DOI: 10.2903/j.efsa.2024.8757

STATEMENT

Targeted review of the maximum residue levels (MRLs) for ethephon

European Food Safety Authority (EFSA)

Correspondence: pesticides.mrl@efsa.europa.eu

Abstract

In accordance with Article 43 of Regulation (EC) 396/2005, EFSA received a request from the European Commission to perform a targeted review of the existing maximum residue levels (MRLs) for ethephon which are based on revoked codex maximum residue limits (CXLs), considering the new toxicological reference values and the new residue definitions derived during the renewal of the approval of ethephon and the most recent version of the EFSA Pesticide Residues Intake Model (PRIMo) (rev.3.1). EFSA investigated the origin of the current EU MRLs. For existing EU MRLs that are based on revoked CXLs, EFSA verified whether an alternative MRL could be proposed based on the data evaluated in previous EFSA and JMPR assessments and proposed a revised list of MRLs. Data submitted by Member States during the written procedure was also considered. EFSA performed an indicative chronic and acute dietary risk assessment for the revised list of MRLs to support risk managers during the decision-making. For some of the commodities under assessment, further risk management discussions are required to decide which of the risk management options proposed by EFSA should be implemented in the EU MRL legislation.

K E Y W O R D S

ethephon, MRLs, peer review, Regulation (EC) No 396/2005

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made. © 2024 European Food Safety Authority. *EFSA Journal* published by Wiley-VCH GmbH on behalf of European Food Safety Authority.

CONTENTS

Abstract	1
Background and Terms of Reference	3
Assessment	4
1.1. Existing and new residue definitions	4
1.2. Existing EU MRL and revised MRL proposals	4
1.3. Consumer risk assessment of the revised list of MRLs and identification of fall-back MRLs	
Conclusions and Recommendations	7
Abbreviations	10
Conflict of interest	
Requestor Question number	11
Question number	11
Copyright for non-EFSA content References	11
References	11
Appendix A	
Appendix B	14
Appendix C	
Appendix D	16

BACKGROUND AND TERMS OF REFERENCE

On 8 October 2009, EFSA provided a reasoned opinion on the review of the existing maximum residue limits (MRLs) for the active substance ethephon in compliance with Article 12(1) of Regulation (EC) No 396/2005¹ (EFSA, 2009). In the review of the MRLs, the chronic and acute consumer exposures were calculated using revision 2 of the EFSA pesticide residues intake model (PRIMo) and compared with the toxicological reference values for ethephon valid at that time. The MRLs resulting from this review were implemented by Regulation (EU) No 559/2011.²

In the framework of the renewal of the approval of ethephon under Regulation (EC) No 1107/2009,³ EFSA published a conclusion proposing lowering the existing acceptable daily intake (ADI) from 0.03 to 0.02 mg/kg. In addition, EFSA proposed a new residue definition for enforcement in cereals as sum of ethephon free and conjugates, expressed as ethephon (EFSA, 2023). The new definition proposed for cereals is the same as the definition for cereals and straw used in Codex Alimentarius. In 2016, the Codex MRLs (CXLs) for cereals (wheat, barley and rye) were not implemented in the EU legislation due to the incompatibility of the residue definitions. In addition, since then, some of the CXLs which were implemented in the EU legislation have been revoked (CAC, 2016).

Furthermore, a recent preliminary risk assessment indicated that the existing MRLs of ethephon might pose acute risks to consumers according to the intake calculations performed with the most recent version of PRIMO (rev.3.1).

Taking all this into consideration, in October 2023, in accordance with Article 43 of Regulation (EC) No 396/2005, the European Commission mandated EFSA to issue a statement with a targeted review of the existing MRLs for ethephon. In particular, EFSA was requested to:

 revise MRLs that are based on revoked⁴ CXLs, with a view to possible implementation of existing CXLs for cereals into the EU legislation, considering the new proposed residue definition for enforcement and its compatibility with the residue definition used by Codex Alimentarius;

- perform an assessment of the chronic and acute risk to consumers of the revised list of MRLs, considering the newest toxicological reference values, the residue data available according to the new residue definitions derived in the framework of the renewal of the approval of ethephon and the newest version of PRIMo;
- consult Member States (MSs) on information about good agricultural practices (GAPs) authorised in the EU and in the third countries and already evaluated at Member State level on the commodities where the MRLs are based on revoked CXLs and on the commodities of concern, which might support setting of safe fall-back MRLs, where this is necessary in view of consumer protection;
- derive a list of MRLs that reflects the new residue definition derived during the renewal and does not pose an unacceptable risk to consumers, and/or advise risk managers on alternative options.

In January 2024, EFSA circulated a draft statement to Member States for consultation via a written procedure. In line with the terms of reference, during the consultation, Member States were requested to submit information about GAPs and supporting residue trials on the commodities for which the current MRLs are based on revoked CXLs and on the commodities for which a concern was identified according to the risk assessment. Comments and additional data received on 5 February 2024 were considered during the finalisation of this statement. The GAPs received and a conclusion on whether the uses could be considered to derive a revised or fall-back MRL were reported in the GAP overview file. The details of the critical GAPs for ethephon submitted by Member States during the written procedure and the supporting residue trials considered to derive the fall-back MRLs are given in Appendices A and B, respectively.

The Member States consultation report with the collation of comments received on the draft statement (EFSA, 2024), the evaluation reports submitted by Member states during the written procedure (France, 2024; Italy, 2024; Netherlands, 2024; Spain, 2024), the chronic and acute exposure calculations performed using the EFSA PRIMo 3.1 for all crops covered by this assessment and the GAP overview file are considered background documents and are made publicly available as supporting documents to this statement. A screenshot of the report sheet of the PRIMo is presented in Appendix D.

¹Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, pp. 1–16.

²Commission Regulation (EU) No 559/2011 of 7 June 2011 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for captan, carbendazim, cyromazine, ethephon, fenamiphos, thiophanate-methyl, triasulfuron and triticonazole in or on certain products. OJ L 152, 11.6.2011, pp. 1–21.

³Commission Regulation (EC) No 1107/2009 of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, pp. 1–50.

⁴The wording 'withdrawn or obsolete' used in the mandate was amended into 'revoked' for consistency with the procedural manual of the Codex Alimentarius Commission (https://www.fao.org/3/cc5042en/cc5042en.pdf).

ASSESSMENT

1.1 Existing and new residue definitions

Table 1 provides a comparison of the residue definitions considered in the framework of the MRL review of Article 12 of Regulation (EC) No 396/2005 (EFSA, 2009) and currently applicable in accordance to Regulation (EC) No 396/2005 (hereafter referred to as 'old residue definitions') and the 'new residue definitions' derived in the framework of the renewal (EFSA, 2023; European Commission, 2023) and considered in the present assessment.

It is underlined that during the peer review for the renewal the following data gaps, relevant for the new proposed residue definitions, were identified:

- Aneugenic potential of the metabolite HEPA has not been addressed according to the latest state of the art criteria not
 available at the time of the dossier submission or ongoing peer review;
- A new metabolism study in lactating ruminants (goats) according to current guidelines.

Type of residue definition	Commodity group	Old residue definition (EFSA, 2009)	New residue definition (EFSA, 2023; European Commission, 2023)
Enforcement	Cereals (grain and straw)	Ethephon	Sum of ethephon free and conjugates, expressed as ethephon
	Fruit crops, pulses and oilseed	Ethephon	Ethephon
	Animal products	Ethephon	Ethephon (provisional for ruminants) ^a
Risk assessment	Cereals (grain and straw)	Ethephon	RD 1: sum of ethephon free and conjugates, expressed as ethephon. RD 2: 2-hydroxyethyl phosphonic acid (HEPA) (provisional) ^b
	Fruit crops	Ethephon	Ethephon (for PHI shorter than 12 days) Ethephon (provisional for PHI longer than 12 days) ^b
	Pulses and oilseeds	Ethephon	RD 1: sum of ethephon free and conjugates, expressed as ethephon. RD 2: 2-hydroxyethyl phosphonic acid (HEPA) (provisional) ^c
	Animal products	Ethephon	RD 1: ethephon (provisional for ruminants) ^a RD 2: 2-hydroxyethyl phosphonic acid (HEPA) (provisional) ^c

TABLE 1 Comparison of residue definitions for ethephon.

^aProvisional pending the submission of a metabolism study in lactating ruminants (goats) performed according to the current guidelines (EFSA, 2023).

^bThe residue definition is derived from the tomato metabolism study conducted at a short PHI of 12 days where the conjugates of ethephon were not recovered in fruit and is valid for all uses with PHI values within 12 days. For uses with PHI above 12 days, further data will be needed to exclude the relevance of conjugates in fruits harvested at PHI longer than 12 days (EFSA, 2023).

^cConsidering that the aneugenic potential of metabolite HEPA has not been addressed according to the latest state of the art as these criteria were not available at the time of the dossier submission, a separate RD (RD 2) was provisionally agreed for cereals, pulses and oilseeds, pending submission of further information on the aneugenic potential of this metabolite (EFSA, 2023; European Commission, 2023).

1.2 Existing EU MRL and revised MRL proposals

In order to address the first term of reference of the mandate, EFSA investigated the origin of the current EU MRLs. For existing EU MRLs that are based on revoked CXLs, EFSA verified whether a revised MRL could be proposed based on the data already evaluated under the framework of the MRL review (EFSA, 2009), during the peer review for the renewal of the approval (EFSA, 2023; Netherlands, 2017), in subsequent MRL applications (EFSA, 2014, 2017) and by the JMPR (FAO and WHO, 2015). Additional data submitted by Member States during the written procedure were also considered (France, 2024; Italy, 2024; Netherlands, 2024; Spain, 2024). In line with the terms of reference, the new residue definition for enforcement in cereals (sum of ethephon free and conjugates, expressed as ethephon) agreed for the renewal (Table 1) was considered.

