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Simple Summary: Hypericum revolutum (HR) is reported to produce vasodilating activity in phenylephrine-
precontracted aortae, where the chloroform fraction is the most potent. Chemical investigation of this
fraction yielded two new compounds, revolutin (1) and hyperevolutin C (2), along with three known
metabolites, β-sitosterol (3), euxanthone (4), and 2,3,4-tirmethoxy xanthone (5). Isolated compounds 1, 2, 3,
and 5 produce vasodilation activities that are dependent on endothelial nitric oxide release.

Abstract: Vasodilators are an important class in the management of hypertension and related car-
diovascular disorders. In this regard, the chloroform fraction of Hypericum revolutum (HR) has been
reported to produce vasodilating activity in phenylephrine-precontracted aortae. The current work
aims to identify the active metabolites in the chloroform fraction of HR and illustrate the possible
mechanism of action. The vasodilation activities were investigated using the isolated artery technique.
NO vascular release was assessed by utilizing the NO-sensitive fluorescent probe DAF-FM. Free
radical scavenging capacity was assessed utilizing DPPH. Chemical investigation of this fraction
yielded two new compounds, revolutin (1) and hyperevolutin C (2), along with three known metabo-
lites, β-sitosterol (3), euxanthone (4), and 2,3,4-tirmethoxy xanthone (5). Compounds 1, 2, 3, and
5 showed significant vasodilation activities that were blocked by either endothelial denudation or
L-NAME (nitric oxide synthase inhibitor), pointing towards a role of endothelial nitric oxide in their
activities. In confirmation of this role, compounds 1–3 showed a significant release of NO from
isolated vessels, as indicated by DAF-FM. On the other hand, only compound 5 showed free radical
scavenging activities, as indicated by DPPH. In conclusion, isolated compounds 1, 2, 3, and 5 produce
vasodilation activities that are dependent on endothelial nitric oxide release.

Keywords: Hypericum revolutum; vasodilation; nitric oxide; xanthones; phloroglucinol

1. Introduction

Elevated blood pressure is a serious disorder that underlies other cardiovascular
diseases and is a direct complication of metabolic disorders such as diabetes and metabolic
syndrome. Hypertension can be due to increased heart stimulation or, most likely, increased
peripheral resistance and endothelial dysfunction [1]. Endothelial dysfunction has a crucial
role in the progression of hypertension by affecting vascular relaxation and constriction.
The endothelium-dependent vasodilatation regulatory system controls vascular function
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mainly through the release of nitric oxide (NO) [2,3]. Therefore, endothelial dysfunction
can lead to a significant decrease in the bioavailability of nitric oxide, causing vasodilatation
impairment in affected individuals [2].

Regular medicine has many drawbacks that encourage researchers to find safer com-
pounds for hypertension [1]. Herbal drugs are popularly dispensed for treating various
ailments owing to their efficiency and comparatively moderate cost and fewer side effects.
Thus, the development of effective alternative treatments is rather important in order to
protect against hypertension and its complications. A literature survey has shown that
many plant extracts reveal antihypertensive activity [4]. Saudi Arabia is about two mil-
lion square kilometers. It covers the majority of the Arabian Peninsula. The country is
renowned for many natural regions with many biologically diverse medicinal plants [5].

Hypericum revolutum (Vahl) is native to southeast Africa and geographically available
in the Arabian mountains, especially those located in the northern and southern parts
of Saudi Arabia [6]. It has been used traditionally for treating various ailments such as
tuberculosis, earache, depression, diarrhea, and rheumatism, as well as burns and skin
wounds due to its wound-healing property [7–10]. H. revolutum has been shown to possess
antioxidant, antiviral, antibacterial, and anti-inflammatory activities. Hyperevolutins A
and B were previously separated from the root bark and are closely related to hyperforin,
previously isolated from H. perforatum [11]. Meanwhile, its leaves contain antifungal
chromenyl ketones [12,13]. We have previously reported a significant vasodilating activity
of the chloroform fraction of H. revolutum, produced in phenylephrine-precontracted
aortae [14]. The aim of the current study is to separate and identify the biometabolites
accountable for H. revolutum vasodilating potential. Moreover, a detailed mechanistic study
of the separated compounds will be presented.

2. Materials and Methods
2.1. General Experimental Procedures

Optical rotation measurement was accomplished by a DIP-370-JASCO polarime-
ter. A UV–vis 1601 Shimadzu spectrophotometer was utilized for assessing UV spectra.
Measuring NMR spectra was carried out using 850-INOVA BRUKER. Measuring the
high-resolution mass was achieved by utilizing JEOL 102A-JMS-SX/SX and Orbitrap LTQ
spectrometers. The chromatographic process was executed using RP-18 (reversed-phase)
and SiO2 60 (silica gel) (0.04–0.063 mm). TLC (thin-layer chromatography) was accom-
plished utilizing SiO2 60 F254 TLC plates.

