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Background: Blood alcohol concentration data that were previously obtained from 34 healthy Japanese
subjects with limited sampling times were reanalyzed. Characteristics of the data were that the
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concentrations were obtained from only the early part of the time-concentration curve.
Objective: To explore significant covariates for the population pharmacokinetic analysis of alcohol by
incorporating external data using a Bayesian method, and to estimate effects of the covariates.
Methods: The data were analyzed using a Markov chain Monte Carlo Bayesian estimation with NONMEM
7.3 (ICON Clinical Research LLC, North Wales, Pennsylvania). Informative priors were obtained from the
external study.
Results: A 1-compartment model with Michaelis-Menten elimination was used. The typical value for the
apparent volume of distribution was 49.3 L at the age of 29.4 years. Volume of distribution was estimated
to be 20.4 L smaller in subjects with the ALDH2*1/*2 genotype than in subjects with the ALDH2*1/*1
genotype.
Conclusions: A population pharmacokinetic model for alcohol was updated. A Bayesian approach allowed
interpretation of significant covariate relationships, even if the current dataset is not informative about
all parameters. This is the first study reporting an estimate of the effect of the ALDH2 genotype in a
PPK model.
& 2017. The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Alcohol (ethanol) is among the oldest recreational drugs.
Population pharmacokinetic (PPK) analysis assumes the presence
of interindividual variations in pharmacokinetic (PK) parameters
and attempts to explain this in terms of an individual’s character-
istics that could affect the PK model parameters. Thus, developing
a PPK model of alcohol is essential to understand the effects of an
individual's characteristics on the time course of alcohol metabo-
lism, and consequently the degree of organ exposure to alcohol,
after the ingestion of an alcoholic beverage.

Alcohol is eliminated from the body primarily through oxidi-
zation reaction in the liver. It is catalyzed by alcohol-metabolizing
enzymes known as alcohol dehydrogenases (ADHs) to acetalde-
hyde, which is metabolized by aldehyde dehydrogenases (ALDH).1

There are multiple ADH and ALDH enzymes that are encoded by
different genes.2 ADH1B is the best-studied ADH gene and has
been replicated consistently showing a strong association with the
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prevalence of alcohol dependence.3 With regard to ALDH, the
ALDH 2*2 allele has shown this strong association with alcohol
dependence4 and is known to encode an almost inactive enzyme.5

A genetic variant of ADH1B (ADH1B*2) encodes enzyme with
higher activity compared with a wild type (ADH1B*1), and a
genetic variant of ALDH2 (ALDH2*2) encodes an essentially inactive
ALDH2 enzyme, resulting in acetaldehyde accumulation after
drinking alcohol.6

We searched PubMed using the query “population pharmaco-
kinetic analysis alcohol AND (breath OR blood)” during August
2016. There were 5 published studies on the PPK of alcohol,
including our previous study. Clardy7 analyzed the blood alcohol
concentration (BAC) data from 55 healthy subjects who consumed
0.12 to 0.93 g ethanol per kilogram body weight and developed a
2-compartment model with first-order absorption and Michaelis-
Menten elimination, although contributions of covariates to the
interindividual variation of PK parameters were not investigated.
Yang et al8 reported food ingestion, sex, and body weight as
covariates of a 1-compartment model for the BAC data from 184
healthy subjects who consumed 0.5 to 0.7 g/kg ethanol. Lee et al9

reported age, body weight, and dissolved oxygen concentration in
beverage as covariates of a 1-compartment model with Michalis-
Menten elimination for the BAC data from 59 healthy subjects who
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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consumed an average dose of ethanol of 55.39 g. Seng et al10

investigated genetic polymorphisms in the alcohol-metabolizing
enzymes, in addition to demographic characteristics and reported
sex, body weight, and genetic polymorphism in ADH1B for a 1-
compartment model with Michalis-Menten elimination for 154
healthy subjects who ingested 54 or 36 g ethanol over an hour,
together with a standardized light meal to mimic social drinking.
Previously, we reported age, body weight, and genotype of ADH1B
as covariates by analyzing the BAC data measured in 34 healthy
subjects after consuming 17.5 g ethanol during 15 minutes without
a meal by a 1-compartment model.11 However, none of these
studies succeeded in estimating the effects of the genotype of
ALDH2.