The existing EU MRLs for the respective crops and the proposed revised MRL (when needed because the MRL is based on a revoked CXL) are reported in Table 2 together with the information on the source of the MRLs and the references to the assessments where the MRLs were derived. It is noted that for almonds, Brazil nuts, cashew nuts, chestnuts, coconuts, macadamias, pecans, pine nut kernels and pistachios, the existing EU MRL is currently set at levels above the limit of quantification (LOQ) (0.1 mg/kg). Nevertheless, for these commodities, according to the information submitted for the MRL review and in subsequent EFSA and JMPR assessments, there are no relevant authorisations or import tolerances reported at EU level and no CXL is available. Therefore, they were not considered further in the assessment.

TABLE 2 Existing MRLs and revised MRL proposal for ethephon.

5 of 19

Commodity	Existing EU MRL (mg/kg)	Source of existing MRL	MRL based on revoked CXL? (Y/N)	Revised MRL proposal (mg/kg)	Source of the revised MRL
Hazelnuts/cobnuts	0.2	IT (USA) (EFSA, 2009)	Ν	0.2	IT (USA) (EFSA, 2009)
Walnuts	0.5	CXL (FAO and WHO, 1994)	Y (CAC, <mark>2016</mark>)	0.5 ^a	IT (USA) (EFSA, 2009)
Apples	0.8	CXL (FAO and WHO, 2015)	Ν	0.8	CXL (FAO and WHO, 2015)
Pears	0.05*	NEU (EFSA, 2009)	Ν	0.05*	NEU (EFSA, 2009)
Cherries (sweet)	5	CXL (FAO and WHO, 2015)	Ν	5	CXL (FAO and WHO, 2015)
Table grapes	1 ^b	SEU (EFSA, 2014)	Ν	1 ^b	SEU (EFSA, <mark>2014</mark>)
Wine grapes	2	NEU (EFSA, 2009)	Ν	2	NEU (EFSA, 2009)
Blueberries	20 ^c	CXL (FAO and WHO, 1994)	Y (CAC, <mark>2016</mark>)	n.a.	n.a.
Figs	3	CXL (FAO and WHO, 2015)	Ν	3	CXL (FAO and WHO, 2015)
Table olives	7	SEU (EFSA, 2014)	Ν	7	SEU (EFSA, 2014)
Kaki/Japanese persimmons	0.3	SEU (EFSA, 2017)	Ν	0.3	SEU (EFSA, 2017)
Pineapples	2	CXL (FAO and WHO, 1994)	Y (CAC, <mark>2016</mark>)	1.5	CXL (FAO and WHO, 2015)
Tomatoes	2	CXL (FAO and WHO, 2015)	Ν	2	CXL (FAO and WHO, 2015)
Cotton seeds	6	CXL (FAO and WHO, 2015)	Ν	6	CXL (FAO and WHO, 2015)
Olives for oil production	10	SEU (EFSA, 2009)	Ν	10	SEU (EFSA, 2009)
Barley grain	1	CXL (FAO and WHO, 1994)	Y (CAC, <mark>2016</mark>)	1.5 ^d	CXL (FAO and WHO, 2015)
Rye grain	1	CXL (FAO and WHO, 1994)	Y (CAC, <mark>2016</mark>)	0.8 ^{d,e}	SEU (Italy, 2024, Spain, 2024)
Wheat grain	1	CXL (FAO and WHO, 1994)	Y (CAC, <mark>2016</mark>)	0.5 ^d	CXL (FAO and WHO, 2015) NEU (EFSA, 2023)
Muscle and fat from swine, bovine, sheep, goat, equine and other farmed terrestrial animals	0.05*	EFSA (2009)	Ν	0.05*	EFSA (2009)
Liver, kidney and edible offal from swine, bovine, sheep, goat, equine and other farmed terrestrial animals	0.4	CXL (FAO and WHO, 2015)	Ν	0.4	CXL (FAO and WHO, 2015)
Muscle and fat from poultry	0.05*	EFSA (2009)	Ν	0.05*	EFSA (2009)
Liver, kidney and edible offal from poultry	0.08	CXL (FAO and WHO, 2015)	Ν	0.08	CXL (FAO and WHO, 2015)
Milks and eggs	0.05*	EFSA (2009)	Ν	0.05*	EFSA (2009)

Note: n.a. since no additional data on uses is available, it was not possible to derive a revised MRL proposal. Commodities for which the current EU MRL is based on a revoked CXL and need to be revised are reported in bold.

Abbreviations: CXL, codex maximum residue limit; IT, import tolerance; NEU, Northern Europe; SEU, Southern Europe.

^aAlthough a lower MRL of 0.4 has been derived during the MRL review based on the R_{ber}/R_{max} methodology, an MRL of 0.5 mg/kg is calculated by using the OECD (Organisation for Economic Co-operation and Development) MRL calculator (spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: http://www.oecd.org MRL calculator).

^bAlthough EFSA recommended setting a new MRL on table grapes at the level of 1.5 mg/kg, which was derived by rounding up the value of 1 mg/kg calculated with the Organisation for Economic Cooperation and Development (OECD) MRL calculator, risk managers considered more appropriate to set the MRL at the unrounded level of 1 mg/kg (Reg. (EU) 2015/846) (Commission Regulation (EU) 2015/846 of 28 May 2015 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acetamiprid, ametoctradin, amisulbrom, bupirimate, clofentezine, ethephon, ethirimol, fluopicolide, imazapic, propamocarb, pyraclostrobin and tau-fluvalinate in or on certain product. OJ L 140, 5.6.2015, pp. 1–49).

^cIt is underlined that, although in the risk assessment performed during the MRL review, the CXL was concluded to be safe by considering the HR/STMR in PRIMo 2 (EFSA, 2009), an exceedance of the ARfD is identified when using PRIMo 3.1.

^dThe revised MRL is expressed according to the new residue definition for enforcement derived during the renewal of the approval of ethephon as reported in Table 1 (sum of ethephon free and conjugates, expressed as ethephon).

^eThe proposed revised MRL based on an EU GAP received in the framework of this assessment is higher than the existing CXL (0.5 mg/kg) but is not expected to have an impact on the dietary burden and on the existing EU MRLs for livestock.

*Indicates that the MRL is set at the limit of quantification.

Based on the information available and presented in Table 2, the existing EU MRLs for walnuts, blueberries, pineapples, barley grain, rye grain and wheat grain are based on revoked CXLs and need to be reconsidered. EFSA identified revised MRL proposals for all these commodities, except for blueberries for which no data is available to derive an alternative MRL.

1.3 | Consumer risk assessment of the revised list of MRLs and identification of fall-back MRLs

Chronic and acute exposure calculations for the revised list of MRLs reported in Table 2 were performed using revision 3.1 of the EFSA PRIMo (EFSA, 2018, 2019).

Input values as derived in previous MRL assessments and by the JMPR, as well as data submitted by Member States during the written procedure, were considered for the exposure calculations. The data currently available for the existing and the revised MRLs were considered as described below. In line with the terms of reference, EFSA considered the new residue definitions for enforcement and risk assessment presented in Table 1. Uncertainties related to missing data were highlighted. All input values included in the exposure calculations are summarised in Appendix C.

According to the new residue definitions proposed during the renewal, conjugates were considered relevant for enforcement and risk assessment of cereals, risk assessment of pulses and oilseeds and potentially relevant for risk assessment of fruit crops harvested at PHI longer than 12 days. Additionally, HEPA metabolite was provisionally considered relevant for the risk assessment of cereals, pulses and oilseeds and animal commodities.

For what concerns **cereals** (wheat, barley and rye), revised MRLs proposed in Table 2 are based on the existing CXLs or on the EU GAPs and the supporting residue data submitted in the framework of this assessment and during the peer review for the renewal according to the new residue definitions for enforcement and risk assessment as ethephon and its conjugates, expressed as ethephon (RD 1, see also Table 1). It is noted that for wheat, the MRL supporting the EU uses derived in Appendix B is the same as the current CXL. Therefore, for these commodities the STMR as derived by JMPR (FAO and WHO, 2015) and under this assessment (see Appendix B) was considered for risk assessment. Nevertheless, pending additional data on the aneugenic potential of HEPA (RD 2, see also Table 1), it was not possible to perform a risk assessment for this metabolite.

It should be noted nevertheless that:

- According to the EFSA conclusions, metabolite HEPA is a minor metabolite observed in rat studies; it is less toxic than the
 parent, not sharing its potential for ChE inhibition (for this reason, it was proposed to have this metabolite included in a
 separate residue definition for risk assessment) and it is unlikely to be genotoxic, i.e. does not produce gene mutation or
 chromosome aberrations (EFSA, 2023);
- In the EFSA conclusions, this data gap was not leading to a critical area of concern but reported in the 'list of other outstanding issues'⁵ (EFSA, 2023);
- Metabolite HEPA was analysed in some of the trials on wheat and barley considered by the JMPR and during the peer review for the renewal and found at levels lower than parent compound in most of the trials⁶ (FAO and WHO, 2015; Netherlands, 2017);
- According to the risk assessment (see PRIMo calculations), there is a large margin of safety for cereals (estimated exposure max 3% of ARfD for wheat, max 2% of ARfD for rye and max 1% of ARfD for barley). Therefore, assuming that HEPA will be present at the same level as the parent and share the same toxicity, this is not expected to result in exceedances of the TRVs.

This information is reported for consideration by risk managers during the decision-making process.

For what concerns **oilseeds**, the current MRL for cotton seeds is based on a CXL derived in 2016 and set for parent compound only, in line with the residue definition for enforcement derived during the renewal. The trials considered by the JMPR did not analyse for the conjugates (FAO and WHO, 2015) which are included in the new residue definition for risk assessment. Nevertheless, the metabolism study on cotton seeds evaluated in the framework of the peer review for the renewal (EFSA, 2023) can be used to derive a conversion factor of 1.2 from enforcement to risk assessment. Therefore, for the risk assessment of cotton seeds according to RD 1 (see Table 1), the STMR as derived by the JMPR (FAO and WHO, 2015) multiplied by the conversion factor derived in the present assessment was considered. For what concern HEPA (RD 2, see also Table 1), the same considerations on the toxicological profile as reported for cereals are valid also for this commodity. No acute consumption data is included in PRIMO 3.1 for cotton seeds, and therefore, it was not possible to calculate the acute exposure for this commodity. Nevertheless, cotton seeds are expected to have low relevance in the European diets. The contribution of cotton seeds to the chronic intake accounted for a maximum of 1% of the ADI (GEMS/Food G06).

