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Nucleocapsid proteins: roles
beyond viral RNA packaging
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Viral nucleocapsid proteins (NCs) enwrap the RNA genomes of viruses to form
NC–RNA complexes, which act as a template and are essential for viral replica-
tion and transcription. Beyond packaging viral RNA, NCs also play important
roles in virus replication, transcription, assembly, and budding by interacting
with viral and host cellular proteins. Additionally, NCs can inhibit interferon sig-
naling response and function in cell stress response, such as inducing apoptosis.
Finally, NCs can be the target of vaccines, benefiting from their conserved gene
sequences. Here, we summarize important findings regarding the additional
functions of NCs as much more than structural RNA-binding proteins, with spe-
cific emphasis on (1) their association with the viral life cycle, (2) their association
with host cells, and (3) as ideal candidates for vaccine development. © 2016 Wiley

Periodicals, Inc.
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INTRODUCTION

The nucleocapsid proteins (NCs) of RNA viruses
encapsulate the viral RNA genome to form a hel-

ical nucleocapsid containing an NC–RNA complex,
which usually serves as a template for viral transcrip-
tion and replication1–4 (Figure 1). In addition, NCs
can interact with various other macromolecules,
including those of viral and cellular origins. For some
negative-stranded RNA viruses, NCs can interact
with themselves and phosphoproteins (Ps),5,6 and
NC–P complexes can form cytoplasmic inclusion
bodies (IBs) that contain viral RNA and may func-
tion as virus replication ‘factories.’5 NC of vesicular
stomatitis virus (VSV) alone binds to RNA with high
affinity but with little or no sequence specificity, and
the P protein associates with a nascent NC to form
an NC0

–P (free of RNAs) complex, thereby prevent-
ing the NC from binding to cellular RNAs.6 While
Hantavirus NC can specifically recognize the viral
RNA panhandle and high-affinity interactions
between trimeric NC and RNA panhandles are

conserved within the genus Hantavirus.7 Further-
more, NC–RNA complexes can protect viral RNA
from nuclease digestion and NCs that lose their
RNA-binding activity are no longer able to protect
viral RNA from nuclease digestion.

In the late stage of viral life cycle, to initiate the
assembly and release of virions, NCs can prevent
generating redundant viral genomes or viral proteins
by regulating transcription and replication8; there-
fore, in some viruses, NCs regulate the genome tem-
plate switching from production nonstructural
proteins to structural proteins,9 or change model for
the switch from transcription to replication.10,11 In
addition, viruses also can use and bind to cellular
replication complexes to facilitate their own replica-
tion.8 In the process of virus budding, the interaction
of NCs with matrix (M) protein is responsible for the
incorporation of NC–RNA into virions, and, in some
instances, NCs can enhance or are required for the
release of virus-like particles (VLPs) in which M pro-
tein is a key factor.12

The functions of NCs as a key adaptor mole-
cule between virus and host cell processes are diversi-
fied. NCs inhibit cellular antiviral immune response
by disturbing the function of key proteins in antiviral
immune signaling pathways, such as TANK-binding
kinase 1 (TBK1) and IFN-regulated factor
3 (IRF3).13 Furthermore, NCs directly interfere with
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the host cell cycle, and trigger apoptosis14 and
autophagy.15

Furthermore, NCs conserved genome sequence
and critical role in the viral life cycle make NCs an
ideal target for vaccine development, and vaccines
based on NCs are safe and effective inducing immu-
nodominant response and in clinical therapy.

THE FUNCTION OF NC IN VIRUS
LIFE CYCLE

NC Regulates Viral Transcription and
Replication
The primary role of NCs in virus life cycle is to
encapsulate the RNA genome to form a helical NC–
RNA complex. For most viruses belonging to para-
myxoviridae family, genome length is a multiple of
six (the ‘rule of six’) because NC monomer exactly
associates with six nucleotides.16,17 Recently, a novel
study showed that the structure of parainfluenza
virus 5 (PIV5) NC–RNA complex at 3.11-Å resolu-
tion, suggesting that six nucleotides bind to per NC,
consistent with the ‘rule of six’ and high amino acid
conservation exist in the RNA-binding pocket and
for the scheme of RNA packaging18 within NC. In
addition to this function, NCs also play critical roles
in virus transcription and replication (Figure 1).