2.2. Plant Material

The aerial parts of H. revolutum were assembled in April 2019 from the Al-Baha
governorate, KSA. No specific permission was required for the collection of this plant.
Plant verification was ascertained by Dr. Emad Al-Sharif (Biology Dept., Faculty of Science
and Arts, KAU). A specimen (Reg. No. HR-0438) has been deposited at the Natural
Products and Alternative Medicine Department’s herbarium (Faculty of Pharmacy, *).

2.3. Plant Material Extraction

Dried powdered aerial parts (1 Kg) were extracted at room temperature with 5 L
methanol (four times), utilizing Ultraturrax, until exhausted. The under-vacuum concen-
tration of the total extract produced a brown residue (40 g). The residue was mixed with
200 ml of water, partitioned with 500 ml chloroform (4 times), and vaporized to furnish
Fraction I (10 g).

2.4. Separation of Major Metabolites

A 10 g chloroformic fraction was submitted to vacuum liquid chromatography (VLC)
using silica gel (SiO2) (10 × 15 cm), utilizing an n-hexane/ethyl acetate (EtOAc) gradient.
One hundred milliliter fractions were gathered and subjected to SiO2 TLC plates [solvent
systems: n-hexane/EtOAc, 95:5 (S1) or 90:10 (S2)] and similar fractions were combined
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to furnish four main subfractions (I to IV). Subfraction I (50 mg, 13–15, 97:3; S3) included
two main spots that yielded red color upon spraying with p-anisaldehyde:H2SO4 reagent,
which was purified by SiO2 column chromatography (CC) using an S3-solvent system.
The related fractions (20 mL each) were assembled on the basis of TLC (S1). The fractions
(5–15, 20 mL each; 20–30, 20 mL each) each comprised one main spot that was additionally
repurified on RP-18 CC (MeOH/water, 80:20) to provide 1 (4 mg) and 2 (20 mg). SiO2
CC of Subfraction II (50 mg, n-hexane/EtOAc 93:7; S4) yielded 3 (15 mg) and 4 (12 mg).
Subfraction III (24–26, S2), having one main spot, was submitted to SiO2 CC (2 × 40 cm,
S4) to furnish 5 (7 mg).

2.5. Biological Evaluation
2.5.1. Chemicals and Drugs

ACh (acetylcholine), PE (phenyl ephedrine), DMSO (dimethyl sulfoxide), and DPPH
(2,2-diphenyl-1-picrylhydrazyl) were acquired from Sigma–Aldrich (Dorset, UK); DAF-FM
(4-amino-5-methylamino-2’,7’-difluorofluorescein di-acetate) was acquired from Molecular
Probes (New York, NY, USA). Deionized-Ultrapure H2O was utilized as solvent except for
DPPH and natural metabolites, where DMSO (conc. not exceeding 0.1%) was utilized.

2.5.2. Animals

Seven-week-old male Wistar rats (180–200 g) were used (King Fahd Medical Research
Center, KAU, KSA). The animals were housed with access to standard rodent pellets and
purified water in clear polypropylene cages (4 rats each). Constant housing conditions
were applied, including alternating 12 h light and dark, 22 ± 3 ◦C temperature, suffi-
cient ventilation, and 50–60% relative humidity. The research ethics committee of King
Abdulaziz University approved the study (approval number 126-1439). The study was
carried out according to the Saudi Arabia Research Bioethics Guidelines and Regulations,
which are in accordance with the Animals in Research: Reporting In Vivo Experiments
(ARRIVE) guidelines for research involving animals [15]. The animals were executed by
decapitation using a rodent guillotine administered by qualified personnel in the animal
housing. The method is acceptable to induce a rapid loss of consciousness, according to
the AVMA Guidelines for the Euthanasia of Animals: 2020 Edition (section M3.7) [16], and
the descending thoracic aorta was precisely removed and washed from connective tissues
and fats.

2.5.3. Evaluating the Chloroform Fraction and Isolated Metabolites’ Direct Relaxant Effect

Vasodilating capacities were assessed using the isolated artery method, as formerly
reported [17,18]. Briefly, the aorta was removed, cleansed of any connective tissue and
fats, and sliced into rings (3 mm). Each ring was hung in Krebs Henseleit buffer channels
(4.8 mM KCl, 118 mM NaCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 2.5 mM CaCl2, 11.1 mM
glucose, and 25 mM NaHCO3) at 37 ◦C, with continuous aeration with gas (5% CO2 and
95% O2). Every 30 min, the channel buffer solution was exchanged. Quantification of
the aortic tension was accomplished using an isometric force transducer, and the results
were presented through a PowerLab data interface module linked to a PC running Chart
software v8 (ADI Instruments).