The Bayesian approach has been suggested as a valuable tool
for information gathering in the context of PPK modeling, which
allows the incorporation of prior information into the modeling for
current data.12–14 Our data consist of only the early part of the
time-concentration curve and are not informative about all of the
parameters for relatively complex models, such as 1- or
2-compartment models with a Michalis-Menten elimination proc-
ess. It has been suggested that a Bayesian approach to develop
a PPK model with informative priors allowed interpretation of a
significant covariate relationship, even using poorly informative
data.12

The objective of this study was to update the PPK model for
alcohol. We explored additional significant covariates using our
previously obtained BAC data by incorporating the external result
of PPK modeling for alcohol using a fully conditional Bayesian
estimation.
Materials and Methods

Dataset

A total of 157 BAC observations previously obtained from 34
healthy Japanese subjects (21 men and 13 women) aged 20 to 62
years at ethanol concentrations ranging from 0.0014 to 0.41 g/L11

were reanalyzed. Characteristics of subjects that were surveyed
included age, sex, body weight, and genotypes of alcohol-
metabolizing enzymes (ADH1B and ALDH2). Of 34 subjects, 21
(62%) carried ALDH2*1/*1 and 13 (38%) carried ALDH2*1/*2. The
study was conducted in compliance with the ethical principles
originating in or derived from the Declaration of Helsinki. The
study protocol was approved by the research ethics committee of
the Faculty of Medicine, Osaka University, Japan. Written informed
consent was provided by all participants.

Software

The time-concentration data were analyzed using NONMEM 7.3
(ICON Clinical Research LLC, North Wales, Pennsylvania). SAS 9.4
(SAS Institute Inc, Cary, North Carolina) and R version 3.3.1 (R
Foundation for Statistical Computing, Vienna, Austria) were used
for exploratory analysis in the model-building process and for the
model validation.

Bayesian analysis

A fully conditional hierarchical Bayesian analysis was con-
ducted using the NONMEM with $PRIOR NWPRI statement, which
allowed priors for the population mean PK (PM-PK) parameter
vector Θ being a normal distribution and the variance of individual
PK parameters Ω being an inverse Wishart distribution.14 The
normal prior was specified with mean, Θ̂, and variance, Γ̂. The Θ̂
value was derived from parameter estimates of the fixed-effect
parameters in the previous analysis. The Γ̂ value was obtained
from the variance of the parameter estimates of the previous
analysis, where the off-diagonal elements of Γ̂ were assumed to be
zero. The inverse Wishart prior was specified with mode Ω̂ and
degrees of freedom (df). The diagonal-element values of Ω̂ were
obtained from estimates of the interindividual variance of PK
parameters in the previous analysis and off-diagonal elements
were set to be zero, whereas the df was calculated according to the
formula recommended by Karlsson.14

Markov chain Monte Carlo (MCMC) Bayesian estimation was
conducted. The maximum number of samples of the burn-in phase
was set to 100,000 and a termination test for the burn-in phase of
MCMC chains was used. At every 100th iteration, a linear regres-
sion was performed on each parameter and an objective function
(MCMCOBJ in NONMEM 7.3). If the slope of the linear regression
was not statistically different from 0 for all parameters, then the
burn-in phase was terminated. The MCMC chain was run for
10,000 samples to make an inference about posterior distributions
of the parameters.

Prior information

The prior distributions of parameters were obtained from a
report by Seng et al,10 which was the most preferable among
4 studies conducted before our study because subjects were from
Asian populations (Chinese and Indian), and all covariates of the
final model (body weight, sex, and the genotype for ADH1B) were
obtained from the subjects in our previous study.

Model building

We conducted PPK analysis according to the following steps:
Step 1, adoption of external information to the analysis of current
dataset, by defining priors from the estimates of PPK parameters
and the covariates of the model of Seng et al,10 which is referred to
as the base model in this article; and Step 2, additional covariate
modeling was performed. The model developed in Step 2 was
named the final model.

