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and Ling-Yun Dai
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The dimensionality reduction method accompanied by different norm constraints plays
an important role in mining useful information from large-scale gene expression data. In
this article, a novel method named Lp-norm and L2,1-norm constrained graph Laplacian
principal component analysis (PL21GPCA) based on traditional principal component
analysis (PCA) is proposed for robust tumor sample clustering and gene network
module discovery. Three aspects are highlighted in the PL21GPCA method. First,
to degrade the high sensitivity to outliers and noise, the non-convex proximal Lp-
norm (0 < p < 1)constraint is applied on the loss function. Second, to enhance the
sparsity of gene expression in cancer samples, the L2,1-norm constraint is used on
one of the regularization terms. Third, to retain the geometric structure of the data, we
introduce the graph Laplacian regularization item to the PL21GPCA optimization model.
Extensive experiments on five gene expression datasets, including one benchmark
dataset, two single-cancer datasets from The Cancer Genome Atlas (TCGA), and two
integrated datasets of multiple cancers from TCGA, are performed to validate the
effectiveness of our method. The experimental results demonstrate that the PL21GPCA
method performs better than many other methods in terms of tumor sample clustering.
Additionally, this method is used to discover the gene network modules for the purpose
of finding key genes that may be associated with some cancers.

Keywords: Lp-norm, graph regularization, sparse constraint, principal component analysis, tumor clustering,
gene network modules, L2,1-norm

INTRODUCTION

High-throughput sequencing technologies, including genome-wide measurements, have enabled
large-scale gene expression profiles to accumulate faster (Goodwin et al., 2016). It is of great
significance to obtain useful information from these data. Reliable and precise identification of
cancer types and obtaining key pathogenic genes are very important for cancer diagnosis and
treatment (Koboldt et al., 2012). Generally, gene expression data have a typical characteristic of
“high dimension, low sample” size (West, 2003), which is a challenge for most traditional statistical
methods. Too many variables and some uncorrelated noise variables in the gene expression
data may all have a negative effect on the tumor clustering performance regardless of whether
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supervised or unsupervised clustering methods are used. Despite
these problems, many researchers have demonstrated the
effectiveness of tumor-type identification and feature selection
by leveraging many machine learning algorithms (Hochreiter
et al., 2010; Lee et al., 2010; Liu J. X. et al., 2015; Bunte
et al., 2016; Kong et al., 2017; Wang et al., 2017; Chen et al.,
2019). Among them, algorithms based on principal component
analysis (PCA) (Collins, 2002; Jolliffe, 2002) have been widely
used to process gene expression data successfully (Liu et al.,
2013; Liu J. X. et al., 2015; Wang et al., 2017; Feng et al.,
2019) for dimension reduction and denoising. However, PCA-
based algorithms, including sparse principal component analysis
(SPCA) (Zou et al., 2006; Shen and Huang, 2008; Journee et al.,
2010; Liu et al., 2016; Feng et al., 2019) and robust principal
component analysis (RPCA) (Candès et al., 2009; Liu et al., 2013;
Liu J. X. et al., 2015; Wang et al., 2017), mainly deal with data that
lie in a linear data manifold (Jiang et al., 2013). Many methods
that can handle data lying in a non-linear manifold have been
proposed, such as locality preserving projections (LPP) (He et al.,
2005), locally linear embedding (LLE) (Roweis and Saul, 2000),
local tangent space alignment (Zhang and Zha, 2002), Laplacian
eigenmap (LE) (Belkin and Niyogi, 2002, 2003; Spielman, 2007)
and latent variable model (LELVM) (Keyhanian and Nasersharif,
2015). The purpose of these non-linear dimensionality reduction
techniques is to find a representation of points (samples) in a low-
dimensional space, in which all points (samples) still maintain the
similarity in the original high-dimensional space.

In recent years, optimization models that combine linear and
non-linear dimensionality reduction methods, especially graph
Laplacian embedding, have demonstrated their effectiveness.
Liu et al. (2017) constructed a graph Laplacian matrix for
semisupervised feature extraction. Cai et al. (2011) proposed
a method named graph regularized non-negative matrix
factorization (GNMF), which combined graph structure and
non-negative matrix factorization for an improved compact
representation of the original data. Jiang et al. (2013) developed
graph-Laplacian PCA (gLPCA), which sought a low-dimensional
representation of image data with significant improvement in
clustering and image reconstruction by incorporating graph
structures and PCA. Feng et al. (2017) employed pgLPCA
based on graph Laplacian regularization and Lp-norm for
feature selection and tumor clustering. Wang et al. (2019a) used
Laplacian regularized low-rank representation (LLRR), which
considers the intrinsic geometric structure of gene expression
data to cluster the tumor samples. In addition, many methods
benefit from norm constraints. For example, Journee et al.
(2010) employed the L0-norm constraint based on PCA to
stress the sparse expression of genes in samples. The L1-
norm (Tibshirani, 1996) was introduced as the regularization
function in sparse singular value decomposition (SSVD) (Lee
et al., 2010; Kong et al., 2017) and the mix-norm optimization
model proposed by Wang et al. (2019b). Feng et al. (2016)
employed the L1/2-norm constraint in their model to select
characteristic genes. However, there remain some facets to be
improved: for example, the robustness of the algorithm should
be enhanced further, and the sparse representation of the
data should be highlighted. For these purposes, the Lp-norm

(Chartrand, 2012; Nie et al., 2013; Feng et al., 2017; Kong
et al., 2017) constraint was used in the optimization model
to degrade the sensitivity of outliers of the data. The L2,1-
norm (Xiang et al., 2012; Yang et al., 2012) constraint was
used by Liu et al. (2017) and Wang et al. (2019b) to generate
the row sparsity.

Motivated by the literature mentioned above, especially
(Tibshirani, 1996; Chartrand, 2012; Xiang et al., 2012;
Nie et al., 2013; Feng et al., 2017; Kong et al., 2017), we
propose a new method named PL21GPCA incorporating
traditional PCA, graph Laplacian embedding and different
norm constraints on the loss function and the regularization
function for robust tumor sample clustering and gene network
module discovery. Five gene expression datasets, including
one benchmark dataset, two single-cancer datasets from
The Cancer Genome Atlas (TCGA), and two integrated
datasets of multiple cancers from TCGA, are used to evaluate
the effectiveness of our method. The experimental results
demonstrate that the PL21GPCA method outperforms
many existing methods in terms of tumor sample clustering.
Additionally, this method is employed to discover gene network
modules to identify the key genes with close relationships
to some cancers.