The aortic rings were set aside for 30 min for equilibration at a 1500 mg ± 50 resting
tension. Initial aorta contraction and relaxation were then carried out by the addition
of PE, followed by ACh (both at 10 µM). After the tension was reverted to the rest state,
accumulative concentrations of 1–10 µg/mL and 1–10 µM for the chloroform fraction or
the pure metabolites, respectively, were added to the organ bath precontracted (PE, 10 µM)-
isolated aortae. Tension reduction was estimated as a measurement of vasodilating actions.
In other sets of experiments for investigating the role of the endothelium in the vasodilating
effect, it was mechanically made bare. Additionally, L-NAME (100 µM) was added in the
organ bath 15 min before adding the isolated metabolites or chloroform fraction to explore
the role of nitric oxide in the vasodilating influence on different sets of experiments.
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2.5.4. Examining the Effect of Chloroform Fraction and Isolated Metabolites on Nitric
Oxide (NO) Production

The separated aorta intracellular induction of NO production by the tested metabolites
and the chloroform fraction was examined employing the DAF-FM fluorescence probe, as
similarly outlined in our former work [19]. Similar to the earlier technique, the thoracic
aorta was removed, the fats were washed off, and it was sliced into approximately 6 mm
pieces. Every piece was put in a 96-well black plate separate well, maintained in dim
light, having made a 2.5 µM DAF-FM/KHB mixture (37 ◦C) immediately before starting
the procedure; 100 µL were accurately drawn and transported to the wells’ neighboring
column; after that, ACh (10 µM) was included in one of the aortic segments, and the
chloroform fraction (10 µg/mL) or separated metabolites (10 µM) was put in the other
wells after 3 min. Again, after 3 min, 100 µL were taken from the wells with the aortae and
transmitted to the nearby well columns. For the blank, a row without an aorta was retained
for each ACh concentration, which was handled identically. The withdrawn volumes’
fluorescence intensity (and not the column including the aortae) was then assessed at λem
= 515 nm and λex = 485 nm using a SpectraMax® M3 Monochromator plate reader.

2.5.5. Studying the ROS Scavenging Potential of the Isolated Metabolites and the
Chloroform Fraction

ROS scavenging potential was assessed, as formerly stated in previous work from
our laboratories [20]. In a 96-well clear plate, the pure metabolites (1–10 µM) or Fraction I
(1–10 µg/mL) in MeOH was added to a DPPH (240 µM) solution in MeOH/tris (1:1 v/v).
For the control (C), MeOH was utilized instead of the fraction or metabolites. DPPH was
directly prepared before adding to the plate. The absorbance was estimated every minute
at 520 nm for 10 min using a SpectraMax® M3-Monochromator plate reader.

2.5.6. Statistical Analysis

Experimental values are depicted as the mean ± standard error of the mean (SEM).
For statistical analysis, one- or two-way ANOVA (analysis of variance) was applied, as
designated in the figure legends, succeeded by Dunnett’s posthoc test utilizing GraphPad
Instat software version 5. If p < 0.05, the differences were recognized as significant.

3. Results
3.1. Identification of Isolated Compounds

Chemical examination of H. revolutum aerial parts’ CHCl3 fraction gave rise to the
separation of two new constituents (1 and 2) and three known ones (3–5) (Figure 1 and
Figures S1–S22, Tables S1–S3). Their structures were characterized using one- and two-
dimensional nuclear magnetic resonance (1D and 2D NMR) and mass (MS) analyses, as
well as a comparison with the literature. The known metabolites were euxanthone (1,7-
dihydroxyxanthone) (4) [21], β-sitosterol (3) [22], and 2,3,4-tirmethoxy xanthone (5) [23].