For what concerns **fruit crops**, current MRLs are based on uses assessed at EU level and on CXLs derived according to the residue definition for enforcement and risk assessment as ethephon only. During the renewal, these residue definitions were confirmed for fruit crops harvested at PHI up to 12 days. Since the metabolism in fruit crops harvested at PHI longer than 12 days was not investigated, it was concluded that it was not possible to exclude conjugates to be formed at longer PHI (EFSA, 2023). Based on the information available in the relevant JMPR (FAO and WHO, 2015) and EFSA assessments (EFSA, 2009, 2014, 2017), all the current MRLs for fruit crops are based on uses with PHI shorter than 12 days, except for the following commodities:

⁵Remaining data gaps not leading to critical areas of concern or issues not finalised but considered necessary to comply with the data requirements, and which are relevant for some or all of the representative uses assessed at EU level. Although not critical, these data gaps may lead to uncertainties in the assessment and are considered relevant.

⁶Metabolite HEPA was found at levels higher than the parent only in 2 out of the 12 trials on wheat and in none of the 15 trials on barley assessed by the JMPR and during the peer review for the renewal. In these 2 trials both parent and metabolite were measured at low levels (max 0.019 mg/kg).

- Pears (use assessed during the MRL review): PHI was not defined in the GAP but, since the last application is foreseen
 at flowering, it is expected that the crop is harvested more than 12 days after treatment (EFSA, 2009). No information is
 available on the method used for the analysis of the samples from the trials but being the residue definition for enforcement set for parent compound only it is expected that a hydrolysis step was not included.
- Wine grapes (use assessed during the MRL review): PHI of 28 days (EFSA, 2009). The same considerations as for pears
 related to the analysis of the samples are valid.
- Table grapes (use assessed under an MRL application): PHI 21 days (EFSA, 2014). The analytical method used for the analysis of the samples from the trials did not include a hydrolysis step.

Therefore, for the fruit crops, STMR and HR as derived by JMPR (FAO and WHO, 2015) and by EFSA during the MRL review and in subsequent MRLs applications (EFSA, 2009, 2014, 2017) were considered for risk assessment, noting that for pears, wine and table grapes, the risk assessment covering parent compound only might be underestimated since it is not possible to exclude that conjugates are also formed at longer PHI. It is underlined that for pears, according to the risk assessment (see PRIMo calculations), there is a large margin of safety (max 6% of ARfD). Therefore, even assuming that conjugates will be present in pears at harvest, this is not expected to result in exceedances of the toxicological reference values (TRVs). On the contrary, a narrow margin is noted for grapes, with acute exposure accounting for up to 82% of ARfD for table grapes and 71% of the ARfD for wine grapes (see PRIMo calculations).

Current MRLs for **animal products** are based on uses assessed at EU level and on CXLs considering the residue definition for enforcement and risk assessment as ethephon only. Since these residue definitions are in line with the new residue definition proposed during the renewal, for these commodities STMR and HR as derived by JMPR (FAO and WHO, 2015) and by EFSA during the MRL review (EFSA, 2009) were considered for risk assessment, noting that, due the data gaps related to the aneugenicity potential of metabolite HEPA and the missing metabolism study on ruminants, the risk assessment is only tentative. For what concerns HEPA, the same considerations on toxicological profile as reported for cereals are also valid for livestock. According to the risk assessment (see PRIMo calculations), there is a large margin of safety for animal commodities (max 12% of ARfD for cattle milk and max 5% of ARfD for all other animal commodities). Therefore, assuming that HEPA will be present at the same level as the parent and share the same toxicity, this is not expected to result in exceedances of the TRVs.

Exposures calculated were compared with the TRVs derived in the framework of the renewal of ethephon (EFSA, 2023; European Commission, 2023).

The highest chronic exposure was calculated for Dutch toddler, representing 32% of the ADI. With regard to the acute exposure, however, an exceedance of the ARfD was identified for the CXL on apples, representing 106% of the ARfD. A second exposure calculation was therefore performed, considering the most critical fall-back GAP for this crop and the supporting residue trials submitted by Member States in the framework of this assessment and presented in Appendices A and B. According to the results of this second calculation, the highest chronic exposure represents 36% of the ADI for Dutch toddler; the highest acute exposure is then calculated for tomatoes, representing 92% of the ARfD (see PRIMo calculations).

CONCLUSIONS AND RECOMMENDATIONS

Based on the information available, the existing EU MRLs for walnuts, blueberries, pineapples, barley grain, rye grain and wheat grain are based on revoked CXLs and need to be reconsidered. EFSA identified revised MRL proposals for all these commodities, except for blueberries for which no additional data is available, and proposed a revised list of MRLs.

According to the chronic and acute exposure calculations, a potential risk to consumers was identified for the CXL of ethephon on apples. For the remaining MRLs, although uncertainties remain due to the data gaps identified, the indicative exposure calculation did not indicate a risk to consumers.

MRL recommendations were derived in compliance with the assessment described above and they are summarised in Table 3. Several MRLs require further consideration by risk managers (see footnotes of Table 3 for details). In particular, some proposed MRLs need to be confirmed by the following data:

- 1. Additional data to address the relevance of conjugates at PHI longer than 12 days;
- 2. Additional information on the aneugenic potential of the metabolite HEPA according to the latest state of the art criteria not available at the time of the dossier submission or ongoing peer review;
- 3. A new metabolism study in lactating ruminants (goats) according to current guidelines.

Code		Existing EU	Existing CXL	Outcome of the review					
number	Commodity	MRL (mg/kg)	(mg/kg)	MRL (mg/kg)	Comment				
	nt residue definition (existin It residue definition (propo	• · · · ·							
120060	Hazelnuts/cobnuts	0.2	-	0.2	Recommended ^a				
120110	Walnuts	0.5	-	0.5	Recommended ^b				
130010	Apples	0.8	0.8	0.7 or LOQ	Recommended ^c				
130020	Pears	0.05*	-	0.05* or LOQ [†]	Further consideration needed ^d Data gap # 1				
140020	Cherries (sweet)	5	5	5	Recommended ^e				
151010	Table grapes	1	0.8	1 or LOQ	Further consideration needed ^d Data gap # 1				
151020	Wine grapes	2	0.8	2 or LOQ	Further consideration needed ^d Data gap # 1				
154010	Blueberries	20	-	-	Further consideration needed ^f				
161020	Figs	3	3	3	Recommended ^e				
161030	Table olives	7	7	7	Recommended ^g				
161060	Kaki/Japanese persimmons	0.3	-	0.3	Recommended ⁹				
163080	Pineapples	2	1.5	1.5	Recommended ^h				
231010	Tomatoes	2	2	2	Recommended ^e				
401090	Cotton seeds	6	6	6 or LOQ	Further consideration needed ⁱ Data gap # 2				
402010	Olives for oil production	10	10	10	Recommended ⁹				
1011010	Swine: Muscle/meat	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3				
1011020	Swine: Fat tissue	0.05*	0.01*	0.05^* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3				
1011030	Swine: Liver	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3				
1011040	Swine: Kidney	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3				
1011050	Swine: Edible offals (other than liver and kidney)	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3				
1012010	Bovine: Muscle/meat	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3				
1012020	Bovine: Fat tissue	0.05*	0.01*	0.05* or LOQ^{\dagger}	Further consideration needed ^d Data gaps # 2, 3				
1012030	Bovine: Liver	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3				
1012040	Bovine: Kidney	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3				
1012050	Bovine: Edible offals (other than liver and kidney)	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3				
1013010	Sheep: Muscle/meat	0.05*	0.01*	0.05* or LOQ^{\dagger}	Further consideration needed ^d Data gaps # 2, 3				
1013020	Sheep: Fat tissue	0.05*	0.01*	0.05* or LOQ^{\dagger}	Further consideration needed ^d Data gaps # 2, 3				
1013030	Sheep: Liver	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3				
1013040	Sheep: Kidney	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3				
1013050	Sheep: Edible offals (other than liver and kidney)	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3				
1014010	Goat: Muscle/meat	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3				

TABLE 3 (Continued)

Code		Existing EU	Existing CXL	Outcome of the	review	
code number	Commodity	MRL (mg/kg)	(mg/kg)	MRL (mg/kg)	Comment	
1014020	Goat: Fat tissue	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3	
1014030	Goat: Liver	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3	
1014040	Goat: Kidney	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3	
1014050	Goat: Edible offals (other than liver and kidney)	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3	
1015010	Equine: Muscle/meat	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3	
1015020	Equine: Fat tissue	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3	
1015030	Equine: Liver	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3	
1015040	Equine: Kidney	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3	
1015050	Equine: Edible offals (other than liver and kidney)	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3	
1016010	Poultry: Muscle/meat	0.05*	0.02	0.05* or LOQ [†]	Further consideration needed ^d Data gap # 2	
1016020	Poultry: Fat tissue	0.05*	0.04	0.05* or LOQ [†]	Further consideration needed ^d Data gap # 2	
1016030	Poultry: Liver	0.08	0.08	0.08 or LOQ	Further consideration needed ⁱ Data gap # 2	
1016040	Poultry: Kidney	0.08	0.08	0.08 or LOQ	Further consideration needed ⁱ Data gap # 2	
1016050	Poultry: Edible offals (other than liver and kidney)	0.08	0.08	0.08 or LOQ	Further consideration needed ⁱ Data gap # 2	
1017010	Other farmed animals: Muscle/meat	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3	
1017020	Other farmed animals: Fat tissue	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3	
1017030	Other farmed animals: Liver	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3	
1017040	Other farmed animals: Kidney	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3	
1017050	Other farmed animals: Edible offals (other than liver and kidney)	0.4	0.4	0.4 or LOQ	Further consideration needed ⁱ Data gaps # 2, 3	
1020010	Milk: Cattle	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3	
1020020	Milk: Sheep	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3	
1020030	Milk: Goat	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3	
1020040	Milk: Horse	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gaps # 2, 3	
1030010	Eggs: Chicken	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gap # 2	
1030020	Eggs: Duck	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gap # 2	
1030030	Eggs: Goose	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gap # 2	
						(Conti

(Continues)

TABLE 3 (Continued)

Code		Existing EU	Existing CXL	Outcome of the review				
number	Commodity	MRL (mg/kg)	(mg/kg)	MRL (mg/kg)	Comment			
1030040	Eggs: Quail	0.05*	0.01*	0.05* or LOQ [†]	Further consideration needed ^d Data gap # 2			
-	Other commodities of plant and/or animal origin	See Reg. 2017/1777	-	-	Further consideration needed ^j			

Enforcement residue definition (existing): Ethephon

Enforcement residue definition (proposed): Sum of ethephon free and conjugates, expressed as ethephon

500010	Barley	1	1.5	1.5 or LOQ	Further consideration needed ^k Data gap # 2
500070	Rye	1	0.5	0.8 or LOQ	Further consideration needed ¹ Data gap # 2
500090	Wheat	1	0.5	0.5 or LOQ	Further consideration needed ^m Data gap # 2

Abbreviations: CXL, codex maximum residue limit; LOQ, limit of quantification; MRL, maximum residue level.