To find the critical amino acids in NCs which is
responsible for viral transcription and replication,
mutations within NCs have been made to explore the
effect of NCs on transcription and replication,
15 amino acid substitutions in NCs of influenza A
virus (IAV) decreased the transcription and replica-
tion of the viral genome and also dramatically wea-
kened the growth of viruses, as evidenced by
comprehensive mutational analysis and in vitro repli-
cation assay.19 Another study showed that several
mutations in NCs affected the packaging the multiple
viral genome RNA (gRNA) segments into progeny
virions.20 Alternations of nine amino acids in

bunyamwera orthobunyavirus NC severely impaired
RNA synthesis, furthermore, 57 viable recombinant
bunyamwera orthobunyavirus viruses with mutations
in NC were recovered via reverse genetics and dis-
played a range of plaque sizes and titers in cell cul-
ture, and a number of viruses were shown to be
temperature sensitive.21 For coronavirus mouse hepa-
titis virus, NC interaction with nsp3, a component of
the viral replicase complex,22 is indispensable for the
enhancement of the infectivity of genomic RNA, sug-
gesting that NC–nsp3 interaction serves as a dock to
recruit the viral genome to the replicase complex for
the initiation of viral infection.23

In addition, NCs also can associate with trans-
lation initiation complex for viral replication. NC of
hantavirus was shown to have a critical role in
directly mediating viral translation initiation via two
ways: (1) The NC interacts with the 43S preinitiation
complex and replaces eIF4G (which links the mRNA
cap with the 43S preinitiation complex) and eIF4A
(a helicase necessary for translation initiation) to
facilitate the loading of ribosomes onto capped
mRNA and ensure the efficient translation of viral
mRNA,24 and (2) the NC specifically interacts with
ribosomal protein 19 (a structural component of the
40S subunit), which causes the host translation
machinery to preferentially bind to the viral tran-
scripts by facilitating ribosome loading on capped
viral mRNAs owing to the higher affinity of the NC
to bind to ribosomal protein S19.25,26 The cellular
protein eEF1A interacts with the respiratory syncytial
virus (RSV) replication complex by binding to the
NC and consequently facilitates gRNA synthesis and
viral production.27 An eEF1A plays a similar role in
tobacco mosaic virus28,29 and tomato bushy stunt
virus30,31 via interaction with the NCs. Another
example of NC association with cellular protein is
that human immunodeficiency virus (HIV) NC binds
to Tat and significantly reduces the level of Tat but
not mRNA expression via the proteasomal pathway,
which results in the decrease of transcriptional acti-
vation at the late stage of the viral infection cycle.32

Furthermore, both poly [ADP–ribose] polymerase
1 and poly (A)-binding protein (a host cellular pro-
tein that enhances translational efficiency) play an
important role in the Porcine reproductive and respi-
ratory syndrome virus (PRRSV) life cycle via their
interaction with the NC; the former increases the
propagation of PRRSV, and the latter enhances viral
replication.33,34

In addition to being required for gRNAs pack-
aging into the virion,35 NCs also highly regulate the
replication of coronavirus gRNA. In a previous
study, the transcription of coronavirus gRNA was

Viral gRNA
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FIGURE 1 | Nucleocapsid proteins (NCs) package the viral
genome RNAs (gRNAs). For RNA viruses, NCs enwrap the viral gRNAs
to form NC–RNA complexes, which act as a template for viral
replication and transcription. NCs also interact with viral polymerase
complexes to form ribonucleoprotein (RNP) to initiate the viral
replication and transcription.
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regulated by the template switching to generate
shorter, longer subgenomic (sg) mRNAs and gRNAs
through a unique discontinuous transcription mech-
anism36 (Figure 2(a)). The phosphorylation of NC-
regulated glycogen synthase kinase-3 (GSK3) is
required for the template to switch from discontinu-
ous to continuous transcription, and NC–GSK3
interaction is the base of the direct phosphorylation
effect of GSK3 on NCs. Furthermore, phosphory-
lated NCs can recruit the RNA helicase DEAD

(Asp-Glu-Ala-Asp) box helicase 1 (DDX1) to the
phosphorylated NC-containing complex through
directly interaction with DDX1,9 which is critical for
the production of longer several subgenomic mRNAs
(sgmRNAs) and gRNAs.36 Therefore, GSK3 inhibi-
tion, DDX1 knockdown, or helicase activity substitu-
tion reduces the production of longer sgmRNAs and
gRNAs but not short sgmRNAs.36 As a result, viral
RNA synthesis and replication were also decreased,
suggesting that NC phosphorylation mediated by
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FIGURE 2 | Viral nucleocapsid proteins (NCs) function in several stages of the virus life cycle. After virus entry into the cell, inclusion bodies
(IBs) were formed to be the center of transcription and replication, and the NC was one of indispensable partners of IBs. NCs package the viral
RNA, to protect the viral RNA from digestion by RNase, and together with other viral components into viral particles, which then mature and yield.
(a) NC of coronavirus can be phosphorylated by Glycogen synthase kinase-3 (GSK3), which enhance the interaction of NC and DDX1 to facilitate
template switching from discontinuous to continuous transcription for producing longer sgmRNAs and genome RNAs (gRNAs); (b) NCs package the
viral RNA and associate with other viral proteins to form viral replication ‘factory’; (c) Hepatitis C virus (HCV) core protein interacts with the μ
subunit of clathrin adaptor protein complex 2 (AP2M1) which is phosphorylated by AP2 associated kinase 1 (AAK1) and cyclin G associated kinase
(GAK), and dephosphorylated by Phosphatase 2A (PP2A), and phosphorylated AP2M1 helps NC for assembly; diacylglycerol acyltransferase
1 (DGAT1) can recruit core protein to lipid droplets to facilitate the interaction of core with HCV non-structural protein 5A (NS5A) protein;
mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) increased HCV internal ribosome entry site (IRES)-mediated translation
and this activity was further enhanced by core protein; (d) NCs interact with M protein and cdE2 to facilitate the viral budding.
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GSK3 plays an important role in regulating the viral
life cycle.8