3.2. Compound 1

Compound 1 was separated as a yellow amorphous powder, having a C22H32O5
molecular formula, as assigned by HRESIMS (Figure S1), that possessed a pseudomolec-
ular peak at m/z 377.2335 [M+H] +. The 13C and 1H NMR data illustrated that 1 had a
phloroglucinol framework (Table 1, Figure 2, Figures S2 and S3) [24–26]. The phloroglu-
cinol skeleton’s existence was endorsed from the noticed three oxygen-linked aromatic
carbons, C-5 (δC 162.5), C-1 (δC 162.4), and C-3 (δC 149.9), and the three quaternary aromatic
carbons, C-4 (δC 104.3), C-2 (δC 104.5), and C-6 (δC 104.8) [26–28], in 13C spectrum. The
heteronuclear single quantum coherence (HSQC) (Figure S4) and 13C NMR featured 22
carbons: 3 methylenes, 7 methyls, 3 methines, and 9 quaternaries, including 2 carbonyls
for ketone C-12 (δC 205.7) and C-17 (δC 210.3). The noticed signals for methylene (H-19,
δH 1.41 and 1.84), a multiplet methine (H-18, δH 3.73), a secondary methyl (H-21, δH 1.16),
and a primary methyl (H-20, δH 0.91), having HSQC correlations to the carbons at δC
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26.9, 46.0, 16.7, and 12.0, respectively, represented a 2-methylbutyryl moiety [29]. The
heteronuclear multiple bond correlation (HMBC) correlations (Figure S5) of H-18 to C-19,
C-17, C-21, and C-20, H-19 to C-18, C-17, C-21, and C-20, H-20 to C-19 and C-18, and H-21
to C-19, C-18, and C-17 connect this moiety to phloroglucinol at C-4. The 13C and 1H
spectra disclosed signals for a 3-methylbutyryl moiety at δC 52.9 (C-13)/δH 2.94 (H-13),
25.3 (C-14)/1.65 (H-14), 22.8 (C-15, 16)/0.97 (H-15, 16), and δC 205.7 (C-12). This was
ensured by the cross-peaks of H-16 and H-15/C-14 and C-13 and H-14 and H-13/C-16,
and C-12, and C-15 in HMBC. In HMBC, the cross-peak of H-13 to C-2 set up the location
of this chain at C-2 of the phloroglucinol skeleton (Figure 2). The 13C and 1H NMR data
revealed signals for an oxymethylene [δC 65.3 (C-7)/δH 4.52 (H-7)], a tri-substituted olefinic
bond [δC 119.2 (C-8)/δH 5.45 (H-8)], and two methyls [δC 18.3 (C-11)/δH 1.73 (H-11) and
δC 25.8 (C-10)/δH 1.79 (H-10)], denoting the presence of a 3-methylbut-2-enoxy moiety
in 1 that was ascertained by HMBC peaks [30,31]. Its connection to C-1 was affirmed by
the cross peak of H-7 to C-1 in HMBC. Moreover, a signal for a methyl (δH 2.02, H-22),
having an HSQC cross-peak to a carbon at δC 7.3 and HMBC cross-peaks to C-6, C-1, and
C-5, characteristic for a C-6 aromatic methyl. Finally, 1 was assigned as phloroglucinol
derivative and named revolutin.
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3.3. Compound 2

Compound 2 was a yellow amorphous solid, having two pseudo-molecular ion peaks
at m/z 537.2821 (C30H45

37ClO6, [M+H]+) and 535.2816 (C30H45
35ClO6, [M+H]+) in a 1:3

ratio in HR-ESI-MS (Figure S6), suggesting that 2 has a chlorine atom [32]. This formula
requires nine unsaturation degrees. The 1H spectrum revealed signals for four quaternary
methyls [H-14 (δH 1.24), H-12 (δH 1.26), H-13 (δH 1.28), and H-11 (δH 1.38)], two γ,γ-



Biology 2021, 10, 541 6 of 15

dimethyl allyls, two secondary methyls [H-18 (δH 1.09) and H-17 (δH 1.10)], a methine
(H-3), an oxymethine (H-19), and three methylenes (H-4, -5, and -25) (Table 2).

Table 1. NMR spectral data of compound 1 (CDCl3, 850 and 214 Hz).

No. δH [Mult., J (Hz)] δC (Mult.) HMBC

1 - 162.4 C
2 - 104.5 C
3 - 149.9 C
4 - 104.3 C
5 - 162.5 C
6 - 104.8 C
7 4.52 d (6.0) 65.3 CH2 1, 8, 9, 10, 11
8 5.45 m 119.2 CH 7, 14, 15
9 - 138.3 C -
10 1.79 s 25.8 CH3 8, 9, 11
11 1.73 s 18.3 CH3 8, 9, 10
12 - 205.7 C -
13 2.94 d (6.0) 52.9 CH2 12, 14, 20, 21
14 1.65 m 25.3 CH 12, 15, 16
15 0.97 d (6.8) 22.8 CH3 13, 14
16 0.97 d (6.8) 22.8 CH3 13, 14
17 - 210.3 C -
18 3.73 m 46.0 CH 4, 17, 19, 20, 21

19 1.84 m
1.41 m 26.9 CH2 18, 19, 20, 21

20 0.91 t (6.2) 12.0 CH3 18, 19
21 1.16 d (6.8) 16.7 CH3 17, 18, 19
22 2.02 s 7.3 CH3 1, 5, 6