^aExisting EU MRL is based on a GAP for import tolerance evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified. Therefore, the existing EU MRL can be maintained.

^bExisting EU MRL is based on a CXL which was revoked. A revised MRL was derived based on a GAP for import tolerance evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified.

^cExisting EU MRL is based on a CXL still in place but a risk for consumers cannot be excluded. A fall-back MRL was derived based on an EU GAP which is fully supported by data and for which no risk to consumers is identified.

 $^{
m d}$ Existing EU MRL is based on an EU GAP which is not fully supported by data but for which no risk to consumers is identified.

^eExisting EU MRL is based on a CXL still in place which is fully supported by data and for which no risk to consumers is identified. Therefore, the existing EU MRL can be maintained.

^fExisting EU MRL is based on a CXL which was revoked and for which a risk for consumers cannot be excluded. No data are available to derive a revised MRL.

⁹Existing EU MRL is based on an EU GAP which is fully supported by data and for which no risk to consumers is identified. Therefore, the existing EU MRL can be maintained. ^hExisting EU MRL is based on a CXL which was revoked. A revised MRL was derived based on the existing CXL, which is fully supported by data and for which no risk to consumers is identified.

¹Existing EU MRL is based on a CXL still in place which is not fully supported by data but for which no risk to consumers is identified.

^jThere are no relevant authorisations or import tolerances reported at EU level; no CXL is available.

^kExisting EU MRL is based on a CXL which was revoked. A revised MRL was derived based on the existing CXL, which is not fully supported by data but for which no risk to consumers is identified.

^IExisting EU MRL is based on a CXL which was revoked. A revised MRL was derived based on a EU GAP, which is not fully supported by data but for which no risk to consumers is identified.

^mExisting EU MRL is based on a CXL which was revoked. A revised MRL was derived based on a EU GAP and on the existing CXL, which are not fully supported by data but for which no risk to consumers is identified.

*Indicates that the MRL is set at the limit of quantification.

[†]According to the data evaluated during the peer review for the renewal, ethephon can be enforced at LOQ of 0.01 mg/kg in plant matrices and at LOQs of 0.01 and 0.005 mg/kg in milk, eggs, meat, fat and liver.

ABBREVIATIONS

- CAC Codex Alimentarius Commission
- CF conversion factor
- ChE cholinesterase
- CXL codex maximum residue limit
- DAR draft assessment report
- EMS evaluating Member State
- GAP Good Agricultural Practice
- HR highest residue
- ISO International Organisation for Standardization
- IT import tolerance
- JMPR Joint FAO/WHO Meeting on Pesticide Residues
- LOD limit of determination
- LOQ limit of quantification
- MRL maximum residue level
- MS Member States
- NEU Northern Europe
- PeF peeling factor
- PRIMo (EFSA) Pesticide Residues Intake Model
- PROFile (EFSA) Pesticide Residues Overview File
- RMS rapporteur Member State
- SANCO Directorate-General for Health and Consumers
- SEU Southern European

SL soluble concentrate

STMR supervised trials median residue

CONFLICT OF INTEREST

If you wish to access the declaration of interests of any expert contributing to an EFSA scientific assessment, please contact interestmanagement@efsa.europa.eu.

REQUESTOR

European Commission

QUESTION NUMBER

EFSA-Q-2023-00714

COPYRIGHT FOR NON-EFSA CONTENT

EFSA may include images or other content for which it does not hold copyright. In such cases, EFSA indicates the copyright holder and users should seek permission to reproduce the content from the original source.

REFERENCES

- CAC (Codex Alimentarius Commission). (2016). Report on the joint FAO/WHO food standards programme. Codex Alimentarius Commission, thirty-ninth session, Rome, 27 June–1 July 2016.
- EFSA (European Food Safety Authority). (2009). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for ethephon according to Article 12 of Regulation (EC) No 396/2005. *EFSA Journal*, 7(10), 1347. https://doi.org/10.2903/j.efsa.2009.1347
- EFSA (European Food Safety Authority). (2014). Reasoned opinion on the modification of the existing MRLs for ethephon in table olive and table grape. EFSA Journal, 12(5), 22. https://doi.org/10.2903/j.efsa.2014.3698
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., De Lentdecker, C., Erdos, Z., Ferreira, L., Greco, L., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Medina, P., Miron, I., Molnar, T., Nougadere, A., Pedersen, R., Reich, H., Sacchi, A., Santos, M., ... Villamar-Bouza, L. (2017). Reasoned opinion on the modification of the existing maximum residue level for ethephon in kaki/Japanese persimmons. *EFSA Journal*, *15*(3), 4747. https:// doi.org/10.2903/j.efsa.2017.4747
- EFSA (European Food Safety Authority), Brancato, A., Brocca, D., Ferreira, L., Greco, L., Jarrah, S., Leuschner, R., Medina, P., Miron, I., Nougadere, A., Pedersen, R., Reich, H., Santos, M., Stanek, A., Tarazona, J., Theobald, A., & Villamar-Bouza, L. (2018). Guidance on use of EFSA pesticide residue intake model (EFSA PRIMo revision 3). *EFSA Journal*, *16*(1), 5147. https://doi.org/10.2903/j.efsa.2018.5147
- EFSA (European Food Safety Authority), Anastassiadou, M., Brancato, A., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J. O., Miron, I., Pedersen, R., Raczyk, M., Reich, H., Ruocco, S., Sacchi, A., Santos, M., Stanek, A., Tarazona, J., ... Verani, A. (2019). Pesticide Residue Intake Model- EFSA PRIMo revision 3.1 (update of EFSA PRIMo revision 3). EFSA supporting publication, 16(3), EN-1605. https://doi.org/10.2903/ sp.efsa.2019.EN-1605
- EFSA (European Food Safety Authority), Alvarez, F., Arena, M., Auteri, D., Binaglia, M., Castoldi, A. F., Chiusolo, A., Colagiorgi, A., Colas, M., Crivellente, F., De Lentdecker, C., De Magistris, I., Egsmose, M., Fait, G., Ferilli, F., Gouliarmou, V., Nogareda, L. H., Ippolito, A., Istace, F., ... Villamar-Bouza, L. (2023). Conclusion on peer review of the pesticide risk assessment of the active substance ethephon. *EFSA Journal*, *21*(1), 7742. https://doi.org/10.2903/j. efsa.2023.7742
- EFSA (European Food Safety Authority). (2024). Member state consultation report on the target review of the existing maximum residue levels (MRLs) for ethephon, prepared by EFSA in the framework of Article 43 of Regulation (EC) No 396/2005, 21 March 2024. www.efsa.europa.eu
- European Commission. (2023). *Final Renewal report for the active substance ethephon*. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 13 October 2023 in view of the renewal if the approval of ethephon in accordance with Regulation (EC) No 1107/2009. PLAN/2023/1087 RR-Rev, 13 October 2023.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (1994). *Ethephon*. In: Pesticide residues in food – 1994. Report of the joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO expert group on pesticide residues. FAO plant production and protection paper 127.
- FAO and WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2015). *Ethephon*. In: Pesticide residues in food – 2015. Report of the joint meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO expert group on pesticide residues. FAO plant production and protection paper 223.
- France. (2024). Evaluation report prepared under Article 43 of Regulation (EC) No 396/2005. Additional data to be considered for the targeted review of the MRLs for ethephon, 5 February 2024. www.efsa.europa.eu
- Italy. (2024). Evaluation report prepared under Article 43 of Regulation (EC) No 396/2005. Additional data to be considered for the targeted review of the MRLs for ethephon, 31 January 2024. www.efsa.europa.eu
- Netherlands. (2017). Renewal Assessment Report (RAR) on the active substance ethephon prepared by the rapporteur Member State the Netherlands, in the framework of Commission Implementing Regulation (EU) No 844/2012, July 2017, revised in December 2018. www.efsa.europa.eu
- Netherlands. (2024). Evaluation report prepared under Article 43 of Regulation (EC) No 396/2005. Additional data to be considered for the targeted review of the MRLs for ethephon, 6 February 2024. www.efsa.europa.eu
- Spain. (2024). Evaluation report prepared under Article 43 of Regulation (EC) No 396/2005. Additional data to be considered for the targeted review of the MRLs for ethephon, 5 February 2024. www.efsa.europa.eu

How to cite this article: EFSA (European Food Safety Authority), (2024). Targeted review of the maximum residue levels (MRLs) for ethephon. *EFSA Journal*, 22(4), e8757. <u>https://doi.org/10.2903/j.efsa.2024.8757</u>

APPENDIX A

Summary of the most critical authorised uses reported during the written procedure and considered to derive revised and fall-back MRLs

A.1 | Authorised outdoor uses in northern EU

				Prepar	ration	Application				Application	rate per treat	ment		
Crop and/or situation	MS or country	F, G or I ^a	Pests or group of pests controlled	Type ^b	Conc. a.s.	Method kind	Range of growth stages and season ^c	Number min-max	Interval between application (min)	a.s./hL min–max	Water L/ha min-max	Rate and unit	PHI (days) ^d	Remarks
Apples	DE, IE	F	Fruit quality improvement, standardisation of fruit ripeness	SL	480 g/L	Foliar treatment – broadcast spraying	78–85	1	-	-	-	360 g a.s./ha	10	008664-00/01-004, use from September to October. Fall-back GAP
Rye	AT, DE, CZ, NL, IE	F	Stabilisation of culm; growth regulator	SL	660 g/L	Foliar treatment – broadcast spraying	31–49	1	-	-	-	726 g a.s./ha	n.a.	-
Wheat	AT, DE, IE	F	Stabilisation of culm	SL	480 g/L	Foliar treatment – broadcast spraying	41–51	1	-	-	-	480 g a.s./ha	n.a.	Most critical GAP considered to derive a revised MRL.