We organize the rest of this paper as follows. Section “Related
Works” provides the related works containing the non-convex
proximal Lp-norm, L2,1-norm and graph regularized PCA.
The optimization model of PL21GPCA is presented, and the
solution procedure is detailed in section “Methodology.” Section
“Experiments and Discussion” presents the parameter selections,
experimental results and some discussions. The tumor sample
clustering and gene network analysis are also described in this
section. In Section “Conclusion and Suggestions,” we present
the conclusion for this article and propose some suggestions for
future research.

RELATED WORKS

Definitions of the Proximal Lp-Norm and
L2,1-Norm
Let X∈Rp×n be a data matrix, the proximal Lp-norm of X is defined
as follows:

‖ X ‖p= (

p∑
i

n∑
j

∣∣xij∣∣p) 1
p (0 < p < 1) (1)

The Lp-norm with 0 < p < 1 is a function with three typical
characteristics: globally non-differentiable, non-convex, and non-
smooth (Chartrand, 2012; Zhang et al., 2015). Many researchers
have made suggestions to deal with Lp-norm (0 < p < 1)
minimization (Chartrand, 2012; Guo et al., 2013; Qin et al., 2013).
Since Lp-norm minimization can result in a sparser solution than
the L1-norm and perform better in terms of robustness to outliers
than the L2-norm in a sense, we use it to constrain the loss
function of the PL21GPCA optimization model. The generalized
shrinkage operation proposed by Chartrand (2012) is adopted to
solve the function effectively in our method.
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The L2,1-norm of matrix X is as follows:

‖ X ‖2,1=

p∑
i=1

√√√√ n∑
j=1

x2
ij =

p∑
i=1

‖ xi ‖2 (2)

where xi (corresponding to feature i) is the ith row of matrix
X . Yang et al. (2012) provided an intuitive explanation of the
L2,1-norm in the literature. To solve the L2,1-norm, we can
compute the L2-norm of each row of X first, record it as a vector
b(X) =

(
‖ x1 ‖2, ‖ x2 ‖2, ..., ‖ xp ‖2

)
, and then compute the L1-

norm of vector b(X). The components of vector b indicate the
importance of each feature. The L2,1-norm favors obtaining a
small number of non-zero rows in matrix X , and then feature
selection will be achieved.

PCA and Graph Laplacian Embedding
Principal Component Analysis (PCA)
Let X = (x1, · · · , xn) ∈ Rp×n (p� n) be a matrix whose rows
represent genes and columns represent samples. PCA is
usually used to find the optimal principal directions VT

=

(v1, · · · , vn) ∈ Rk×n (VTV = I) that define the low-dimensional
(k-dim) subspace. And the projected data points in the low
subspace Vcan be denoted as the elements of the matrix Up×k =

(u1, · · · , uk) ∈ Rp×k. The traditional PCA finds Uand V with the
squared Frobenius norm:

arg
U,V

min ‖ X-UVT
‖

2
F s.t. VTV = I (3)

In our optimization model, the proximal Lp-norm ‖g‖p (0 <
p < 1) (Chartrand, 2012; Nie et al., 2013; Feng et al., 2017) is
used instead of the traditional quadratic loss function ‖g‖F to
reduce the influence of outliers and noise. PCA naturally relates
closely to the classic clustering means known as K-means (Ding
and He, 2004). The optimal principal components contained in
matrix V provide the solution of the K-means clustering method.
It inspired us to combine PCA with Laplacian embedding, whose
principal purpose is also clustering.

Graph Laplacian Embedding
Principal component analysis can find an approximate set of basis
vectors in the case where data usually lie in a linear manifold
(Jiang et al., 2013). In consideration of the local invariance of
the intrinsic geometric structure of the data distribution, graph
Laplacian embedding is a popular method among recent studies
in non-linear manifold learning theory (Belkin and Niyogi, 2002,
2003; Spielman, 2007). The assumption of local invariance is that
if two points (samples) are close in the intrinsic geometry of
the original data distribution, the representations of these two
points (samples) in the new coordinate are also close to each
other. The local geometric structure can be modeled through
a nearest neighbor graph on a scatter of data points. Given
the data matrix X = (x1, · · · , xn) ∈ Rp×n, xi(i = 1, · · · , n)can
be regarded as one data point (one vertex in the graph).
For each data point xi, we find its k

′

nearest neighbors and
put edges between xi and its neighbors. Then, a graph with
n vertices can be constructed, on which the weight matrix

W∈Rn×n is defined. wij is the weight between vertices xi and
xj, it is used to measure the closeness of two points xi and
xj, and it is a symmetric similarity matrix. There are three
popular choices defining the weight matrix on the graph: heat
kernel weighting, 0–1 weighting, and dot-product weighting.
If nodes i and j are connected, using heat kernel weighting,

wij = e
‖xi−xj‖

2

σ , wij = 1 using 0–1 weighting and wij = wT
i wj

using dot-product weighting. The different similarity measures
are suitable for different situations. Detailed information about
the different weighting schemes can be found in the literature
(Cai et al., 2011).

Let ZT
= (z1, z2, · · · , zn) ∈ Rk×n represent the ndata points

in the k-dim embedding coordinates VT
= (v1, · · · , vn) ∈

Rk×n (VTV = I), i.e., the representation of xi in the new low-
dimensional basis is zi = [vi1, · · · , vik]. The “dissimilarity” of the
two data points in the low basis can be measured by the Euclidean
distance or the divergence distance. The Euclidean distance is
adopted in our method. Define the “dissimilarity” of the two
points in the low basis as d(zi, zj) =‖ zi − zj ‖2, combined with
the weight matrix W , and the smoothness of the low-dimensional
representation can be measured by minimizing:

S =
1
2

n∑
i,j=1

‖zi − zj‖2wij

=

n∑
i=1

zTi ziDii −

n∑
i,j=1

zTi zjwij

= Tr(VTDV)− Tr(VTWV) = Tr(VTLV) (4)

where Tr(•)is the trace of a matrix, D=diag(d1,··· ,dn)is a diagonal
matrix, and di=

∑n
j=1 wij . We call the L=D−W the Laplacian matrix

(Spielman, 2007).