Its HSQC and 13C (Figures S8 and S9) spectra exhibited 3 methylenes, 10 methyls, 6
methines (from which there were one oxymethine and two olefinics), and 11 quaternaries
comprising 4 carbonyls. 1H-1H correlated spectroscopy (COSY) of 2 (Figure S11) displayed
cross-peaks of H-17/H-16 and H-18, H-19/H-20, H-3/H-4, and H-26/H-25 that confirmed
the partial substructures demonstrated in bold lines (Figure 3a). The HMBC relations
(Figure S10) of H-25 to C-27, C-24, and C-6 secured the connection of C-6 and C-26, C-
24, and C-25 and affirmed the linking of the 1-oxo-4-methyl-pent-3-eneyl moiety at C-6
(Figure 3b). Further, the linkage of γ,γ-dimethyl allyl at C-25 was assured by the relations
of H-26 to H-29 and H-28. Furthermore, the cross-peaks between H-5/C-7 and C-24
assured the linkage between C-5, C-6, and C-7. The cross-peaks of H-16/C-18, C-15 and
C-17, H-14 and H-13/C-8 and C-6, and H-16/C-8, besides relation H-6/C-8, assured the
connection between C-8/C-7 and C-7/C-6 and secured the location of the 1-oxo-2-methyl
propyl moiety at C-8. The correlations of H-4/C-4a, C-9a, C-10, C-5, and C-2, and H-12
and H-11/C-2 in HMBC proved the 3,4-dihydropyran moiety and the connection between
C-10 and C-4a. This evidence revealed the fusion of the pyran ring at C-4a and C-9a. The
linkage of the γ,γ-dimethyl ally group to C-9a via a C-19 oxymethine was assured by the
HMBC cross-peaks of H-20/C-23 and C-22, H-23, H-22, and H-19/C-21, and H-19/C-4a
and C-9. The downfield shift of C-3/HC-3 established the existence of a chloride at C-3.
Further, the nuclear Overhauser effect spectroscopy (NOESY) spectrum of 2 (Figure S12)
displayed prominent cross-peaks between H-12/Hβ-4, H-3 and H-19/H-11, H-14/Hβ-5,
and H-13/H-6, suggesting the existence of H-3, H-11, H-13, H-6, H-16, and H-19 on the
same face of the molecule (Figure 3c). Therefore, the structure of 2 was elucidated as
represented and named hyperevolutin C. The nomenclature of 2 was given based on its
structural similarity to hyperevolutins A and B, which were previously separated from H.
perforatum [11].



Biology 2021, 10, 541 7 of 15

Table 2. NMR spectral data of compound 2 (CDCl3, 850 and 214 Hz).

No. δH [Mult., J (Hz)] δC (Mult.)

2 - 83.0 C
3 2.40 dd (11.6, 8.3) 54.8 CH

4 2.12 dd (15.2, 11.6)
1.77 dd (15.2, 8.3) 25.6 CH2

4a - 67.9 C

5 2.44 dd (15.1, 7.0)
1.92 d (15.0) 34.9 CH2

6 1.96 t (7.0) 42.4 CH
7 - 46.7 C
8 - 86.5 C
9 - 199.6 C
9a - 76.9 C
10 - 202.4 C
11 1.38 s 31.1 CH3
12 1.26 s 25.3 CH3
13 1.28 s 22.2 CH3
14 1.24 s 24.6 CH3
15 - 207.0 C
16 1.78 m 44.3 CH
17 1.10 d (6.8) 21.1 CH3
18 1.09 d (6.8) 20.7 CH3
19 5.57 d (9.0) 74.7 CH
20 5.36 dt (9.0, 1.5) 119.8 CH
21 - 140.0 C
22 1.63 s 26.3 CH3
23 1.75 s 18.8 CH3
24 - 204.1 C
25 2.51 d (7.5) 28.7 CH2
26 5.22 brt (7.5) 118.7 CH
27 - 135.5 C
28 1.73 s 18.2 CH3
29 1.73 s 26.2 CH3
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3.4. Chloroform Fraction Vasodilating Activity

The chloroform fraction exhibited reductions in tension and consequent concentration-
dependent vasodilation of PE (10 µM)-precontracted separated aortae that approached
statistical significance compared with time control (at conc. 3 and 10 µg/mL, both at
p < 0.05). Removal of the endothelial layer (aorta denudation) prevented the chloroform
fraction vasodilating effect, as obvious from the considerable prohibition (at conc. 1, 3, and
10 µg/mL, all at p < 0.05). Additionally, L-NAME (1 mM) blocked the vasodilating effect
of the chloroform fraction, as manifest from the remarkable inhibition (at conc. 1, 3, and
10 µg/mL of the choroform fraction, all at p < 0.05) (Figure 4).
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Figure 4. Effect of the H. revolutum chloroform fraction on PE-precontracted separated intact or
denuded aorta or aorta preincubated with a nitric oxide synthase inhibitor (L-NAME) compared
with time control. Results are introduced as the mean ± standard error of the mean (SEM) (n = 8). *
Significantly varies from the corresponding time control values (p < 0.05); # Significantly varies from
the corresponding chloroform fraction (p < 0.05) by two-way repeated-measures ANOVA and the
Newmans–Keuls posthoc test.