Abbreviations: MS, Member State; n.a., not applicable; SL, soluble concentrate.

^aOutdoor or field use (F), greenhouse application (G) or indoor application (I).

^bCropLife International Technical Monograph no 2, 7th Edition. Revised March 2017. Catalogue of pesticide formulation types and international coding system.

^cGrowth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application. ^dPHI – minimum preharvest interval.

A.2 | Authorised outdoor uses in southern EU

				Prepar	ation	Application				Applicatio	n rate per trea	atment		
Crop and/or situation	MS or country	F, G or l ^a	Pests or Group of pests controlled	Type ^b	Conc. a.s.	Method kind	Range of growth stages and season ^c	Number min-max	Interval between application (min)	a.s./hL min–max	Water L/ha min-max	Rate and unit	PHI (days) ^d	Remarks
Apples	FR	F	Growth regulation (thinning and coloration)	SL	120 g/L	Foliar treatment – broadcast spraying	57–89	3	40	-	-	360 g a.s./ha	14	GAP authorised for the PPP PRM 12RP on dessert apples only
Rye	IT, ES	F	Stabilisation of culm; Growth regulator	SL	660 g/L	Foliar treatment – broadcast spraying	31–49	1	-	-	-	726 g a.s./ha	n.a.	Mechanical foliar spray to avoid cereal lodging. Most critical GAP considered to derive a revised MRL.

(Continued)

				Prepar	ation	Application			Application rate per treatment					
Crop and/or situation	MS or country	F, G or l ^a	Pests or Group of pests controlled	Type ^b	Conc. a.s.	Method kind	Range of growth stages and season ^c	Number min-max	Interval between application (min)	a.s./hL min–max	Water L/ha min-max	Rate and unit	PHI (days) ^d	Remarks
Wheat	EL	F	-	SL	480g/L	Foliar treatment – broadcast spraying	32–39	1	-	-	-	720 g a.s./ ha	n.a.	

Abbreviations: MS, Member State; n.a., not applicable; SL, soluble concentrate.

^aOutdoor or field use (F), greenhouse application (G) or indoor application (I).

^bCropLife International Technical Monograph no 2, 7th Edition. Revised March 2017. Catalogue of pesticide formulation types and international coding system.

^cGrowth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.

^dPHI – minimum preharvest interval.

APPENDIX B

Summary of residues data from the supervised residue trials considered to derive revised and fall-back MRLs

Commodity	Region ^a	Residue levels observed in the supervised residue trials (mg/kg)	Comments/source	Calculated MRL (mg/kg)	HR ^b (mg/kg)	STMR ^c (mg/kg)
Residue definition for	or enforcement and r	isk assessment 1: ethephon				
Apples	NEU	0.06; 0.08; 0.08; 0.13; 0.14 ^d ; 0.14; 0.15 ^d ; 0.20 ^d ; 0.25 ^d ; 0.26; 0.27; 0.29 ^d ; 0.29 ^d ; 0.35 ^d ; 0.40; 0.40	Residue trials on apples compliant with GAP or performed with three applications instead of 1 considered acceptable (France, 2024).	0.7	0.40	0.23
	SEU	$2 \times < 0.05^{d}$; $2 \times < 0.05$; 0.05 ; 0.05^{d} ; 0.07 ; 0.08 ; 0.09^{d} ; 0.10 ; 0.12^{d} ; 0.13 ; 0.14^{d} ; 0.15^{d} ; 0.18^{d} ; 0.31^{d} ; 0.40	Residue trials on apples compliant with GAP or performed with 1 application instead of 3 considered acceptable (France, 2024; Spain, 2024).	0.6	0.40	0.08
Residue definition for	or enforcement and r	isk assessment 2: Sum of ethephon free and co	njugates, expressed as ethephon ^e			
Rye	NEU	BBCH 39: 0.077; 0.084; 2×0.11 BBCH 41: 0.087; 0.36 BBCH 49: 0.31 BBCH 52: 0.095	Residue trials on rye compliant with GAP or with BBCH of 39, 41 or 52 at last application (instead of 49) considered acceptable since, according to the results, this deviation is not expected to have a significant impact on the final residue level (Netherlands, 2024).	0.6	0.36	0.10
	SEU	BBCH 39: < 0.010; 0.094; 0.15 BBCH 41: 0.10; 0.12; 0.22; 0.52 BBCH 43: 0.158	Residue trials on rye with BBCH of 39–43 at last application (instead of 49) considered acceptable since, according to the results, this deviation is not expected to have a significant impact on the final residue level (Italy, 2024; Spain, 2024).	0.8	0.52	0.14
Wheat	NEU	0.052; 2×0.059; 0.083; 0.11; 0.14; 0.23; 0.31	Residue trials on wheat compliant with GAP (EFSA, 2023).	0.5	0.31	0.097
	SEU	Unscaled values: 0.011; 0.025; 0.03; 0.035; 0.043; 0.049; 0.053; 0.055; 0.056; 0.057; 0.072; 0.099; 3 × 0.10; 0.13 Scaled values: 0.017; 0.038; 0.046; 0.05; 0.065; 0.074; 0.078; 0.079; 0.08; 0.084; 0.096; 0.133; 0.138; 0.15; 0.15; 0.195	Results from underdosed residue trials on wheat submitted during the peer review (Netherlands, 2017) and under this assessment (Italy, 2024; Spain, 2024) were scaled up applying the proportionality approach (scaling factors from 1.3 to 1.5).	0.3	0.195	0.017

Note: Values in bold were selected to derive a revised MRL for wheat and rye and a fall-back MRL for apples.

Abbreviations: GAP, Good Agricultural Practice; MRL, maximum residue level.

^aNEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe, EU: indoor EU trials, Country code: if non-EU trials.

^bHighest residue. The highest residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

^cSupervised trials median residue. The median residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

^dResidue levels correspond to residue trials performed with three applications instead of 1 (NEU data set) or with 1 application instead of 3 (SEU data set). This is considered acceptable because results from these trials were in the same range compared to GAP compliant trials showing that the last application has the most impact on the final residue.

eAccording to the additional information reported in the evaluation reports submitted during the written procedure, residues were analysed by using an analytical method covering the conjugates.

APPENDIX C

Input values for the exposure calculations

	Chronic risk a	assessment	Acute risk assessment			
Commodity	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment		
Residue definition for risk assess	ment 1: Ethepho	n				
Hazelnuts/cobnuts	0.05	STMR (EFSA, 2009)	0.1	HR (EFSA, 2009)		
Walnuts	0.04	STMR (EFSA, 2009)	0.27	HR (EFSA, 2009)		
Apples	0.15	STMR (NEU and SEU; FAO and WHO, 2015)	0.49	HR (NEU and SEU; FAO and WHO, 2015)		
	0.23	STMR Fall-back (NEU, France, 2024)	0.4	HR Fall-back (NEU, France, 2024		
Pears	0.02	STMR (EFSA, 2009)	0.02	HR (EFSA, 2009)		
Cherries (sweet)	0.65	STMR (FAO and WHO, 2015)	2.7	HR (FAO and WHO, 2015)		
Table grapes	0.22	STMR (EFSA, 2014)	0.56	HR (EFSA, 2014)		
Wine grapes	0.31	STMR (EFSA, 2009)	1.5	HR (EFSA, 2009)		
Blueberries	-	n.a.	-	n.a.		
Figs	0.73	STMR (FAO and WHO, 2015)	0.75	HR (FAO and WHO, 2015)		
Table olives	1.9	STMR (EFSA, 2014)	4.3	HR (EFSA, 2014)		
Kaki/Japanese persimmons	0.09	STMR (EFSA, 2017)	0.12	HR (EFSA, 2017)		
Pineapples	0.11	STMR (FAO and WHO, 2015) × PeF (EFSA, 2009)	0.18	HR (FAO and WHO, 2015) × PeF (EFSA, 2009)		
Tomatoes	0.52	STMR (FAO and WHO, 2015)	0.79	HR (FAO and WHO, 2015)		
Olives for oil production	2.6	STMR (EFSA, 2009)	2.6	STMR (EFSA, 2009)		
Meat and fat from swine, bovine, sheep, goat, equine and other farmed terrestrial animals	0.05*	STMR (EFSA, 2009)	0.05*	HR (EFSA, 2009)		
Liver and edible offal from swine, bovine, sheep, goat, equine and other farmed terrestrial animals	0.13	STMR (FAO and WHO, 2015)	0.29	HR (FAO and WHO, 2015)		
Kidney from swine, bovine, sheep, goat, equine and other farmed terrestrial animals	0.06	STMR (FAO and WHO, 2015)	0.07	HR (FAO and WHO, 2015)		
Meat and fat from poultry	0.05*	STMR (EFSA, 2009)	0.05*	HR (EFSA, 2009)		
Liver, kidney and edible offal from poultry	0.04	STMR (FAO and WHO, 2015)	0.07	HR (FAO and WHO, 2015)		
Milks	0.05*	STMR (EFSA, 2009)	0.05*	STMR (EFSA, 2009)		
Eggs	0.05*	STMR (EFSA, 2009)	0.05*	STMR (EFSA, 2009)		
Residue definition for risk assess	ment 2: sum of e	thephon free and conjugates, expressed	as ethephon			
Cotton seeds	0.654	STMR (FAO and WHO, 2015) \times CF (1.2)	0.654	STMR (FAO and WHO, 2015) ×CF (1.2)		
Barley grain	0.13	STMR (FAO and WHO, 2015)	0.13	STMR (FAO and WHO, 2015)		
Rye grain	0.14	STMR (Italy, 2024; Spain, 2024)	0.14	STMR (Italy, 2024; Spain, 2024)		
Wheat grain	0.097	STMR (EFSA, 2023)	0.097	STMR (EFSA, 2023)		

Note: Commodities for which the current EU MRL is based on a revoked CXL and need to be revised are reported in bold.