METHODOLOGY

The PL21GPCA procedure is presented in this section.
Figure 1 illustrates our general research framework. In brief,
our work includes two steps. The first is obtaining the
optimal projected matrix Up×k and the principal directions
matrix Vk×n via PL21GPCA. The second is to evaluate the
validity of PL21GPCA. In this step, based on the principal
directions matrix Vk×n obtained by PL21GPCA, the classic
clustering method K-means is employed for tumor sample
clustering. According to the projected matrix Up×k, the
differentially expressed genes are selected to carry out gene
network analysis to find the key genes with close relationships
to some cancers.

To summarize, three aspects are highlighted in our method:

(1) To reduce the influence of outliers and noise, the non-
convex proximal Lp-norm ‖g‖p (0 < p < 1) is used on
the loss function, which could improve the robustness
of the optimization model effectively compared with the
other constraints.
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FIGURE 1 | The general schematic framework of the PL21GPCA methodology.

(2) To enhance the sparsity of gene expression in cancer
samples, the L2,1-norm is used on the projected matrix
Up× k.

(3) To retain the intrinsic geometric structure of the
data points (samples), the graph regularization item is
recommended in the optimization model.

Assume the input matrix X = (x1, · · · , xn) ∈ Rp×n (p� n),
which denotes p genes’ expression in n samples. Our goal is to
find the optimal low-dimensional (k-dim) subspace denoted as
VT
= (v1, · · · , vn) ∈ Rk×n (VTV = I) and the projected matrix

Up×k = (u1, · · · , uk) ∈ Rp×k in the low subspace. The traditional
PCA finds Uand V with the squared Frobenius norm in the
solution. In our optimization model, the proximal Lp-norm ‖
g‖p (0 < p < 1) (Chartrand, 2012; Nie et al., 2013; Feng et al.,
2017) replaces the traditional quadratic loss function ‖g‖F to
reduce the influence of outliers and noise. The L2,1-norm is used
on one of the regularization terms to enhance the sparse gene
expression in cancer samples. The graph Laplacian regularization
item emphasizing the local invariance of the intrinsic geometric
structure is recommended in the optimization model.

The objective function of this method is designed as follows:

arg min
U,V

{
‖ X-UVT

‖p +λ ‖ U ‖1
2 +αTr

(
VTLV

)}
s.t. VTV = I, 0 < p < 1, λ > 0, α > 0

(5)

Clearly, the objective function is somewhat intractable because
it is non-convex and non-smooth. We adopt the augmented
Lagrangian multiplier (ALM) (Hestenes, 1969; Bertsekas, 1982;
Spielman, 2007; Lin et al., 2010) to address this optimization
problem. Researchers have proven that the ALM algorithm
possesses Q-linear convergence properties under some
conditions (Bertsekas, 1982).

When using the ALM method to obtain the optimal solution
of (5), we replace X − UVT with E. Eq. (5) can be equivalently
written as:

arg min
E,U,V

{
‖ E ‖p +λ ‖ U ‖1

2 +αTr
(
VTLV

)}
s.t. E-X+ UVT

= 0, VTV = I
(6)
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According to the ALM method, eq. (6) is equivalent to
minimizing:

Lµ,Y (E,U,V) =‖ E ‖p +µ
2 ‖ E-X+ UVT

+
Y
µ
‖

2
F

+ λ ‖ U ‖1
2 +αTr

(
VTLV

)
,

(7)

where Y is the Lagrangian multiplier, and µ is the step size of
the update rule. In (7), there are three variables to be solved. The
alternating direction method (ADM) (Gabay and Mercier, 1976)
is adopted to tackle this thorny problem because the equation
with only one variable is easily solved when the others are fixed.
By this means, (7) naturally results in three subproblems.

Problem 1: When U and V are fixed, (7) is written as follows:

Lµ,Y (E,U,V) =‖ E ‖p +
µ

2
‖ E-X+ UVT

+
Y
µ
‖

2
F (8)

where 0 < p < 1. Eq. (8) can be solved by the proximal shrink
operator denoted as follows:

shrinkp(t, δ) := max{0, |t| − δ|t|p−1
}
t
|t|

(9)

Let t = X − UVT
−

Y
µ

, δ = 1
µ

. Then, according to the shrinkage
operation (soft thresholding) proposed by Chartrand (2012), E is
updated as:

Er+1
= shrinkp

{
X − Ur (V t)T

−
Yr

µr ,
1
µr

}
(10)

Problem 2: When E and V are fixed, (7) is simplified as follows:

Lµ,Y (E,U,V) =
µ

2
‖ E-X+ UVT

+
Y
µ
‖

2
F +λ ‖ U ‖1

2 (11)

To simplify (11), let H = X − E− Y
µ

. Then, (11) is written as:

Lµ,Y (E,U,V) =
µ

2
‖ UVT

−H ‖2
F +λ ‖ U ‖1

2 (12)

The partial derivatives of L with respect to Uare:

∂L
∂U
= µ(UVT

−H)V + 2λQU (13)

where Q∈Rp×p is a diagonal matrix with qi,i = 1
‖U(i,:)‖2

(i =
1, · · · , p) (Xiang et al., 2012). Letting (13) be equal to 0, the
following update rule for U is then obtained:

Ur+1
=

(
I +

2λ

µr Q
r
)−1

HrVr (14)

To simplify (14), let Ar
=

(
I + 2λ

µr Qr
)−1

, and then (14) is written
as:

Ur+1
= ArHrVr (15)

Problem 3: When E and Ware fixed, (7) is simplified as follows:

Lµ,Y(E,U,V) =
µ

2
‖ E-X+ UVT

+
Y
µ
‖

2
F +αTr(VTLV) (16)

With respect to the settings H = X − E− Y
µ

, (16) can be written
equivalently as:

Lµ(E,U,V) = µ
2 ‖ UV

T
−H ‖2

F +αTr(VTLV)