After fitting the base model in Step 1, scatter plots showing the
relationship between the posterior median value of individual PK
parameters and a range of variables were visually investigated to
screen for potential covariates. Among 5 characteristics (age, sex,
body weight, ADH1B, and ALDH2) of the subjects in our data pool,
age, and the genotype of ALDH2 were investigated. This was done
because the other 3 variables were included in the base model. Age
was modeled as a continuous variable and centered around the
median value, and is generally expressed as

P ¼ θPU covariate=mediancovÞθcov Pð Þ
� ð1Þ

where P is the population mean PM-PK parameter conditional to a
covariate value, θP is the typical PK parameter, namely ka or Vd=F
for the covariate equal median, and θcov Pð Þ is a covariate scale factor
on P. The genotype of ALDH2 was modeled as a dichotomous
variable, generally expressed using an indicator variable (IND)
being 0 or 1 as

P ¼ θPþθcovUIND ð2Þ
where θP is the PM-PK value when IND being 0, and θcov is the
change in the parameter value when IND is 1.

Model selection for inclusion of a covariate in the final model
was based on a decrease in the mean of the deviance distribution
(equivalent to –2 log likelihood), a decrease in the mode of the
between subject variance and/or a decrease in the mean of the
residual error, and a probability of clinically significant influence
on the parameter values, defined as a change in the population
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Figure 1. Scatter plot of blood alcohol concentration versus time after ingestion of
alcohol-containing drinks in 34 subjects (157 observations). Four or 5 concentra-
tions were obtained per subject.
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parameter of at least 20% between subjects with the lowest and
the highest covariate value in the data set.

Base model

The basic PPK model that Seng et al10 reported was a
1-compartment model with first-order absorption and mixed
linear and time-dependent nonlinear (Michaelis-Menten) elimi-
nation. In this model, concentration, denoted as C, is expressed as

dC
dt

¼ kaUDUe�kat� Vmax

KmþC
UC

� �
U

1
Vd=F

ð3Þ

where ka, D, Vmax, Km, and Vd=F are the first-order absorption rate
constant, dose, the maximum metabolic rate, and Michaelis-
Menten constant and the apparent distribution volume, respec-
tively. Interindividual variability in PK parameters was modeled by
assuming a lognormal distribution, generally described as

θi ¼ θUexp ηθi
� �

ð4Þ

where θi is the PK parameter of the ith individual, ηθi is an
interindividual random effect normally distributed with a mean
of zero and variance of ω2

θ , and θ is the PM-PK parameter,
represents ka, Vmax, Km, or Vd=F . The details for the model between
population PK parameters and covariates are described in
Appendix 1. The residual variability was modeled with a propor-
tional error structure, described as

Cobs
ij ¼ Cpred

ij U 1þεij
� � ð5Þ

where Cpred
ij is the jth observation of the ith individual predicted by

the PK model, Cobs
ij is the observed concentration, and εij represents

the residual departure of the model from the jth observation from
the ith individual. The variable εij is a normally distributed random
Table I
Study* designs.

Population n Dose Sam

Japanese 13 women, 21 men 14 g ethanol (350 mL beer)10 min
in the fasted state

5, 1

Chinese 36 women, 31 men 36† and 56‡ g ethanol 1.5,
Indian 43 women, 44 men 200† and 300‡ mL (mixture of vodka

and orange juice) 1 h with a meal
3.25
6

n The current dataset for reanalysis was obtained from study described in referen
reference.10

† Dose for women.
‡ Dose for men.
variable with a mean of zero and variance of σ2. All off-diagonals of
the population covariance matrix were set to zero.
Model validation

The final model was assessed with goodness-of-fit plots,
including visual predictive checks. For visual predictive checks
evaluations, 1000 sets of virtual subject groups were created by
using bootstrap sampling. Then, individual PK parameters were
simulated. To predict ethanol exposures, the concentrations for
dense sampling time points were obtained by solving ordinary
differential equations using “deSolve” in R software because the
elimination process follows Michalis-Menten kinetics. The percen-
tiles of simulated BACs were plotted and compared with the
observed data.
Results