3.5. Vasodilating Activity of the Isolated Compounds

Figure 5A reveals that compound 1 caused the concentration-dependent vasodilation
of PE (10 µM)–precontracted separated aortae, as apparent from the notable repression of
vasodilation (at conc. 10 µM, p < 0.05), whilst L-NAME or endothelial denudation effec-
tively hindered the vasodilation potential of compound 1, as indicated by the remarkable
inhibition (both at conc. 3 and 10 µM, all at p < 0.05; Figure 5A). Likewise, compound
2 caused concentration-dependent vasodilation (at conc. 3 and 10 µM, both p < 0.05);
however, L-NAME or endothelial denudation prevented the activity (both at conc. 3 and
10 µM, all at p < 0.05; Figure 5B).

The compound 3 addition resulted in concentration-dependent vasodilation of PE
(10 µM)–precontracted separated aortae (Figure 5C). At a concentration of 10 µM, the va-
sodilating effect of compound 3 attained a statistically significant level (p < 0.05) compared
with time control. This effect was entirely blocked by L-NAME or endothelial denuda-
tion, as apparent from the notable prohibition (both at conc. 3 and 10 µM, all at p < 0.05;
Figure 6A). Nevertheless, compound 4 did not possess any notable vasodilation of PE
(10 µM)–precontracted separated aortae. Likewise, L-NAME or endothelial denudation
had no significant influences (Figure 5D).

Figure 5E demonstrated that the compound 5 addition gave rise to a decline in tension
and, consequently, concentration-dependent vasodilation of PE–precontracted separated
aortae. This effect at 10 µM attained a statistically significant (p < 0.05) level. Moreover,
this effect was inhibited by endothelial denudation (at conc. 10 µM) or L-NAME (at both
conc.3 and 10 µM, all at p < 0.05; Figure 5E).

3.6. Effect on Vascular NO-Production

The addition of 10 µM Ach at 37 ◦C to the aortic rings caused a marked NO production
(p < 0.05) in comparison to control that was quantified and detected using 2.5 µM DAF-FM
reagent. The chloroform fraction addition (conc. 10 µg/mL) brought about a similar
increase in NO production, as evident by a notable increase in the fluorescence of DAF-
FM compared with the control values (p < 0.05). The isolated metabolites 1–3 provoked
NO production that attained a statistically noteworthy level (all at p < 0.05) at a 10 µM
concentration (Figure 6).
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Figure 5. Influence of compounds 1–5 on PE–precontracted separated intact or denuded aorta or aorta preincubated with a
nitric oxide synthase inhibitor (L-NAME) compared with time control (A–E). Results are introduced as mean ± SEM (n = 8).
* Significantly varies from the corresponding time control values (p < 0.05). # Significantly varies from the corresponding
values of compound 1 (p < 0.05) by two-way ANOVA and Newmans–Keuls posthoc test.
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Figure 6. Influence of H. revolutum, 10 µg/mL Fraction I, and compounds 1–5 (conc. 10 µM) on
vascular NO production comparable to 10 µM Ach. * Significantly varies from the control value (p <
0.05) by one way-ANOVA and Newmans–Keuls posthoc test.

3.7. Free Radical Scavenging (FRS) Capacities

In the 10 min reaction results between 240 µM DPPH, the chloroform fraction, and
compounds 1–5 (conc. 1, 3, and 10 µM), only 5 exhibited remarkable FRS activity. The other
compounds, 1–4, did not have any significant FRS activities (data not shown). Figure 7
revealed that 5 (conc. 10 µM) possessed DPPH free radical scavenging activity that was
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translated into an antioxidant potential, which is clear from the noticeable variations from
control, beginning from the 1st minute until the 10th minute (p < 0.05).
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Figure 7. Influence of the CHCl3 fraction and isolated metabolite 5 on the production of ROS, as
inducted by 240 µM DPPH. Control (C) is a reaction mixture with DPPH only. Results are displayed
as mean ± SEM (n = 3). * p < 0.05 when compared to each corresponding control.