=
µ
2 Tr((UV

T
−H)(UVT

−H)T)+ αTr(VTLV)

(17)
Based on (17), V is found by minimizing:

V = arg
V

minTr(VT(
α

µ
L-HTAH)V) (18)

Therefore, Vr+1 can be obtained as follows:

Vr+1
= (v1, ..., vk) (19)

where (v1, ..., vk) are the keigenvectors corresponding to the
smallest k eigenvalues of the matrix α

µ
L-HTAH. Thus, based on

the ALM, ADM and the shrinkage operation, the solution to solve
the optimization model described in (5) is shown in Algorithm 1.
In the optimization model, there are six parameters k, p, λ, α, ρ, µ

to be pre-determined, among them. As the parameters used to
control the step size in the update rule of AML, we set µ =

10−2 and ρ = 1.2 for all gene expression datasets experiments
(Feng et al., 2016). The parameter k is determined refering
to the number of prior categories of each dataset. For the
three essential parameters p, λ, α, to be determined in (5), we
choose them corresponding to different situations for the best
clustering performance through extensive experiments. Different
parameters are chosen for different datasets. Detailed parameter
selections and discussions are described in section “Experiments
and Discussion.”

EXPERIMENTS AND DISCUSSION

Gene Expression Datasets
Five gene expression datasets, which include one benchmark
dataset, two single-cancer datasets from TCGA, and two
integrated multicancer datasets from TCGA, are used to evaluate

ALGORITHM 1 | The solution to optimized (5).

Input:

Gene expression data matrix: Xp×n ,

Parameters: k , p, λ, α, ρ, µ

Output:

Up×k , Vn×k

Initialize:

E , Y , U, V

Do

Update U by (14)

Update V by (19)

Update E by (10)

Update µ by µ=ρµ

Update Y by Y r+1=Y r+µr (Er−X+Ur (Vr )T )

Update µ by µr+1=ρµr

Until convergence
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the performance of PL21GPCA. The verified experiments consist
of two aspects: “tumor sample clustering” and “gene network
module discovery.” Based on the optimal low-dimensional (k-
dim) subspace denoted as VT=(v1,··· ,vn)∈Rk×n (VTV=I), the classical
clustering method K-means is then used for tumor clustering.
For comparison, extensive experiments are also performed using
existing dimensionality reduction methods, including SPCA
(Journee et al., 2010), RPCA (Candès et al., 2009), gLPCA (Jiang
et al., 2013), pgLPCA (Feng et al., 2017) and GNMF (Cai et al.,
2011). Among the compared methods, some are based on PCA,
and some introduce the graph Laplacian regularization item.
Based on the optimal projected matrix Up×k, the differentially
expressed genes are selected for gene network analysis to find key
genes with close relationships to some cancers.

The details of the five data sets are as follows. The benchmark
gene expression dataset is lung cancer data (Bhattacharjee et al.,
2001) that have often been employed by researchers to evaluate
their algorithms (Lee et al., 2010; Kong et al., 2017), consisting of
12,625 genes of 56 samples. There are four types of lung cancer
in the 56 samples: pulmonary carcinoid (20), colon metastases
(13), small cell lung carcinoma samples (6) and normal lung
samples (17). The two single-cancer datasets and the two
integrated multicancer datasets are all from The Cancer Genome
Atlas (TCGA) which is known as the largest tumor specimens
database. The genomic data provided by TCGA include DNA
methylation, microRNA expression, gene expression, protein
expression, and DNA copy number, etc. We downloaded gene
expression datasets (at level 3) of five different cancers from
TCGA: colorectal cancer (CRC), cholangiocarcinoma (CHOL),
squamous cell carcinoma of head and neck (HNSC), pancreatic
cancer (PAAD), and esophageal cancer (ESCA). Each dataset
consists of 20,502 genes expressed in different numbers of
samples. In our experiments, CRC and CHOL are used as single-
cancer datasets to evaluate the performance of the PL21GPCA
method. There are 281 samples for CRC and 45 for CHOL.
Each of these two datasets contains two types of cancer samples,
“negative” and “positive.” “Negative” or “NT” represents normal
samples. “Positive” or “TP” represents diseased samples. There
are 262 “TP” samples in the CRC data and 36 in the CHOL
data, and the rest are “NT” samples. Two integrated datasets are
used to further verify the performance of the PL21GPCA method.
Each integrated dataset consists of 3 types of cancers. One
of the integrated datasets, H_C_P, contains 836 “TP” samples,
among which the sample numbers of the three cancers are 398
(HNSC), 262 (CRC), and 176 (PAAD). The other integrated
dataset, E_C_C, contains 481 “TP” samples, in which the sample
numbers of the three cancers are 183 (ESCA), 36 (CHOL), and
262 (CRC). The statistics of these datasets are summarized in
Table 1.

Tumor Sample Clustering
Evaluation Metric
Based on the optimal principal directions VT

= (v1, · · · , vn) ∈
Rk×n (VTV = I), the K-means algorithm is then employed
for tumor sample clustering. The accuracy (ACC) and the
normalized mutual information (NMI) are the two most

commonly used metrics to evaluate the clustering results (Cai
et al., 2005). For the ith sample, we use pi to denote the prior label
and ri to denote the obtained clustering label. The metric ACC is
defined as follows:

ACC =
∑n

i=1 θ(pi,map(ri))
n

, (20)

where n denotes the total number of samples in every dataset. The
function θ(x, y) equals 1 if x = y and 0 otherwise. The function
map(ri) maps each obtained cluster label ri to the equivalent prior
label. Let C be the prior set of clusters and C′ be the obtained
set from our algorithm. Define their mutual information metric
MI(C,C′) as:

MI(C,C′) =
∑

p(ci, c
′

j) log2

p(ci, c
′

j)

p(ci) · · · p(c
′

j)
(21)

where p(ci) and p(c
′

j)are the probabilities that a sample arbitrarily
selected from the dataset belongs to clusters ci and c

′

j, respectively,
and p(ci, c

′

j) is the joint probability. In the experiments, the metric
NMI is defined as follows:

NMI(C,C
′

) =
MI(C,C

′

)

max(H(C),H(C′)
(22)

where H(C) and H(C
′

)are the entropies of C and C′ , respectively.
Therefore, the metric NMI(C,C

′

) ranges from 0 to 1. NMI = 1
if the two sets of clusters are identical, and if the two sets are
independent, NMI = 0.