The BACs previously obtained from 34 healthy Japanese subjects
(157 observations) were analyzed, and a plot for the BAC versus
time after the end of beer consumption is shown in Figure 1.
The study population, dosing regimen, sampling plan, and the
analysis model are summarized in Table I. We fitted the base
model, a 1-compartment model, with Michalis-Menten elimination
process that includes sex, body weight, and genotype of ADH2 as
covariates. Mean and SD values of priors for the PM-PK parameters
and mode of the respective prior for the interindividual variance of
the PM-PK parameters were obtained from the parameter esti-
mates of the model reported by Seng et al10 and are listed in Table
II. The study population, dosing regimen, sampling plan, and the
analysis model of the study, from which the prior information was
obtained,10 are summarized in Table I. The df for random-effects
parameters was calculated and set to 35. The base model was fitted
to the current data, and most of the estimated values were in
agreement with the priors as shown in the column “Base model” in
Table II. Relatively large changes in the posterior distributions of ka
and ωka compared to the prior distributions were observed. This
seems to be because our data were more informative about ka and
ωka .

Covariate relationships were investigated for only ka and Vd=F ,
due to the sparseness of information about the other parameters.
Intermediate models in the process of model building are sum-
marized in Table III. Scatter plots of the posterior estimates of
individual ka or the posterior estimates of individual Vd=F versus
age or ALDH2 genotype are shown in Figure 2. Among the 4 plots
in Figure 2, a trend towards an increase in ka with advancing age
was observed as shown in Figure 2A. The influence of age was
modeled by using an exponential model (equation 1). The median
age was set to 29.4 years. The informative priors were applied for
all of the parameters (as used in the base model) except for θAGE kað Þ.
pling plan Basic pharmokinetic model Reference

0, 20, 30, 60 min postdose 1 compartment 11

2, 2.5, 3, 1 compartment 10
, 3.5, 3.75, 4, 4.25, 4.5, 4.75, 5,
h postdose

Michaelis-Menten elimination

ce 11; the priors for population pharmacokinetic parameters were obtained from



Table II
Parameter estimates of the base model and the final model for alcohol population pharmacokinetic (PK) analysis, and the prior distributions used in the analysis.

Mean (SD) of normal prior or
mode of inverse Wishart prior*

Estimate for parameters (95% CI)

Base model Final model

Population mean PK parameters
ka (1 / h) 4.4 (0.48) 3.3 (2.7 to 4.1) 3.0 (2.4 to 3.9)
Vd=F (L) 50.2 (1.0) 49.7 (47.8 to 51.7) 49.3 (47.4 to 51.2)
VmaxADH1Bn2=n1 (mg=hÞ 7760 (255) 7827 (7327 to 8310) 7790 (7403 to 8264)

VmaxADH1Bn2=n2 (mg=hÞ 8060 (300) 8197 (7660 to 8731) 7966 (7422 to 8483)
Km (mg=LÞ 16.2 (6.9) 0.09 (0.01 to 0.47) 0.074 (0.001 to 0.391)

Regression parameters for covariate model
θAGE kað Þ 0.01 (1000) – 2.7 (2.1 to 3.4)
θAGE Vd=Fð Þ 0.01 (1000) – 0.52 (0.19 to 0.83)

θALDH2 Vd=Fð Þ (L) 0.01 (1000) – –20.4 (–27.7 to –10.9)

θWT Vd=Fð Þ 0.78 (0.09) 0.80 (0.63 to 0.98) 0.78 (0.60 to 0.95)

θWT Vmaxð Þ 0.79 (0.06) 0.77 (0.66 to 0.89) 0.78 (0.66, 0.90)
θSEX kað Þ (1 / h ) –1.9 (0.5) –1.9 (-2.6 to –1.1) -1.3 (-2.1, -0.56)
θSEX Vd=Fð Þ (L) –11.4 (1.5) –11.7 (–14.5 to –8.8) –12.2 (–15.0 to –9.41)

Between-subject variance
ω2
ka

0.29 0.66 (0.45 to 0.95) 0.37 (0.24 to 0.55)

ω2
Vd=F

0.025 0.028 (0.017 to 0.044) 0.029 (0.018 to 0.048)

ω2
Vmax

0.026 0.027 (0.017 to 0.042) 0.027 (0.017 to 0.042)

ω2
Km

1.04 1.11 (0.69 to 1.77) 1.13 (0.69 to 1.83)

Residual error (%RSE)
σ2 – 0.034 (0.026 to 0.044) 0.028 (0.020 to 0.038)