4. Discussion

Natural products can exert vasodilation through either the endothelium (NO gen-
eration) or by acting on smooth muscle (Ca+ and K+ channels) [33]. The current work
represents the first evaluation of the bioactive compounds from H. revolutum that are
responsible for vasodilation activities; we also investigate the mechanism of action. A
previous report from our laboratory [14] proved that the total methanol extract of H. revolu-
tum gave rise to concentration-dependent vasodilation of phenylephrine–precontracted
isolated aortae. The bio-guided fractions indicated that the chloroform fraction is account-
able for the noticed total extract vasodilation potential. In this regard, similar vasodilating
activities have been reported for other plant extracts; the methanol extract of Garcina
mangostana as well as Mentha longifolia were reported to produce a direct vasorelaxant
effect in phenylephrine-induced vasoconstriction and in an experimental model of angina,
respectively [34,35]. Moreover, different phytoconstituents are known for their vasodilation
activity. Phenolic compounds are the most important class of vasodilators. For example,
flavone can exert vasodilation by acting on the Ca+ channel and NO generation [33].

Chromatographic examination of the chloroform fraction gave rise to the separation
of five active compounds that worked collaboratively but through different mechanisms
to prompt NO-dependent vasodilatation. The isolated compounds were identified as
revolutin (1) and hyperevolutin C (2), β-sitosterol (3), euxanthone (1, 7-dihydroxyxanthone,
4), and 2,3,4-tirmethoxy xanthone (5).

Compounds 1, 2, and 3 show significant vasodilation activities that were blocked
by endothelial denudation (Figure 8). This points to the key role of the endothelium in
mediating their vasodilating activities. In addition, L-NAME (NO synthase inhibitor) com-
pletely blocked the mentioned compounds’ activities, suggesting endothelial nitric oxide
stimulation as a major mechanism of activity. It is well established that the endothelium
has a crucial role in controlling arterial tone via the release of the key vasorelaxant molecule
NO [36]. In order to confirm that endothelial NO stimulation is the main vasodilating
mechanism of compounds 1, 2, and 3, the endothelial release of NO upon compound
addition was measured by the NO-sensitive fluorescent probe, DAF-FM. The current study
confirms the release of NO from the vascular endothelium upon the addition of compounds
1, 2, and 3.



Biology 2021, 10, 541 11 of 15

Biology 2021, 10, x FOR PEER REVIEW 11 of 15 
 

 

4. Discussion 

Natural products can exert vasodilation through either the endothelium (NO gener-

ation) or by acting on smooth muscle (Ca+ and K+ channels) [33]. The current work repre-

sents the first evaluation of the bioactive compounds from H. revolutum that are responsi-

ble for vasodilation activities; we also investigate the mechanism of action. A previous 

report from our laboratory [14] proved that the total methanol extract of H. revolutum gave 

rise to concentration-dependent vasodilation of phenylephrine–precontracted isolated 

aortae. The bio-guided fractions indicated that the chloroform fraction is accountable for 

the noticed total extract vasodilation potential. In this regard, similar vasodilating activi-

ties have been reported for other plant extracts; the methanol extract of Garcina mangostana 

as well as Mentha longifolia were reported to produce a direct vasorelaxant effect in phe-

nylephrine-induced vasoconstriction and in an experimental model of angina, respec-

tively [34,35]. Moreover, different phytoconstituents are known for their vasodilation ac-

tivity. Phenolic compounds are the most important class of vasodilators. For example, fla-

vone can exert vasodilation by acting on the Ca+ channel and NO generation [33]. 

Chromatographic examination of the chloroform fraction gave rise to the separation 

of five active compounds that worked collaboratively but through different mechanisms 

to prompt NO-dependent vasodilatation. The isolated compounds were identified as rev-
olutin (1) and hyperevolutin C (2), β-sitosterol (3), euxanthone (1, 7-dihydroxyxanthone, 

4), and 2,3,4-tirmethoxy xanthone (5). 

Compounds 1, 2, and 3 show significant vasodilation activities that were blocked by 

endothelial denudation (Figure 8). This points to the key role of the endothelium in medi-

ating their vasodilating activities. In addition, L-NAME (NO synthase inhibitor) com-

pletely blocked the mentioned compounds’ activities, suggesting endothelial nitric oxide 

stimulation as a major mechanism of activity. It is well established that the endothelium 

has a crucial role in controlling arterial tone via the release of the key vasorelaxant mole-

cule NO [36]. In order to confirm that endothelial NO stimulation is the main vasodilating 

mechanism of compounds 1, 2, and 3, the endothelial release of NO upon compound ad-

dition was measured by the NO-sensitive fluorescent probe, DAF-FM. The current study 

confirms the release of NO from the vascular endothelium upon the addition of com-

pounds 1, 2, and 3. 