Abbreviations: HR, highest residue; STMR, supervised trials median residue.

*Indicates that the input value corresponds to the limit of quantification.

APPENDIX D

Pesticide residue intake model (PRIMo 3.1)

D.1 | Scenario CX 1 (revised list of MRLs without mitigation measures)

efsa European Food Safety Authority				Ethephon					Input values				
	·	fsam		LOQs (mg/kg) range	from:	0.05 logical reference values	to:	0.10	Details - cl assess		Supplementary re chronic risk asses		
E	uropean Food	Safety Authority		ADI (mg/kg bw/day):		0.02	ARfD (mg/kg bw):	0.05	Details - a	cute risk	Details - acute	risk	
-	aropean rood	vision 3.1; 2021/01/06		Source of ADI: Year of evaluation:		EC 2023	Source of ARfD: Year of evaluation:	EC 2023	assessmen		assessment/ac		
mer	nts:	Scenario including the revised list of MRLs without	ut risk mitigation measures										
					Refin	ed calculation mode							
					Chronic risk ass	essment: JMPR methodology	(IEDI/TMDI)						
				No of diets exceeding	the ADI :	-	-	_					e resulting
	Calculated exposure	e	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity /		2nd contributor to MS diet	Commodity /		3rd contributor to MS diet	Commodity /	MRLs set at the LOQ (in % of ADI)	under as
	(% of ADI) 32%	MS Diet NL toddler	day) 6.38	(in % of ADI) 15%	group of commodities Milk: Cattle		(in % of ADI) 8%	group of commodities		(in % of ADI) 3%	group of commodities Tomatoes		3
	32% 24% 23% 23%	NL toddier DE child GEMS/Food G08 GEMS/Food G06	6.38 4.78 4.55 4.51	15% 9% 11% 9%	Milk: Cattle Apples Olives for oil production Tomatoes		8% 5% 3% 5%	Apples Milk: Cattle Tomatoes Olives for oil production		3% 3% 2% 4%	Tomatoes Tomatoes Wheat Wheat		20
	20% 17% 16%	ES child NL child GEMS/Food G07	4.07 3.43 3.29	10% 6% 4%	Olives for all production Milk: Cattle Olives for all production		3% 4% 3%	Milk: Cattle Apples Tomatoes		3% 2% 2%	Tomatoes Wheat Wine grapes		1
	16% 16%	RO general GEMS/Food G10 FR child 3 15 yr	3.15 3.12 3.10	5% 5% 6%	Olives for all production Olives for oil production Milk: Cattle		3% 4% 2%	Mik: Cattle Tomatoes Wheat		2% 3% 2% 2%	Wine grapes Wine grapes Wheat Tomatoes		1
	15% 15%	FR toddler 2 3 yr GEMS/Food G15	2.96 2.95	7% 3%	Milk: Cattle Tomatoes		2% 2%	Apples Olives for oil production		1% 2%	Wheat Wheat		1
	15% 14% 14%	GEMS/Food G11 UK infant DK child	2.94 2.90 2.79	3% 10% 4%	Olives for all production Milk: Cattle Rye		2% 1% 3%	Tomatoes Wheat Milk: Cattle		2% 1% 2%	Milk: Cattle Apples Wheat		1 1 1
	14% 13% 12%	PT general ES adult DE women 14-50 yr	2.78 2.57 2.48	4% 5% 3%	Wine grapes Olives for oil production Milk: Cattle		3% 2% 2%	Olives for oil production Tomatoes Apples		2% 1% 2%	Tomatoes Milk: Cattle Tomatoes		1
	12% 11% 10%	DE general UK toddler SE general	2.41 2.22 1.92	3% 5% 3%	Milk: Cattle Milk: Cattle Milk: Cattle		2% 2% 2%	Apples Wheat Tomatoes		2% 2% 2%	Tomatoes Tomatoes Wheat		1
	9% 8% 8%	FR adult IT toddler IE adult	1.88 1.65 1.64	4% 4% 2%	Wine grapes Tomatoes Wine grapes		1% 3% 1%	Tomatoes Wheat Wheat		1% 0.7% 1%	Milk: Cattle Apples Milk: Cattle		8
	8% 7% 7%	NL general DK adult FR infant	1.56 1.33 1.33	2% 1% 4%	Milk: Cattle Wine grapes Milk: Cattle		1% 1% 1%	Apples Tomatoes Apples		1% 1% 0.4%	Tomatoes Milk: Cattle Wheat		7777
	6% 6%	IT adult LT adult UK vegetarian	1.25 1.19 1.10	3% 2% 2%	Tomatoes Tomatoes Tomatoes		2% 1% 1%	Wheat Apples Wine grapes		0.6% 1.0% 1.0%	Apples Milk: Cattle Wheat		6
	5% 5% 4%	UK adult PL general FL 3 yr	1.04 0.90 0.77	2% 2% 1%	Wine grapes Tomatoes Tomatoes		1% 2% 0.7%	Tomatoes Apples Apples		0.8% 0.4% 0.6%	Wheat Table grapes Wheat		
	3% 3% 2%	FI adult FI 6 yr IE child	0.65 0.60 0.42	1% 1% 0.9%	Tomatoes Tomatoes Milk: Cattle		0.5% 0.5% 0.6%	Rye Wheat Wheat		0.5% 0.4% 0.2%	Wine grapes Apples Apples		0.014

The acute risk assessment is based on the ARID. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union. The calculation is based on the large portion of the most critical consumer group.