Structural model for PK parameters and covariates in the base model:
kai ¼ ðkaþθSEX kað Þ � FEMALEÞ � expðηkai Þ

Vd=Fi ¼ ðVd=FþθSEX Vd=Fð Þ � FEMALEÞ � WT=61:3
� �θ

WT Vd =Fð Þ � exp ηVd=Fi

� �

Vmaxi ¼ VmaxADH1Bn2=n2 � WT=61:3
� �θWTðVmax Þ � exp ηVmaxi

� �
†

Kmi ¼ Km � exp ηKmi

� �
Structural model for PK parameters and covariates in the final model:‡

kai ¼ ðkaþθSEX kað Þ � FEMALEÞ � age=29:4
� �θAGE kað Þ � exp ηkai

� �

Vd=Fi ¼ ðVd=FþθSEX Vd=Fð Þ � FEMALEþθALDH2 Vd=Fð Þ � ALDH2Þ � WT=61:3
� �θ

WT Vd=Fð Þ� age=29:4
� �θ

AGE Vd =Fð Þ � exp ηVd=Fi

� �

%RSE ¼ percent relative standard error of the estimate, equal to SE/parameter estimate □� 100; ALDH2 ¼ 1 for a subject with ALDH2*1/*2; ALDH2 ¼ 0 for a subject with
ALDH2*1/*1; FEMALE ¼ 1 for a female subject; ka and kai ¼ the absorption rate and that for ith individual; Km and Kmi ¼ Michaelis-Menten constant and that for ith
individual; θAGE Vd=Fð Þ ¼ scale factor for age on Vd=F; θAGE kað Þ ¼ scale factor for age on ka; θALDH2 Vd=Fð Þ ¼ change in Vd=F for ALDH2; θWT Vd=Fð Þ ¼ scale factor for WT on Vd=F;
θWT Vmaxð Þ ¼ scale factor for WT on Vmax; θSEX kað Þ ¼ change in ka for sex; θSEX Vd=Fð Þ ¼ change in Vd=F for sex; ω2

ka
¼ interindividual variance of ka; ω2

Vd=F
¼ interindividual variance

of Vd=F; ω2
Vmax

¼ interindividual variance of Vmax; ω2
Km

¼ interindividual variance of Km; σ2¼ variance of residual in the proportional error model; ηi¼ interindividual random
effect for ith individual. Vd=F and Vd=Fi ¼ the apparent volume of distribution and that for the ith individual; Vmax , Vmaxi , VmaxADH1Bn2=n1 and VmaxADH1Bn2=n2 ¼ the maximum
metabolic rate, that for ith individual, that for subjects carrying ADH1B*2/*1, and that for subjects carrying ADH1B*2/*2; WT ¼ body weight.

n All of values for prior distribution of model parameters except θAGE kað Þ , θAGE Vd=Fð Þ, and θALDH2 Vd=Fð Þ were from Seng et al.10
† VmaxADH2n2=n2 is replaced with VmaxADH2n1=n2 for the subject with ADH2n1=n2:
‡ Structural model for Vmaxi and Kmi is the same as those in the base model.
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Prior mean and precision of θAGE kað Þ were set to 0.001 and
1,000,000, as a noninformative prior.

When age was added to the base model as a covariate on ka, the
posterior mean of deviance decreased from –1360 to –1401 (Table III,
model 0 and model 1). The posterior mode of between subject
variance for ka, ω2

ka
, decreased from 0.66 to 0.35 with the inclusion of

age on ka (data not shown). The probability that age had a clinically
significant effect on ka was more than 0.95, and this covariate was
included in the final model. Subsequently, addition of another
covariate to model 1 was investigated, as presented in Table III:
age on Vd=F as model 2, ALDH2 on Vd=F as model 3, and ALDH2 on ka
as model 4.

Among models 2 to 4, compared with model 1, the posterior
deviance decreased most in model 3, from –1401 to –1412 (Table III).
Also, the mean of the variance of residual error decreased most in
model 3 compared with model 1, from 0.34 to 0.31. Both probability
that age had a clinically significant effect on ka and probability that
ALDH2 had a clinically significant effect on Vd=F were more than
0.95, and these 2 covariates were included in the final model. The
addition to model 3 of the relationship between age and Vd=F was
considered model 5, further followed by addition of the relationship
between ALDH2 and ka as model 6.