 

Figure 8. Diagrammatic sketch summarizing the study design. 

Revolutin (1) belongs to the phloroglucinol group of compounds, which are known 

for their ability to improve NO generation. Previous reports have reported its ability to 

increase NO levels, leading to a decrease in blood pressure in vivo [37]. Meanwhile, hy-

perevolutin C (2) is a novel terpenoid structure closely related to garcinielliptone G, which 

was previously isolated from Garcinia subelliptica [38] but not previously tested for its bi-

ological effects. β-Sitosterol (3) has previously exhibited hepatoprotective and cardiopro-

Figure 8. Diagrammatic sketch summarizing the study design.

Revolutin (1) belongs to the phloroglucinol group of compounds, which are known
for their ability to improve NO generation. Previous reports have reported its ability
to increase NO levels, leading to a decrease in blood pressure in vivo [37]. Meanwhile,
hyperevolutin C (2) is a novel terpenoid structure closely related to garcinielliptone G,
which was previously isolated from Garcinia subelliptica [38] but not previously tested
for its biological effects. β-Sitosterol (3) has previously exhibited hepatoprotective and
cardioprotective effects in CdCl2-induced hypertensive rats [39]. Euxanthone (4) was
previously investigated and showed a pronounced vasodilator effect through the release
of endothelial factors such as NO and COX-derived factors. Additionally, it provoked
the prohibition of a Ca+2-sensitive mechanism initiated by protein kinase C instead of
repression of a contraction-dependent release of the intracellular Ca+ stores or prohibiting
voltage-operated Ca+ channels [40].

Free radical scavenging (FRS) activity is another important way to preserve the re-
leased NO from quenching by superoxides and subsequent conversion into nitrites or
nitrates. Only compound 5 among the tested metabolites 1–5 has substantial FRS capac-
ities. We take into consideration that compound 5 showed moderate vasodilation that
was endothelial-dependent and inhibited by L-NAME but was not associated with NO
generation. These data suggest preserving NO bioavailability rather than stimulating NO
generation as the major mechanism of action of compound 5. In the meantime, we cannot
exclude the possibility that compound 5 may stimulate endothelium-derived hyperpo-
larizing factors or other vasodilators generated in the endothelium, such as prostacyclin.
While compound 5 has not been previously investigated for its vasodilator effect, the
xanthone group of compounds was reported to show vasorelaxant and antihypertensive
activities [41]. While previous reports have shown the ability of flavonoids and benzophe-
none nuclei to enhance vasodilatation through NO production [35,42], our study is the
first to introduce a similar effect for the phloroglucinol nucleus. Additionally, our study is
the first to report the vasodilation activity of the xanthone nucleus through the inhibition
of NO degradation. This finding is significant in terms of increased drug potency when
NO production is intended. Interestingly, El-bassossy et al. [43] have reported a similar
NO-protective mechanism by heme oxygenase-1. It is noteworthy to mention that the
chloroform fraction of H. revolutum showed the highest potency relative to each isolated
compound, which can be attributed to the synergistic effect of the bioactive compounds.
The proposed pharmacological mechanism is illustrated in Figure 9.
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The main limitation of this study is exploring vasodilation only in the thoracic aor-
tic model; other arteries such as cerebral and abdominal arteries were not investigated.
Additionally, the study concentrates only on NO from the endothelium as the main mecha-
nism; other mechanisms such as Ca and K channels need to be investigated. Additionally,
vasodilator activity was proven only in vitro; therefore, in vivo studies on animals are
required, in detail, to assess the toxicity of these compounds as well as their metabolites
and their effects on blood vessels. Finally, planning to assess the activity of the isolated
compounds in humans should be a final step after the detailed study of these compounds.

5. Conclusions

The phytochemical investigation of the chloroform fraction of H. revolutum yielded
two new compounds that were identified as revolutin (1) and hyperevolutin C (2), together
with three known metabolites (3–5). Compounds 1–3 and 5 showed significant vasodilation
in isolated aortae. The observed vasodilation of compounds 1–3 seems to be mediated
via NO generation, as blocked by endothelial removal and L-NAME, and approves DAF-
FM NO release. Compound 5 vasodilation is thought to be mediated by its free radical
scavenging activities that protect the released NO from quenching by superoxides. Due
to the multifactorial nature of cardiovascular diseases such as hypertension, knowing
the mechanisms of the vasodilation action of these compounds is a crucial element for
developing and planning different therapeutic strategies. Concretely, the observed va-
sodilation ability of these metabolites may reveal their potential therapeutic use against
high-blood-pressure-related cardiovascular diseases.

6. Patents

This work resulted in US Patent number 10,780,139, 2020.
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