		Sho	bw result	s for all crop	5		
Results for childre	'n			Results for adults			
No. of commodities	for which ARfD/ADI is exceeded (IESTI):		1	No. of commodities	for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
		MRL / input				MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exp
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/l
106%	Apples	0.8 / 0.49	53	71%	Wine grapes	2 / 1.5	
92%	Tomatoes	2/0.79	46	54%	Cherries (sweet)	5/2.7	1
82%	Table grapes	1/0.56	41	38%	Table grapes	1/0.56	Ĩ
66%	Cherries (sweet)	5/2.7	33	28%	Apples	0.8 / 0.49	
36%	Pineapples	1.5 / 0.18	18	25%	Tomatoes	2 / 0.79	
29%	Table olives	7 / 4.3	14	17%	Figs	3 / 0.75	8
28%	Wine grapes	2/1.5	14	11%	Pineapples	1.5 / 0.18	5
18%	Figs	3 / 0.75	8.8	9%	Table olives	7 / 4.3	4
12%	Milk: Cattle	0.05 / 0.05	6.2	5%	Kaki/Japanese persimmons	0.3 / 0.12	2
11%	Kaki/Japanese persimmons	0.3 / 0.12	5.6	4%	Olives for oil production	10 / 2.6	2
7%	Olives for oil production	10 / 2.6	3.3	4%	Milk: Cattle	0.05 / 0.05	1
6%	Pears	0.05 / 0.02	2.8	2%	Bovine: Liver	0.4 / 0.29	1
5%	Bovine: Liver	0.4 / 0.29	2.3	2%	Bovine: Edible offals (other than liver and kidney)	0.4 / 0.29	0.
4%	Bovine: Edible offals (other than liver and kidney)	0.4 / 0.29	2.1	2%	Milk: Goat	0.05 / 0.05	0.
4%							
3% Expand/collapse list	ommodities exceeding the ARfD/ADI in children and a	0.5 / 0.1 dult diets	1.4	2%	Wheat	0.5 / 0.1	0.
3% Expand/collapse list Total number of co (IESTI calculation)	ommodities exceeding the ARfD/ADI in children and ac				Wheat	0.5 / 0.1	0.
3% Expand/collapse list Total number of c (IESTI calculation) Results for childre	ommodities exceeding the ARfD/ADI in children and ac			Results for adults	Wheat	0.5 / 0.1	
3% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co	ommodities exceeding the ARfD/ADI in children and ac		1	Results for adults No of processed co		0.5 / 0.1	
3% Expand/collapse list Total number of co (IESTI calculation) Results for childre No of processed co IESTI	ommodities exceeding the ARfD/ADI in children and ac		1	Results for adults No of processed co IESTI		0.5 / 0.1	
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of	ommodities exceeding the ARfD/ADI in children and ac	dult diets	1	Results for adults No of processed co IESTI Highest % of			
3% Expand/collapse list Total number of co (IESTI calculation) Results for childre No of processed co IESTI	ommodities exceeding the ARfD/ADI in children and ac	dult diets MRL / input		Results for adults No of processed co IESTI		MRL / input	Expr
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of	mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI):	dult diets MRL / input for RA	1 Exposure	Results for adults No of processed co IESTI Highest % of	nmodities for which ARID/ADI is exceeded (IESTI):	MRL / input for RA	Expr (µg/k
3% Expand/collapse list Total number of co (IESTI calculation) Results for children No of processed co IESTI Highest % of ARID/ADI	mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities	MRL / input for RA (mg/kg)	1 Exposure (µg/kg bw)	Results for adults No of processed co IESTI Highest % of ARtD/ADI	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities	MRL / input for RA (mg/kg)	Exp (µg/k
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 59%	mmodities exceeding the ARfD/ADI in children and ac mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Pineapples / canned	MRL / input for RA (mg/kg) 1.5 / 0.72	1 (µg/kg bw) 30	Results for adults No of processed co IESTI Highest % of ARTD/ADI 28%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wine grapes / wine	MRL / input for RA (mg/kg) 2 / 1.5	Exp (µg/k
3% Expend/collapse list Total number of ce (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 59% 27%	n mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Pineapples / canned Wine grapes / juice Tomatos / juice	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31	1 (µg/kg bw) 30 14	Results for adults No of processed co IESTI Highest % of ARTD/ADI 28%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wine grapes / wine Pineapples / canned Table grapes / raisins	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72	Ехрі (µg/k 1 9 6
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 59% 27% 20% 16%	mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Processed commodities Vine grapes / juice Tomatoes / juice Apples / juice	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 2 / 0.52	1 (µg/kg bw) 30 14 9.9	Results for adults No of processed co IESTI Highest % of ARID/ADI 28% 19% 13%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wine grapes / wine Pineapples / canned Table grapes / juice	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.49	Ехри (µg/k 1 9 6 6
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 59% 20% 16% 16% 12%	mmodities exceeding the ARfD/ADI in children and ac mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Pineapples / canned Wine grapes / juice Tomatos / juice Apples / juice Pineapples / juice	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 2 / 0.52 0.8 / 0.15 1.5 / 0.42	1 Exposure (µg/kg bw) 30 14 9.9 8.1 6.1	Results for adults No of processed co IESTI Highest % of ARID/ADI 28% 19% 13% 13% 13%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wine grapes / wine Pineapples / canned Table grapes / raisins Wine grapes / juice Apples / juice	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.49 2 / 0.31 0.8 / 0.15	Ехри (µg/k 9 6 6 5
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 59% 27% 20% 16%	mmodities exceeding the ARfD/ADI in children and ac nmmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Processed commodities Pineapples / canned Wine grapes / juice Tomatoes / juice Pineapples / juice Pineapples / juice Tomatoes / juice Pineapples / juice	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 2 / 0.52 0.8 / 0.15	1 (µg/kg bw) 30 14 9.9 8.1	Results for adults No of processed co IESTI Highest % of ARID/ADI 28% 19% 13%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wine grapes / wine Pineapples / canned Table grapes / juice Apples / juice Apples / juice Tomators / sauco/puree	MRL / input for RA (mg/kg) 2 / 1.5 / 0.72 2 / 5.49 2 / 0.31	Exp/ (µg/k 1 9 6 5 4
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 59% 20% 16% 12% 10% 4%	mmodities exceeding the ARfD/ADI in children and ac mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Princapples / canned Wine grapes / juice Tomatoes / juice Tomatoes / juice Tomatoes / juice Tomatoes / sauce/puree Figs / jam	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 2 / 0.52 0.8 / 0.15 1.5 / 0.42 2 / 0.52 3 / 0.73	1 Exposure (μg/kg bw) 30 14 9.9 8.1 6.1 5.0 2.2	Results for adults No of processed co IESTI Highest % of ARID/ADI 28% 13% 13% 13% 13% 13% 7%	Processed commodities Processed commodities Wine grapes / wine Pineapples / canned Table grapes / raisins Wine grapes / juice Apples / juice Tomatoes / sauce/puree Pineapples / juice	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.49 2 / 0.31 0.8 / 0.15 2 / 0.52 1.5 / 0.42	Ехро (µg/k 1 9 6 5 4 3
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 59% 20% 20% 16% 16% 16% 16% 4%	processed commodities	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 2 / 0.52 0.8 / 0.15 1.5 / 0.42 2 / 0.52 3 / 0.73 7 / 1.9	1 Exposure (µg/kg bw) 30 14 9.9 8.1 5.0 2.2 2.1	Results for adults No of processed co IESTI Highest % of ARD/ADI 28% 13% 13% 13% 13% 10% 9% 7% 5%	modities for which ARID/ADI is exceeded (IESTI): Processed commodities Wine grapes / wine Pineapples / canned Table grapes / rakins Wine grapes / juice Apples / juice Tomatoes / suce/puree Pineapples / juice Table grapes / canned	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.4 2 / 0.31 0.8 / 0.15 2 / 0.52 1.5 / 0.42 7 / 1.9	Ехро (µg/k 1 6 6 5 4 3 2
3% Expand/collapse list Total number of c. (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 59% 20% 20% 10% 12% 10% 4% 4% 4% 2%	n mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Princapples / canned Wine grapples / luice Tomatoes / juice Tomatoes / juice Tomatoes / sauce/puree Figs / jam Table olives / canned What / milling (flour)	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.52 0.8 / 0.15 1.5 / 0.42 2 / 0.52 3 / 0.73 7 / 1.9 0.5 / 0.1	1 Exposure (µg/kg bw) 30 14 9.9 8.1 6.1 5.0 2.2 2.1 1.2	Results for adults No of processed co IESTI Highest % of ARID/ADI 28% 19% 13% 10% 9% 7% 5% 2%	Processed commodities Processed commodities Wine grapes / wine Pineapples / canned Table grapes / raisins Wine grapes / raisins Wine grapes / raisins Wine grapes / juice Apples / juice Tomatoes / sauce/puree Pineapples / juice Table olives / canned Barley / beer	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.49 2 / 0.31 0.8 / 0.15 2 / 0.52 1.5 / 0.42 7 / 1.9 1.5 / 0.03	Expr (µg/k 1 9 6 5 4 3 2 0.
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 59% 20% 16% 20% 16% 12% 10% 4% 4% 4% 4% 1%	n mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Pineaples / canned Wine grapes / juice Tomatose / juice Tomatose / juice Tomatose / juice Tomatose / sauce/puree Figs / jam Table dives / canned Wheat / milling (flour) Pears / juice	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 2 / 0.52 0.8 / 0.15 1.5 / 0.42 2 / 0.52 3 / 0.73 7 / 1.9 0.5 / 0.1	1 Exposure (µg/kg bw) 30 14 9.9 8.1 6.1 5.0 2.2 2.1 1.2 0.65	Results for adults No of processed co IESTI Highest % of ARD/ADI 28% 19% 13% 13% 13% 5% 2% 9% 5% 2% 0.9%	Processed commodities Processed commodities Wine grapes / wine Pineapples / canned Table grapes / raisins Wine grapes / luice Tomatoes / sauce/puree Pineapples / juice Table ofless / canned Barley / beer Wheat / bread/pizza	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.49 2 / 0.31 0.8 / 0.15 2 / 0.52 1.5 / 0.42 7 / 1.9 1.5 / 0.42 7 / 1.9	Expo (µg/k 1 9 6 6 5 4 3 2 0.0
3% Expand/collapse list Total number of c. (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARIDIADI 59% 20% 16% 12% 16% 4% 4% 4% 4% 2% 1%	mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI):	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 2 / 0.52 0.8 / 0.15 1.5 / 0.42 2 / 0.52 3 / 0.73 7 / 19 0.5 / 0.1 0.65 / 0.1	1 Exposure (μg/kg bw) 30 14 9.9 8.1 6.1 5.0 2.2 2.1 1.2 0.65 0.54	Results for adults No of processed co IESTI Highest % of ARID/ADI 28% 13% 13% 13% 5% 2% 0.9% 0.9%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wine grapes / wine Pineapples / canned Table grapes / juice Apples / juice Pineapples / juice Pineapples / juice Pineapples / juice Pineapples / juice Pineapples / canned Barley / beer Wheat / bread/pizza Wheat / basta	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.49 2 / 0.31 0.8 / 0.15 2 / 0.52 1.5 / 0.42 7 / 1.9 1.5 / 0.03 0.5 / 0.1	Expt (µg/k) 9 6 5 5 4 4 3 2 2 0. 0. 0. 0. 0. 0. 0.
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 59% 20% 16% 16% 16% 12% 10% 4% 4% 4% 4% 1%	n mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Pro	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 1.5 / 0.72 2 / 0.32 0.8 / 0.15 1.5 / 0.42 2 / 0.52 3 / 0.73 7 / 19 0.5 / 0.1 0.05 / 0.1 0.8 / 0.14	1 Exposure (µg/kg bw) 30 14 9.9 8.1 6.1 5.0 2.2 2.1 1.2 0.65 0.54 0.51	Results for adults No of processed co IESTI Highest % of ARD/ADI 28% 19% 13% 13% 13% 5% 2% 9% 5% 2% 0.9%	Processed commodities Processed commodities Wine grapes / wine Pineapples / canned Table grapes / raisins Wine grapes / luice Tomatoes / sauce/puree Pineapples / juice Table ofless / canned Barley / beer Wheat / bread/pizza	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.49 2 / 0.31 0.8 / 0.15 2 / 0.52 1.5 / 0.42 7 / 1.9 1.5 / 0.42 7 / 1.9	Expt (µg/k) 9 6 5 5 4 4 3 2 2 0. 0. 0. 0. 0. 0. 0.
3% Expand/collapse list Total number of c. (IESTI calculation) Results for childre No of processed co IESTI Highest % of AR(D/AD) 59% 20% 16% 12% 16% 4% 4% 4% 4% 2% 1% 1% 1%	mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Proc	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 2 / 0.52 0.8 / 0.15 1.5 / 0.42 2 / 0.52 3 / 0.73 7 / 1.9 0.5 / 0.1 0.5 / 0.1 0.5 / 0.1 0.8 / 0.14	1 Exposure (µg/kg bw) 30 14 9.9 8.1 6.1 5.0 2.2 1.1 2.2.1 1.2 0.65 0.54 0.54 0.54	Results for adults No of processed co IESTI Highest % of ARID/ADI 28% 13% 13% 13% 5% 2% 0.9% 0.9%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wine grapes / wine Pineapples / canned Table grapes / juice Apples / juice Pineapples / juice Pineapples / juice Pineapples / juice Pineapples / juice Pineapples / canned Barley / beer Wheat / bread/pizza Wheat / basta	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.49 2 / 0.31 0.8 / 0.15 2 / 0.52 1.5 / 0.42 7 / 1.9 1.5 / 0.03 0.5 / 0.1	Expc (µg/k 1 9 6 6 5 4 3 2 2 0. 0. 0.
3% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 59% 20% 16% 16% 16% 12% 10% 4% 4% 4% 4% 1%	n mmodities exceeding the ARfD/ADI in children and ac n mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Pro	MRL / input for RA (mg/kg) 1.5 / 0.72 2 / 0.31 1.5 / 0.72 2 / 0.32 0.8 / 0.15 1.5 / 0.42 2 / 0.52 3 / 0.73 7 / 19 0.5 / 0.1 0.05 / 0.1 0.8 / 0.14	1 Exposure (µg/kg bw) 30 14 9.9 8.1 6.1 5.0 2.2 2.1 1.2 0.65 0.54 0.51	Results for adults No of processed co IESTI Highest % of ARID/ADI 28% 13% 13% 13% 5% 2% 0.9% 0.9%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Wine grapes / wine Pineapples / canned Table grapes / juice Apples / juice Pineapples / juice Pineapples / juice Pineapples / juice Pineapples / juice Pineapples / canned Barley / beer Wheat / bread/pizza Wheat / basta	MRL / input for RA (mg/kg) 2 / 1.5 1.5 / 0.72 2 / 5.49 2 / 0.31 0.8 / 0.15 2 / 0.52 1.5 / 0.42 7 / 1.9 1.5 / 0.03 0.5 / 0.1	0.0 Expc (µg/kı 9 6.6 6.5 5 4.4 3.2 .0.0 0.0 0.0 0.0 0.0

Conclusion: The estimated short term intake (IESTI) exceeded the toxicological reference value for 1 commodities.