From model 3 to model 5, the posterior deviance decreased from –

1412 to –1424 and the posterior variance of residual error, σ2, decreased
from 0.31 to 0.28 (Table II). From model 5 to model 6, the posterior
deviance decreased from –1424 to –1436 and both the posterior ω2

ka
and the posterior σ2 decreased. The probability that a covariate
candidate had a clinically significant influence on the parameter value
exceeded 0.8 in each of 3 relationships included in model 5. However,
in model 6, the probability that ALDH2 had a clinically significant effect
on ka was lower than 0.8. Thus, the relationship between ALDH2 and ka
was not included in the final model.

In summary, the relationship of model 5 (Table III) was added
to the base model, and this was determined to be the final model.
The estimated PPK parameters from the base model are presented
in Table II. A typical ka value was 3.0 hours–1 for a 29-year-old man
and 6.9 hours–1 for a 40-year-old man. A typical Vd=F value was
49.3 L for a man with a genotype of ALDH2*1/*1, 28.9 L for a man
with a genotype of ALDH2*1/*2 when he was aged 29 years and his
body weight was 61.3 kg. A typical Vd=F value was 49.3 L for a



Table III
Pharmacokinetic model building: Effect of addition of covariates to the base model.

Model number and added covariates Relationship(s)* Posterior mean

Deviance σ2

0: Base model† – –1360 0.034
1: Age on ka ka ¼ θ� age=29:4

� �θAGE kað Þ –1401 0.034

2: 1 plus age on Vd=F ka ¼ θ� age=29:4
� �θAGE kað Þ –1401 0.034

Vd=F ¼ θ� age=29:4
� �θ

AGE Vd=Fð Þ
3: 1 plus ALDH2 on Vd=F ka ¼ θ� age=29:4

� �θage kað Þ –1412 0.031

Vd=F ¼ θþθALDH2 Vd=Fð Þ � ALDH2
� �

4: 1 plus ALDH2 on ka ka ¼ θþθALDH2 kað Þ � ALDH2
� �� age=29:4

� �θAGE kað Þ –1401 0.034

5: 3 plus age on Vd=F ka ¼ θ� age=29:4
� �θAGE kað Þ –1424 0.028

Vd=F ¼ θþθALDH2 Vd=Fð Þ � ALDH2
� �

� age=29:4
� �θ

AGE Vd=Fð Þ

6: 5 plus ALDH2 on ka ka ¼ θþθALDH2 kað Þ � ALDH2
� �� age=29:4

� �θAGE kað Þ –1436 0.027

Vd=F ¼ θþθALDH2 Vd=Fð Þ � ALDH2
� �

� age=29:4
� �θ

AGE Vd=Fð Þ

ka ¼ absorption rate constant; Vd=F ¼ apparent volume of distribution; ALDH2 ¼ aldehyde dehydrogenase 2; θ ¼ typical value ofg parameter in the base model; σ2 ¼ variance of
residual error; θAGE kað Þ ¼ scale factor for age on ka; θAGE Vd=Fð Þ ¼ scale factor for age on Vd=F; θALDH2 Vd=Fð Þ ¼ change in Vd=F for ALDH2; θALDH2 Vmaxð Þ ¼ change in Vmax for ALDH2.

n Only the different relationships compared to the base model are presented. The relationships between pharmacokinetic parameters and covariates in the base model
are described in the Appendix. ALDH2 ¼ 1 if ALDH2 genotype is *1/*2; ALDH2 ¼ 0 if ALDH2 genotype is *1/*1.

† The basic compartment model, random effects for pharmacokinetic parameters and the error model are described in Methods.
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29-year-old man and was 57.9 L for a 40-year-old man when his
genotype was ALDH2*1/*1 and his weight was 61.3 kg. Vd=F and ka
were estimated to be 12.2 and 1.3 smaller for female subjects than
men, respectively.
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Figure 3. Goodness-of-fit plots for the final model. (A) Individual-predicted versus observed blood alcohol concentrations. (B) Weighted residuals versus individual-
predicted blood alcohol concentrations.