However, a problem that needs to be resolved is that the
K-means algorithm may or may not converge to the same
solution in each run with random initial conditions. Therefore,
the evaluated metrics ACC and NMI obtained by only once-
running of k-means is not enough to explain the result. To
solve this problem, for the given cluster number k, K-means was
run 50 times on each dataset, and the average performance was
computed. As a reference, we also recorded the maximum values
of ACC and NMI of the 50 runs. Thus, four metrics, ACC_max,
ACC_mean, NMI_max and NIM_mean, are used to evaluate our
experiments. Generally, the larger the mean value is, the better
is the clustering performance, and the better are the stability
and robustness of the clustering. This also indicates that the
corresponding dimension reduction method has good robustness
and sparse effect.

TABLE 1 | Statistical information on the experimental data.

Dataset # of genes
(p)

# of
samples (n)

# of
classes (k)

Benchmark Data Lung Cancer 12625 56 4

Single-Cancer Data
from TCGA

CRC 20502 281 2
CHOL 20502 45 2

Integrated Cancer
Data from TCGA

H_C_P 20502 836 3
E_C_C 20502 481 3
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FIGURE 2 | The average performance taking the essential parameter at nine different values from 0.1 to 0.9. (A) The mean value of ACC for different cancer
datasets. (B) The mean value of NMI for different cancer datasets.

Parameter Selection
The PL21GPCA model has three essential parameters, p, λ, and α,
which need to be determined in (5). The range of each parameter
is 0 < p < 1, λ > 0, α> 0. When determining the optimal
value of one parameter, the other two parameters are fixed. We
focus on the influence of the value of p on the performance.
PL21GPCA achieves consistently good performance when the
two regularization parameters λ and α are varied from 10 to
1,000 on all three datasets. Figure 2 shows how the average
performance varies when taking the essential parameter p at
nine different values from 0.1 to 0.9. For every dataset, extensive
experiments are carried out to seek the appropriate parameters
to achieve the best performance for tumor sample clustering.
Thus, different parameters are chosen for different datasets (see
Table 2).

There is another parameter that is not appear in the
objective function of PL21GPCA. However, it is also an
important parameter affecting the performance of our method.
It is parameter k

′

, the number of nearest neighbors of every
point when constructing the graph in the step of graph
Laplacian embedding. Setting this parameter too small may
cause overfitting, and too large may increase the error. By
extensive experiments, we find that the appropriate value for
this parameter is near the square root of the sample number for
different datasets.

Clustering Results
Tables 3–5 show the clustering results on the lung cancer data,
single-cancer data from TCGA (CRC and CHOL datasets), and
integrated cancer data (H_C_P and E_C_C datasets), comparing
the PL21GPCA-based method with the competitors. For each

TABLE 2 | Values of the three parameters p, λ, and α for different datasets.

Dataset Lung Cancer CRC CHOL H_C_P E_C_C

Parameter
selections p = 0.3

λ = 10

α = 100

p = 0.5

λ = 100

α = 100

p = 0.3

λ = 10

α = 100

p = 0.9

λ = 100

α = 100

p = 0.7

λ = 10

α = 100

dataset with a given cluster number k, the K-means algorithm
was run 50 times to randomize the experiments. The maximum
and the mean value metrics are all presented in the tables. The
performance of the PL21GPCA-based method is highlighted in
bold in the tables. Regardless of the datasets, the PL21GPCA-
based method always results in the best performance on the mean
value metrics ACC_mean and NMI_mean. As mentioned above,
the mean value is more meaningful than the maximum value,
which is for reference only. By leveraging the power of three

TABLE 3 | Clustering performance on lung cancer.

Methods ACC (%) NMI (%)

ACC_Max ACC_mean NMI_Max NMI_mean

SPCA 100 84.39 100 83.07

RPCA 100 86.25 100 84.77

GNMF 85.71 79.71 75.57 69.62

gLPCA 89.29 78.5 80.82 69.86

pgLPCA 100 82 100 80.05

PL21GPCA 100 96.82 100 93.44

TABLE 4 | Clustering performance on CRC and CHOL.

Data Method ACC (%) NMI (%)

ACC_Max ACC_mean NMI_Max NMI_mean

CRC SPCA 92.17 87.57 35.3 22.57

RPCA 98.22 67.95 69.82 24.33

GNMF 88.61 60.5 30.79 18.93

gLPCA 90.75 87.01 22.7 15

pgLPCA 94.31 78.65 42.67 20.1

PL21GPCA 99.64 99.64 90.55 90.55

CHOL SPCA 100 93.38 100 60.65

RPCA 100 100 100 100

GNMF 100 100 100 100

gLPCA 100 78.04 100 54.87

pgLPCA 100 81.87 100 59.83

PL21GPCA 100 100 100 100
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TABLE 5 | Clustering performance on H_C_P and E_C_C.

Data Method ACC (%) NMI (%)

ACC_Max ACC_mean NMI_Max NMI_mean

H_C_P SPCA 55.26 51.82 17.85 14.98

RPCA 91.87 77.3 71.43 68

GNMF 57.3 54.02 29.59 22.59

gLPCA 55.62 52.96 29.43 16.89

pgLPCA 86.96 70.26 58.42 45.4

PL21GPCA 96.41 96.41 85.77 85.75

E_C_C SPCA 71.52 67.9 19.28 15.06

RPCA 81.08 76.17 55.72 32.47

GNMF 68.4 62.05 19.03 9.29

gLPCA 70.69 69.58 23.14 19.7

pgLPCA 79.63 72.72 41.33 31.35

PL21GPCA 85.65 84.09 60.31 47.15

measures, including taking the proximal Lp-norm ‖g‖p (0 < p <
1) on the loss function, employing the L2,1-norm regularization
item to insure feature selection, and introducing the Laplacian
regularization item to emphasize the geometrical structure of
the data, the PL21GPCA-based method can always get a better
clustering performance.

For the different types of data used in the experiments, a
number of meaningful points need to be emphasized further.

