21,22 Of note, in both image-quality groups, all patients 
with ≥50% stenoses by radiologist-read CTA who received a diagnosis 
of ACS and had stenoses by ICA also had ≥50% stenoses detected by 
the DLM, underlining the potential of artificial intelligence (AI) for iden
tifying such patients.

The diagnostic accuracy of the DLM at the vessel level was the same 
(84%) in the HQ and LQ groups. The lower sensitivity in the LQ group 
(79%), which had a significantly higher median heart rate vs. the HQ 
group (78 vs. 65 b.p.m., P < 0.01), is probably related to our use of a 
CTA protocol designed for vascular imaging but not optimized for 
imaging the coronary artery, with a high-pitch acquisition at 60% of 
the R–R interval.23 Sequential or systole-centred acquisition in patients 

with tachycardia would probably have decreased the prevalence of 
LQ imaging. In the future, DLM training with images that are of subopti
mal quality but suitable for interpretation might improve performance 
in evaluating LQ cases. Another avenue towards improvement might 
be the addition of a DLM confidence score based on image quality to 
alert emergency physicians to the risk of potentially inaccurate 
classification.

In this study, we report a rate of AASs (9%), which remains in the 
range of previous studies.6,24 Coronary stenoses were relatively com
mon (36% of ≥50% stenosis in the HQ group), but consistent with pre
vious studies that used dedicated cardiac CT in emergency room 
patients: 31% in the study by Hoffmann et al.25 and 32% in the study 
by Dedic et al.26 The 8% rate of ACS that we report here is in line 
with studies that used dedicated cardiac CT in patients with ACP, ran
ging from 4 to 17%.25–27 This comparable ACS rate despite the differ
ent population selection may be due to differences in clinical 
management between institutions.

Coronary arteries were often analysable in our study despite a 
non-dedicated cardiac imaging. While most stenoses detected 
were not responsible for ACP in our study, a certain number was 
underlining the interest of an opportunistic analysis of coronary ar
teries. Having an AI in this context could improve the diagnostic 
confidence of the human reader in the analysis of coronary vessels. 
As a result, we report an opportunistic analysis of coronary arteries 
on an aortic CTA. Our study, however, does not support a system
atic evaluation of the coronary vessels, aorta, and pulmonary 
arteries, otherwise known as the triple-rule-out technique. This 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Deep-learning model performance in patients discharged with a diagnosis of acute coronary syndrome who 
underwent invasive coronary angiography

Age 
(years)

Sex Coronary 
calcium score

Image-quality 
group

Patient 
DLM class

LAD 
DLM 
class

CX DLM 
class

RCA 
DLM 
class

SSa by 
ICA

Location of lesions 
by ICA

90 F 121 HQ 3 3 1 2 Y Acute LAD occlusion
74 F 1005 3 3 2 3 Y Triple-vessel disease

39 M 0 2 2 1 2 N LAD plaque rupture 

without SS
54 M 0 3 1 1 3 Y Acute RCA occlusion

74 M 418 3 3 3 2 Y Acute CX occlusion

51 M 19 3 2 1 3 Y Acute diagonal branch 
occlusion

55 M 258 LQ 3 3 1 3 Y Triple-vessel disease

67 M 713 3 3 2 3 Y Acute LAD occlusion
76 M 923 3 2 3 3 Y Triple-vessel disease

71 F 1356 3 3 3 2 Y Acute RCA occlusion 

(distal part)
69 F 0 3 2 1 3 N LAD plaque rupture 

without SS

85 M 1978 3 3 3 3 Y Triple-vessel disease
76 M 617 3 3 2 3 Y SS of LAD, chronic RCA 

occlusion

63 M 54 3 3 2 2 Y Acute marginal branch 
occlusion, SS of LAD

aSignificant stenosis (SS) defined as ≥50%.
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technique did not show any major diagnostic benefit, being accom
panied by a higher rate of non-contributory examinations and higher 
X-ray exposure.28 Angiographic imaging of the aorta or coronary 
vessels remains conditional to accurate clinical and/or biological 
sorting upstream.

Our study had several limitations. The retrospective single-centre 
design and the exclusion of patients with histories of coronary interven
tions could have resulted in selection bias. Second, vessel centrelines 

were adjusted automatically by using dedicated software to limit human 
involvement and best approach real-life conditions. Whether manual 
centreline tracing would have optimized DLM performance was not 
evaluated. Third, the reference standard in our study was consensus im
age reading by two readers with differing levels of expertise, which 
could have weighed the result towards the more experienced reader. 
Finally, ICA was not performed routinely, and therefore, we could 
not assess the performance of the readers.

Figure 5 Computed tomography angiography images of a 54-year-old male who presented to the emergency department with acute chest pain that 
initially suggested aortic dissection. Coronary curve reconstructions showed proximal right coronary artery occlusion (arrow, C ). Both radiologists and 
the deep-learning model assigned the right coronary artery to Class 3 and the left anterior descending artery (A) and circumflex artery (B) to Class 
1. The probability histogram for classification of the right coronary artery by the deep-learning model is shown (D). Subsequent invasive coronary angi
ography confirmed the right coronary artery occlusion (arrow head, E), which was successfully recanalized by angioplasty (F ).
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Conclusions
In this study, a DLM efficiently detected significant coronary stenosis in 
emergency room patients who underwent an ECG-gated aortic CTA to 
rule out aortic dissection. These findings highlight the potential value of 
AI models as diagnostic support for human analysis in an emergency 
setting.
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