A. Nemoto et al. / Current Therapeutic Research 84 (2017) 42–49 47
concentrations was high (Figure 3A), and weighted residual was
uniformly distributed within acceptable range (ie, between –5.0
and 5.0) (Figure 3B). The visual predicted check plots of the BAC
data versus time-stratified age group are presented in Figure 4.
The observed BACs were compared with the percentiles derived
from 1000 simulations of individuals from the original data set. As
shown in Figure 4, the model describes the data adequately for the
different age groups.
Discussion

Our aim was to update the PPK model for alcohol that included
covariates for interindividual variability of PK parameters. In this
study, the ALDH2 genotype was identified as an additional cova-
riate by using MCMC Bayesian estimation, which allowed incor-
poration of parameters of a PPK model reported elsewhere into the
current PPK model as informative priors.

A characteristic of our data is that the samples were corrected
only before and at 60 minutes after dosing. BACs were observed
during the absorption phase and around peak BAC. It was
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Figure 4. Visual predictive check of the final population pharmacokinetic model stratifie
25 years. Circles represent the observed blood alcohol concentration. The solid line deno
lines denote 25th and 75th percentiles, and the dashed lines denote 5th and 95th perc
intended to develop a model that explains the interindividual
variability of the peak BACs after the consumption of a same
amount of ethanol (17.5 g). The range of distribution of the peak
BACs in our data was from 0.025 to 0.41 g/L, spanning the BACs of
0.2 to 0.3 g/L at which cognitive function was reported to begin
being affected.15 On the other hand, almost no BAC was observed
during the elimination phase. Although the elimination rate of
ethanol from the blood was known to be described with the
Michaelis-Menten equation,16 we developed a model using elim-
ination rate ðkelÞ and also did not assume interindividual varia-
bility for kel because our data were not informative about
parameters for Michalis-Menten kinetics, Vmax, and km. However,
the problem remains because it is difficult to determine presently
whether the model has clinical predictive validity. In this article,
we reported a significant effect of the ALDH2 genotype on Vd=F .
The relationship between the ALDH2 genotype and Vd=F may
sound physiologically inexplicable. This was considered to be also
attributable to the lack of concentrations in the elimination
phase. This point will be discussed below.

It is known that blood acetaldehyde concentration rises in
subjects with the allotype ALDH2*2-encoding inactive enzyme.17
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Ethanol oxidation to acetaldehyde catalyzed by ADH is inhibited
by the accumulated acetaldehyde.18 We considered that a product
inhibition of ADH by a high concentration of acetaldehyde was the
plausible mechanism that causes the accumulation of ethanol in
the blood. In the report by Peng et al,17 they compared the time-
concentration profile of 3 subject groups that differed in ALDH2
genotypes (ALDH2*1/*1, ALDH2*1/*2, and ALDH2*2/*2) but were
matched in ethnicity, sex, age, body mass index, nutritional status,
and homozygosity at ADH genotypes. The mean BAC at each time
point was shown to be higher in subjects who were heterozygous
(ALDH2*1/*2) compared with those representing the wild type
(ALDH2*1/*1). It was also shown to be higher in subjects who were
homozygous for the (ALDH2*2/*2) variant compared with those
who were heterozygous (ALDH2*1/*2).17

In the final model that we developed, Vd=F in subjects with
ALDH2*1/*2 was estimated to be 20.4 L smaller than that in
subjects with ALDH2*1/*1. There is no physiological basis for
which ALDH2 genotype is thought to be associated with Vdi, but
rather it makes sense that the genotypes of ALDH2 influence the
rate of elimination. However, when we tried to add the ALDH2
genotype of ALDH2 to the final model as a covariate of Vmax, the
difference between the subjects with ALDH2*1/*2 and the sub-
jects with ALDH2*1/*1 was estimated to be –246 mg/h (95% CI, –
1702–1417) and a significant effect was not shown. As described
above, the analyzed data consist of BACs of the absorption phase
and around the peak, and are not information-rich about the
interindividual variability in the rate of elimination. This might
be a reason why a significant relationship between the ALDH2
genotype and the individual Vmax was not interpreted. We
considered that, on the other hand, the interindividual difference
in the peak BAC had been interpreted as the interindividual
difference in Vd=F .