The benchmark data
For the lung cancer dataset, Table 3 shows that the PL21GPCA-
based method achieves the same performance as SPCA, RPCA
and pgLPCA considering the maximum value metrics (the
ACC_max and the NIM_max are also 100%) but is obviously
superior to the other methods in terms of the mean value
metric (ACC_mean reaches 96.82% and the NIM_mean reaches
93.44%).

Single-cancer data from TCGA
Table 4 shows the clustering performance of the two single-
cancer datasets from TCGA. For the CRC dataset, our method
presents very superior performance compared with other
methods, with the ACC_mean reaching 99.64% as well as the
ACC_max. The good average performance shows the robustness
of the PL21GPCA method. In addition, the two NMI metrics (all
reaching 90.55%) also go far beyond the performance of other
methods. For the CHOL dataset, all the methods achieve the same
results (100%) when considering the maximum value metrics.
Our method achieves the same performance (100%) as GNMF
and RPCA in terms of the mean value metrics. A surmise is
reported that there may be distinct discriminations for the two
kinds of samples in the original CHOL data (Kong et al., 2017).

Integrated multicancer data from TCGA
Table 5 reports the estimation results on the two integrated
datasets. It shows that the PL21GPCA method performs much
better than the competitors. As highlighted in bold in Table 5,
for H_C_P data, the ACC_max and the ACC_mean all reach
96.41%, and the NMI_max and the NMI_mean are also
superior to the corresponding values for other methods. For

E_C_C data, our method is still outstanding; taking the ACC
metric as an example, the ACC_max reaches 85.65%, and the
ACC_mean reaches 84.09%. Based on the excellent performance
on these two integrated datasets, should we speculate that the
PL21GPCA method is more suitable for learning the compact
representation of higher-dimensional and more complex data
than its competitors, which needs further verification.

Finally, as we can see from Tables 3–5, among the compared
methods, the RPCA method performs second to our method and
better than the other competitors, such as SPCA, GNMF, gLPCA,
and pgLPCA. The performance of RPCA is in italics in the tables.
If the intrinsic geometric structure is introduced to RPCA, will
the performance be improved further? This question is also worth
further verification.

Embedding Evaluation
To further show the performance of the novel dimensionality
reduction method compared others, a visualized data distribution
of the low-dimensional embedding corresponding to the first
two components of the PCA-based method are demonstrated.
Besides the proposed method PL21GPCA, the results of three
other methods including SPCA, gLPCA, pgLPCA are compared
because these methods are also the direct extensions of PCA.
Figure 3 presents the sample clustering results in a two-
dimensional space. We choose two representative datasets CRC
data and H-C-P data to show the results. Figures 3A–D are
the results of the compared methods SPCA, glPCA, gpLPCA
and PL21GPCA, respectively, on the CRC dataset. Figures 3E–
H are the compared results of the four methods on the H-C-P
dataset. No matter for the CRC data which contains two types
of cancer samples, or for the H-C-P data which contains three
types of cancer samples, SPCA and gLPCA make the samples
from different categories being mixed together, and the pgLPCA
can only separate the samples into categories roughly, so they
have unideal clustering results. However, PL21GPCA make the
embeddings of samples in clearer distribution. Therefore, the
clustering results is better than the compared methods. The
visualized results verified the robustness and the flexibility of
the proposed model.

Experiments on Simulated data
Experiments on simulation data are also carried out to evaluate
the effectiveness of PL21GPCA. The simulation data used in
the experiment is a matrix X3000×80 generated by rand function
in Matlab. In order to simulate the representation of features
in different types of samples, based on the generated matrix
X3000×80, some changes have also been made. Firstly, we add 1 to
the values of columns 1 to 20 in rows i∗30− 29 (i = 1, · · · 100)
of matrix X3000×80, add 2 to the values of columns 21 to 40 in
rows i∗30− 19 (i = 1, · · · 100), add 3 to the values of columns
41 to 60 in rows i∗30− 9 (i = 1, · · · 100), add 4 to the values
of columns 61 to 80 in rows i∗30− 5 (i = 1, · · · 100), add 2 to
the values of columns 21 to 40 in rows i∗30− 25 (i = 1, · · · 100),
add 1 to the values of columns 1 to 20 in rows i∗30− 15 (i =
1, · · · 100), which means that the 80 samples in the simulation
data contain four categories. Secondly, we use the function
imnoise in matlab to add different sizes of Gaussian white noise
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FIGURE 3 | A visualized comparison of low-dimensional embeddings by SPCA, gLPCA, pgLPCA, and PL21GPCA on COAD and H-C-P datasets. (A–D) Are the
results of the compared methods SPCA, glPCA, gpLPCA, and PL21GPCA respectively on the CRC dataset. (E–H) Are the compared results of the four methods on
the H-C-P dataset.

to X. The mean value of the added Gaussian white noise is 0 and
the variance σ2 is chosen in the range of [0.4∼1.2]. Next, we use
the proposed method PL21GPCA and the compared methods
to reduce the dimension and denoise the simulated data, and
then use the K-means method to cluster the denoised data, the
evaluation metric ACC_mean mentioned above is used to test
the effectiveness of the method. the K-means algorithm is run 50
times to randomize the experiments.

Table 6 shows the experiments results on simulated data.
It can be seen evidently that the performances of all methods
change with the increase of noise. The best performance of
different methods when adding different noises are marked
with black bold. Although the performance of pl21GPCA is
second only to RPCA when the noise is low (σ2

= 0.4), with
the increase of Gaussian white noise, the effect of our proposed
method is mostly ahead of other methods especially when σ2

=

0.6, 0.8, 1.2, which shows that the new method has better de-
noising ability and robustness.

TABLE 6 | Clustering performance on simulated data with different
Gaussian white noise.