For processed commodities, no exceedance of the ARfD/ADI was identified.

D.2 | Scenario CX 2 (revised list of MRLs with mitigation measures)

	K***				Ethephon				Input	values		
+	efsa uropean Food Safety Authority		LOQs (mg/kg) range t		0.05	to:	0.10	Details - cł	ronic risk	Supplementary re	sults -	
	- el Sd			Toxico	logical reference values	T		assess	ment	chronic risk asses	sment	
Fi	propean Food Safety Authority		ADI (mg/kg bw/day):		0.02	ARfD (mg/kg bw):	0.05	Details - a		Details - acute	risk	
	EFSA PRIMo revision 3.1; 2021/01/06		Source of ADI: Year of evaluation:		EC 2023	Source of ARfD: Year of evaluation:	EC 2023	assessmen	t/children	assessment/ac	ults	
nt	ts: Scenario including the revised list of MRLs with risk mitigation m	neasures										
				Dofin	ed calculation mode							
					essment: JMPR methodology							
			No of diets exceeding		essment: JMPR methodology						Exposure	
i			No of diets exceeding	the ADI :		-	1				MRLs set at	
	Calculated exposure	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity /		2nd contributor to MS diet	Commodity /		3rd contributor to MS diet	Commodity /	the LOQ (in % of ADI	
	(% of ADI) MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	36% NL toddler 29% DE child	7.24	15% 14%	Milk: Cattle Apples		12% 5%	Apples Milk: Cattle		3% 3%	Tomatoes Tomatoes		
	23% GEMS/Food G08	4.65	1476	Olives for oil production		3%	Tomatoes		2%	Wheat		
	23% GEMS/Food G06	4.58	9%	Tomatoes		5%	Olives for oil production		4%	Wheat		
	21% ES child	4.16	10%	Olives for oil production		3%	Milk: Cattle		3%	Tomatoes		
	19% NL child 17% GEMS/Food G07	3.89 3.37	7% 4%	Apples Olives for oil production		6% 3%	Milk: Cattle Tomatoes		2% 2%	Wheat Wine grapes		
	16% RO general	3.37	4%	Tomatoes		3%	Milk: Cattle		2%	Wine grapes		
	16% FR child 3 15 yr	3.24	6%	Milk: Cattle		2%	Wheat		2%	Tomatoes		
	16% FR toddler 2 3 yr	3.21	7%	Milk: Cattle		4%	Apples		1%	Wheat		
	16% GEMS/Food G10	3.18	5%	Olives for oil production		4%	Tomatoes		2%	Wheat		
	15% GEMS/Food G11 15% GEMS/Food G15	3.07	3% 3%	Olives for oil production Tomatoes		2% 2%	Tomatoes Olives for oil production		2% 2%	Milk: Cattle Wheat		
	15% GEMS/F000 G15 15% UK infant	3.04	3%	Milk: Cattle		2%	Apples		2%	Wheat		
	15% DK child	2.98	4%	Rye		3%	Milk: Cattle		3%	Apples		
	14% PT general	2.86	4%	Wine grapes		3%	Olives for oil production		2%	Tomatoes		
	13% DE women 14-50 yr	2.69	3%	Milk: Cattle		3%	Apples		2%	Tomatoes		
	13% ES adult	2.63	5%	Olives for oil production		2%	Tomatoes		1%	Mik: Cattle		
	13% DE general 12% UK toddler	2.61 2.36	3% 5%	Mik: Cattle Mik: Cattle		3% 2%	Apples		2%	Tomatoes		
	12% UK toddler 10% SE general	2.36	5%	Milk: Cattle		2%	Apples Tomatoes		2% 2%	Wheat		
	10% FR adult	1.94	4%	Wine grapes		1%	Tomatoes		1%	Milk: Cattle		
	9% IT toddler	1.72	4%	Tomatoes		3%	Wheat		1%	Apples		
	8% IE adult	1.70	2%	Wine grapes		1%	Wheat		1%	Mik: Cattle		
	8% NL general	1.68	2%	Milk: Cattle		2%	Apples		1%	Tomatoes		
	7% FR infant 7% DK adult	1.46 1.41	4% 1%	Milk: Cattle		2%	Apples Tomatoes		0.4%	Wheat Milk: Cattle		
	7% DK adult 7% LT adult	1.41	1%	Wine grapes Apples		1% 2%	Tomatoes		1% 1.0%	Mik: Cattle		
	7% IT adult	1.34	3%	Tomatoes		2%	Wheat		0.9%	Apples		
	6% UK vegetarian	1.15	2%	Tomatoes		1%	Wine grapes		1.0%	Wheat		
	5% UK adult	1.08	2%	Wine grapes		1%	Tomatoes		0.8%	Wheat		
	5% PL general	1.06	2%	Apples		2%	Tomatoes		0.4%	Table grapes		
	4% FI3 yr 4% FI adult	0.85	1% 1%	Tomatoes Tomatoes		1% 0.7%	Apples Apples		0.6%	Wheat Rye		1
	4% FI6yr	0.70	1%	Tomatoes		0.7%	Apples		0.5%	Wheat		
	2% IE child	0.45	0.9%	Mik: Cattle		0.6%	Wheat		0.4%	Apples		

Acute risk assessment /children	Acute risk assessment / adults / general population
Details - acute risk assessment /children	Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union The calculation is based on the large portion of the most critical consumer group.

Show results for all crops esults for children Results for adults Unprocessed commo No. of commodities for which ARfD/ADI is exceeded (IESTI): No. of commodities for which ARfD/ADI is exceeded (IESTI) EST EST IRL / inp for RA RL / inp for RA (ma/kg) Exposure (µg/kg bw) 46 Highest % of ARfD/ADI Highest % of ARfD/ADI Exposure for RA (mg/kg) 2 / 0.79 0.7 / 0.4 1 / 0.56 5 / 2.7 1.5 / 0.18 7 / 4.3 2 / 1.5 3 / 0.75 0 05 / 0.05 Commodities Wine grapes Cherries (sweet) Table grapes Tomatoes (mg/kg) 2/1.5 5/2.7 1/0.56 2/0.79 0.7/0.4 3/0.75 1.5/0.18 7/4.3 0.3/0.12 10/2.6 0.05/0.05 0.4/0.29 0.4/0.29 Commodities Tomatoes (µg/kg bw) 36 92% 71% 54% 38% 25% 22% 17% 11% 9% 5% 4% 2% 2% 2% 2% Apples Table grapes Cherries (sweet) 43 41 33 18 14 14 8.8 6.2 5.6 3.3 2.8 27 19 13 11 8.4 5.3 4.3 2.6 2.0 1.9 1.2 86% 82% 66% 36% 29% 28% 12% 11% 7% 6% 5% 4% 3% Pineapples Table olives Apples Figs Pineapples Table olives Wine grapes Figs Milk: Cattle Kaki/Japanese persimmons Olives for oil production Pears Kaki/Japanese persimmons Olives for oil production Milk: Cattle Bovine: Liver 0.05 / 0.05 0.3 / 0.12 0.3 / 0.12 10 / 2.6 0.05 / 0.02 0.4 / 0.29 0.4 / 0.29 0.5 / 0.1 Bovine: Liver Bovine: Edible offals (other than liver and kidney) Wheat 0.96 0.92 0.82 2.3 2.1 1.4 Bovine: Edible offals (other than liver and kidney) Milk: Goat 0.05 / 0.05 0.5 / 0.1 Wheat and/collapse list Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)

NO OI PIOCESSEU CO	mmodities for which ARfD/ADI is exceeded (IESTI):		No of processed cor	mmodities for which ARfD/ADI is exceeded (IESTI):			
IESTI				IESTI			
		MRL / input				MRL / input	
Highest % of		for RA	Exposure	Highest % of		for RA	Ex
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg
59%	Pineapples / canned	1.5 / 0.72	30	28%	Wine grapes / wine	2/1.5	
27%	Wine grapes / juice	2/0.31	14	19%	Pineapples / canned	1.5 / 0.72	
25%	Apples / juice	0.7 / 0.23	12	15%	Apples / juice	0.7 / 0.23	
20%	Tomatoes / juice	2/0.52	9.9	13%	Table grapes / raisins	2 / 5.49	
12%	Pineapples / juice	1.5 / 0.42	6.1	13%	Wine grapes / juice	2 / 0.31	
10%	Tomatoes / sauce/puree	2/0.52	5.0	9%	Tomatoes / sauce/puree	2/0.52	
4%	Figs / jam	3/0.73	2.2	7%	Pineapples / juice	1.5 / 0.42	
4%	Table olives / canned	7 / 1.9	2.1	5%	Table olives / canned	7 / 1.9	
2%	Wheat / milling (flour)	0.5 / 0.1	1.2	2%	Barley / beer	1.5 / 0.03	
1%	Pears / juice	0.05 / 0.02	0.65	0.9%	Wheat / bread/pizza	0.5 / 0.1	
1%	Wheat / milling (wholemeal)-baking	0.5 / 0.1	0.54	0.7%	Wheat / pasta	0.5 / 0.1	
1%	Rye / boiled	0.8 / 0.14	0.51	0.7%	Wheat / bread (wholemeal)	0.5 / 0.1	
1.0%	Rye / milling (wholemeal)-baking	0.8 / 0.14	0.49				
0.9%	Barley / cooked	1.5 / 0.13	0.47				
0.5%	Barley / milling (flour)	1.5 / 0.13	0.24				

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Ethephon is unlikely to present a public health risk.

For processed commodities, no exceedance of the ARfD/ADI was identified.