If we had subjects with ALDH2*2/*2 from whom BAC data were
obtained, we could have verified the additive effect of ALDH2*2 on
Vd=F. However, no subject with ALDH2*2/*2 was involved, which is
a weakness of our research, and there are 2 possible reasons for
this. First, the proportion of subjects with ALDH2*2/*2 is small in
the Japanese population and the probability of it being present in
the subjects in this study was relatively low: the frequency of
genotypes of ALDH2 in 524 healthy Japanese subjects were
reported as 56.8% (*1/*1), 36.6% (*1/*2), and 6.5% (*2/*2).19 Second,
homozygous ALDH2*2 individuals may have avoided participation
in a study that requires alcohol consumption because they are
strikingly responsive to small amounts of alcohol. It has been
reported that 1 individual who was homozygous for ALDH2*2
experienced an intoxicated state requiring hospitalization after a
moderate dose of alcohol (0.59 g/kg).20 For modeling the differ-
ence in PK parameters between subjects with ALDH2*1/*2 and
ALDH2*2/*2, a carefully planned clinical trial will be needed.

In contrast to the Phase I study data (ie, dense sampling over
time-concentration profiles), our data are not informative about all
of the PPK parameters. It has been suggested that incorporation of
external data helps to stabilize the modeling process even if the
current dataset is not informative to estimate all PPK parameters,
due to small sample size and/or few numbers of time points for an
individual.21 Dansirikul et al12 pointed out that a Bayesian
approach to develop a PPK fully conditional Bayesian method have
not been previously reported. Alcohol is a model with informative
priors allowed interpretation of a significant covariate relationship,
even using poorly informative data. Our results support this
hypothesis. Results of a model development for PPK of alcohol
using the world’s oldest recreational drug has been studied by
many researchers. By applying the Bayesian method, as shown in
this research, it is expected that the research on alcohol metabo-
lism will develop through integrating individual research results
and discovering new findings utilizing past findings.
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Appendix 1

For the base model, the structural model of the population
pharmacokinetic (PK) parameters and the covariates is expressed as,

kai ¼ ðkaþθSEX kað Þ � FEMALEÞ � exp ηka
� �

, ðA1Þ

Vd=Fi ¼ ðVd=FþθSEX Vd=Fð Þ � FEMALEÞ

� WT=MedianWT
� �θ

WT Vd=Fð Þ � exp ηVd=F

� �
, ðA2Þ

and

Kmi ¼ Km � exp ηKm

� �
, ðA3Þ

where WT is body weight, FEMALE is an indicator variable for sex of
0 or 1 (ie, male or female, respectively), and θcov PK parameterð Þ is a
covariate scale factor for cov when cov is a continuous variable and
is the change in the PK parameter value if cov is an indicator
variable. Vmaxi was modeled in the expression described below, if
the genotype of ADH1B was ADH1B *2/*2,

Vmaxi ¼ VmaxADH1Bn2=n2 � WT=MedianWT
� �θWTðVmax Þ � exp ηVmax

� �
, ðA4Þ

or in the expression described below, if the genotype of ADH1B was
ADH1B*2/*1,

Vmaxi ¼ VmaxADH1Bn2=n1 � WT=MedianWT
� �θWTðVmax Þ � exp ηVmax

� �
: ðA5Þ

In the final model (Table II, and model 5 in Table III), the
structural model of the population PK parameters and the cova-
riates is different from the base model for kai and Vd=Fi:

kai ¼ ðkaþθSEX kað Þ � FEMALEÞ � age=Medianage
� �θageðka Þ

�exp ηka
� �

, ðA6Þ

Vd=Fi ¼ ðVd=FþθSEX Vd=Fð Þ � FEMALEþθALDH2 Vd=Fð Þ � ALDH2Þ

� WT=MedianWT
� �θ

WT Vd=Fð Þ � age=Medianage
� �θ

age Vd=Fð Þ

�exp ηVd=F

� �
, ðA7Þ

where ALDH2 ¼ 1 if ALDH2 genotype is *1/*2; ALDH2 ¼ 0 if
ALDH2 genotype is *1/*1.
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