Simulated data SPCA RPCA GNMF gLPCA gpLPCA PL21GPCA

σ2=0.4 96.6 99.75 95.35 87.37 89.47 99.45

σ2=0.6 94.35 91.33 94.35 84.68 86.45 97.45

σ2=0.8 85.87 91.1 93.85 83.2 85.57 94.35

σ2=1.0 80.12 90.85 93.4 86.48 85.67 93.33

σ2=1.2 70.25 76.43 73.58 85.83 82.12 87.15

Gene Network Module Discovery
Due to the outstanding performance of our method on the CRC
dataset and the integrated H_C_P dataset, the construction and
analysis of the gene network are based on these two datasets. The
strategy of gene network module discovery involves two steps.
First, the genes for constructing the co-expression gene networks
are selected. Second, based on the filtered genes, co-expression
networks are established, and then the key genes that may be
closely related to some cancers are analyzed.

Gene Selection
In this step, there are two problems to be solved: one is how to
select genes, and the other is how many to select. It is known
that among thousands of genes, only a handful of them regulate
a specific biological process (Delbert et al., 2005; Liu et al., 2013).
These minority of genes are called differentially expressed genes
(Liu J. et al., 2015). In this article, the differentially expressed
genes are selected to carry out gene network analysis according to
the projected matrix Up×k. Now, we mark the optimal projected
matrix Up×k as Ũ; therefore, these differentially expressed genes
can be identified according to Ũ (Liu J. et al., 2015; Feng et al.,
2016). We denote Ũas follows:

Ũ =


ũ11 ũ12 · · · ũ1k
ũ21 ũ22 · · · ũ2k
...

...
. . .

...

ũp1 ũp2 · · · ũpk

 (23)
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FIGURE 4 | The first three modules of the constructed network based on the CRC data. The five marked genes SPARC, ABCC12, COL6A3, LUM, and RPS3 have
been confirmed to be associated with CRC and other cancers. (A) Module 1; (B) Module 2; (C) Module 3.

The upregulated genes are reflected by the positive value in the
matrix Ũ, and the downregulated genes are reflected by the
positive value (Liu et al., 2013). Therefore, the absolute value
of the items in Ũ is used to identify the differentially expressed
genes. The items of each row in Ũ are summed, and then the
evaluating vector denoted as Û is obtained:

Û =

 k∑
j=1

ũ1j

k∑
j=1

ũ2j · · ·

k∑
j=1

ũpj

T

(24)

The larger item in Û indicates the more strongly differentially
expressed gene. Therefore, we sort the elements in Û in
descending order and take the top l(l� p) elements. In
many studies, it has been unclear how many genes should
be selected for gene network analysis. Since only a small
number of genes can regulate a specific biological process,
these genes may play a decisive role in the clustering results
of tumor samples. In this paper, the number of genes used for
constructing the gene network is determined according to the
clustering performance based on the selected genes. Through
experimentally investigating the clustering performance with the
number of selected genes varied from 500 to 2000, it is found that

the clustering results corresponding to 1600 genes are best for the
CRC data and 700 for the H_C_P data.

Construction of Gene Networks
Suppose l differentially expressed genes are used to construct
the gene network. Let matrix Rl×n denote the l gene expression
in n samples. We use the Pearson correlation coefficient (PCC)
(Hou et al., 2019) to measure the correlation of any two genes
in Rl×n. The values in the PCC matrix vary in the range of
[0, 1]. The larger the PCC value is, the higher the correlation
is. Based on matrix Rl×n, an adjacency matrix Al×l can be
calculated. According to the adjacency matrix, an intuitive
visualized graph of the gene interaction network composed of
several modules is obtained.

Analysis of Gene Network Modules
There are 39 modules, including 218 nodes and 504 edges, in
the constructed network based on the CRC data. We analyzed
the top 10 nodes (genes) with higher degrees in the first three
modules that retained more relevant interactions. The degree
of the node (gene) shows its role in the network modules. The
larger the degree of the node (gene) is, the more important
the node (gene) is, and such nodes (genes) may retain the
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tight connectivity of the network. Figure 4 shows the main
part of the first three gene network modules in which a small
number of nodes whose degree is very low have been removed.
The roles of the top ten genes in the first three modules are
illustrated in Figure 4. The degree value of a node in Figure 4
is represented by its size and color. The larger the node is,
the darker its color is, which corresponds to a larger degree of
the node. Referring to GeneCard with its website http://www.
genecards.org/, we list the annotations of the top ten genes
in Table 7. Five of the top ten genes have been validated as
associated with multiple cancers: SPARC, ABCC12, COL6A3,
LUM, and RPS3. The corresponding nodes of these genes are
marked with a black outline in Figure 4 and are also shown in
bold in Table 7. In the literature (Liu Q. Z. et al., 2015), the
gene SPARC has been recommended as a predictor of colorectal
cancer. The gene ABCC12 is a human ATP binding cassette
(ABC) transporter and is a multidrug resistance protein (MRP9).
However, MRP9 has been recognized as an important target
for the immunotherapy of breast cancer (Bera et al., 2002).
Studies have shown that colorectal cancer can be predicted by
the gene COL6A3 because it is overexpressed in samples of
colorectal cancer. Therefore, COL6A3 is considered a potential
diagnostic and prognostic marker gene for colorectal cancer
(Qiao et al., 2015). As one of the members of the leucine-rich
proteoglycan family, the gene Lumican (LUM) is overexpressed
in many kinds of cancers, including colorectal, neuroendocrine,
cervical, carcinoid, breast, and pancreatic cancer. LUM also
causes the growth and invasion of pancreatic cancer (Ishiwata
et al., 2007). The ribosomal protein gene S3 (RPS3) is also
overexpressed in colorectal cancer. Researchers found an increase

TABLE 7 | Annotations of the top ten genes in the first three network modules
based on CRC data.

Gene Summary

RPL32 A protein coding gene. Diseases associated with RPL32 include
frontal convexity meningioma and retinitis pigmentosa 49

SPARC Diseases associated with SPARC include osteogenesis
imperfecta, type xvii and osteogenesis imperfecta, type iv

TMEM59L TMEM59L (Transmembrane Protein 59 Like) is a protein coding
gene. An important paralog of this gene is TMEM59

LOC642929 LOC642929 (General Transcription Factor II, I Pseudogene) is a
pseudogene

ABCC12 Diseases associated with ABCC12 include familial cold
autoinflammatory syndrome 1 and episodic kinesigenic
dyskinesia 1. An important paralog of this gene is ABCC11

COL6A3 A protein coding gene. An important paralog of this gene is
COL6A6

LUM Among its related pathways are defective ST3GAL3, which
causes MCT12 and EIEE15, and keratin sulfate/keratin
metabolism

LHX2 LHX2 (LIM Homeobox 2) is a protein coding gene. Diseases
associated with LHX2 include schizencephaly and retinitis
pigmentosa

TLCD3B TLCD3B (TLC Domain Containing 3B) is a protein coding gene.
An important paralog of this gene is TLCD3A

RPS3 Diseases associated with RPS3 include eumycotic mycetoma
and Waardenburg syndrome, type 3

in ribosome synthesis in patients with colorectal cancer (Pogue-
Geile et al., 1991). Although the other five genes RPL32,
TMEM59L, LOC642929, LHX2, and TLCD3B have not been
identified in clinical studies indicating their effect on cancers,
they may be considered candidate oncogenes because of their
high ranking in our constructed gene network modules. By
constructing co-expression gene network modules based on the
CRC dataset, we found some disease-causing genes for colorectal
cancer and other related cancers. It shows that constructing gene
network modules via the genes filtered based on PL21GPCA can
help us discover the key oncogenes.

The constructed network based on the integrated data H_C_P
includes 157 nodes and 644 edges. We analyzed the five important
nodes (genes) with higher degrees in the first three modules
that retained more relevant interactions. Figure 5 illustrates
the main part of the first three gene network modules in
which the nodes of very low degree have also been removed.
Referring to GeneCards, their annotations are listed in Table 8.
The five genes RPL32, EEF1G, SPRR1B, COL1A2, and MMP2
have been recognized to be related to multiple cancers. The
corresponding nodes of these genes are marked with a black
outline in Figure 5. Wan et al. (2004) conducted large-scale
experiments on human liver cancer cells. Research has shown
that RPL32 is one of the potential genes that affect human
cell growth and cancer formation and provides an important
tool for diagnostic markers and drug targets (Wan et al., 2004).
EEF1G has been thought to be a characteristic gene for colorectal
cancer; it is highly expressed in most colorectal cancers and
could be considered a marker gene for colorectal cancer detection
(Matassa et al., 2013). In addition, the expression level of
EEF1G in pancreatic tumor cells was higher than that in normal
cells (Lew et al., 1992). SPRR1B is overexpressed in human
oral squamous cells. It has been experimentally proven that
SPRR1B overexpression in cells will signal MAP kinases but
inhibit MAP kinase signals, so SPRR1B can affect cell growth
and maintenance (Michifuri et al., 2013). Kiyoshi Misawa and
other researchers mainly studied the expression of COL1A2 in
head and neck squamous cell carcinoma (HNSC) and found
that hypermethylation of CpG may cause inactivation of the
gene COL1A2. Therefore, the COL1A2 gene may affect the
formation and development of HNSC and could become a major
biomarker (Misawa et al., 2011). As a member of the matrix
metalloproteinase (MMP) gene family. MMP2 is relevant to the
generation of malignant tumors, including colorectal cancer, lung
cancer, and breast cancer (Yu et al., 2002; Arajo et al., 2015;
Ren et al., 2015). Analysis through the gene network constructed
based on integrated multicancer data is helpful for mining the
interrelationships between different cancers and genes. It may
provide an important reference for the diagnosis and treatment
of various diseases.

CONCLUSION AND SUGGESTIONS

In this article, we propose a new dimensionality reduction
method named PL21GPCA based on PCA for robust tumor
sample clustering and gene network module discovery. Based
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FIGURE 5 | The first three modules of the constructed network based on the H_C_P data. The five marked genes RPL32, EEF1G, SPRR1B, COL1A2, and MMP2
have been confirmed to be associated with multiple cancers. (A) Module 1; (B) Module 2; (C) Module 3.

on the traditional PCA, the non-convex proximal Lp-norm
‖g‖p (0 < p < 1)is applied on the loss function to decrease
the sensitivity to outliers and noise. The L2,1-norm is used on
the projected matrix to enhance the sparse gene expression in
cancer samples. The graph regularization item is introduced
to the optimization model to retain the geometric structure
of the data. Five gene expression datasets, including one
benchmark dataset, two higher-dimensional single-cancer
datasets from TCGA, and two integrated multicancer
datasets from TCGA, are used to evaluate the performance
of our method. The compared experiments demonstrate
that the PL21GPCA method outperforms many existing
methods in terms of tumor sample clustering. Moreover,
this method is employed to discover gene network modules
to find the key genes with close relationships to cancers.
The results of our study may be a useful reference for
clinical diagnosis.

There are some suggestions for future research. First, in
the optimization model of PL21GPCA, the constraint used
on the loss function is the non-convex proximal Lp-norm
‖g‖p (0 < p < 1), since Lp-norm minimization can result in
a sparser solution than the L1-norm and perform better in
terms of robustness to outliers than the L2-norm. However, in
addition to the generalized shrinkage operation proposed by
Chartrand (2012), there are some other suggestions to address

the Lp-norm (0 < p < 1) minimization (Guo et al., 2013; Qin
et al., 2013) problems. Therefore, we will continue to explore
other solutions to the optimization model with the Lp-norm
‖g‖p (0 < p < 1). Second, we will evaluate the performance of
PL21GPCA as a compact representation method combined with
other methods, including supervised and unsupervised clustering
methods such as spectral clustering, support vector machine
(SVM) or their improved versions. Third, as mentioned above,
the PL21GPCA method gets especially outstanding performance

TABLE 8 | Annotations of the most important five genes in the first three network
modules based on H_C_P data.

Gene Summary

RPL32 A protein coding gene. Diseases associated with RPL32 include
frontal convexity meningioma and retinitis pigmentosa 49

EEF1G Diseases associated with EEF1G include gastrointestinal
carcinoma. Among its related pathways are viral mRNA translation
and gene expression

SPRR1B A protein coding gene. An important paralog of this gene is
SPRR1A

COL1A2 Among its related pathways are ERK signaling and IL4-mediated
signaling events

MMP2 Among its related pathways are direct p53 effectors and
development endothelin-1/EDNRA signaling
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for processing the integrated data, so we will use the PL21GPCA
method to process many other integrated data to verify its
performance further.
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