NC Regulates Viral Assembly and
Budding
The core protein of hepatitis C virus (HCV) has a
general feature of the NC, which mediates RNA
packaging to form the viral nucleocapsid. The core
protein of HCV also affects the viral life cycle by
interacting with various cellular proteins. Previous
studies have shown that the association of the core
protein of HCV with AP2M1 is essential for viral
assembly but not for HCV RNA replication. The
phosphorylation of AP2M1 by the serine/threonine
kinases AAK137 and GAK38,39increases the binding
of core protein to AP2M1; conversely, dephosphory-
lation of AP2M1 by PP2A40 impaired its interaction
with core protein and HCV assembly. Furthermore,
pharmacologic inhibition of core protein-AP2M1
interaction was shown to negatively regulate HCV
assembly41 (Figure 2(c)). In addition, triglyceride-
synthesizing enzyme acyl CoA: diacylglycerol acyl-
transferase 1 can recruit core protein to lipid droplets
to facilitate the interaction between core and NS5A
proteins42 (Figure 2(c)). Core protein was also found
to interact with mitogen-activated protein kinase-
activated protein kinase 3 (MAPKAPK3), a serine/
threonine protein kinase that is activated by stress.
HCV infection can increase MAPKAPK3 expression
at both the RNA and protein levels. Knockdown of
MAPKAPK3 resulted in a reduction of viral proteins
and HCV propagation but not HCV RNA levels.
MAPKAPK3 increased HCV IRES-mediated transla-
tion, and this activity was further increased by core
protein, suggesting that HCV core protein facilitates
its own propagation by modulating MAPKAPK343

(Figure 2(c)).
The release process of VLPs can mimic virion

budding. The formation of VLPs is critically depend-
ent on the presence of the viral matrix (M) proteins,
and, in some instances, NCs can also be incorporated
into VLPs. Furthermore, for some other viruses, the
NC is absolutely required for VLP formation and
release. Our previous studies showed that expression
of the human parainfluenza virus type 3 (HPIV3) M
protein alone is sufficient to initiate the release of
VLPs,44 and our unpublished data further showed
that the NC can be incorporated into VLPs via inter-
action with M protein, suggesting that the NC med-
iates transcription or replication complexes into
virions by interacting with M protein. Another study
showed that M protein is necessary and sufficient for
Newcastle disease virus VLP budding (Figure 2(d)).

Furthermore, that group suggested that M–NC inter-
actions are responsible for the incorporation of the
NC into VLPs and that F protein is incorporated
indirectly owing to interactions with NC and HN
protein.45 Similarly, in Mopeia virus, the incorpora-
tion of the NC into viral VLPs is highly selective39,46

and induced by matrix Z protein; the same is true for
Nipah virus47,48 and HPIV1.49

However, for PIV5, not only M protein, but
also the NC and F or HN protein are critically
required for VLPs formation and release, and the
results derived from CsCl density gradient centrifuga-
tion indicated that almost the entire NC in the cells
had assembled into nucleocapsid-like structures.50

For Ebola virus, the C-terminal 50 amino acids of
the NC may interact with VP40 and enhance the
release of VP40 VLPs.12 Furthermore, for Mumps
virus, M induces the release of only a small quantity
of VLPs when expressed alone, but when coex-
pressed with the NC and F protein, maximum VLPs
were obtained.51 Similarly, for coronaviruses such as
mouse hepatitis coronavirus,52 severe acute respira-
tory syndrome coronavirus (SARS)53 and infectious
bronchitis virus (IBV),54 the NC also can greatly
increase the VLP yield.

In addition, for most enveloped viruses, bud-
ding is initiated from the plasma membrane. The crit-
ical process for budding is the interaction of viral
matrix with transmembrane glycoprotein and NCs
participate and play an important function in this
process. Alphavirus NC binds to the cytoplasmic
domain of the E2 glycoprotein (cdE2) to facilitate
virus budding55 (Figure 2(d)).

NC Regulates Viral RNA Stability
Our recent study revealed a new role for the NC of
VSV beyond its role in RNA encapsidation. Using a
well-established VSV minireplicon assay, we found
that three triple-amino acid substitutions (TVK4-
6A3, RII7-9A3, and VIV13-15A3) and one single-
amino acid substitution (R7A) within the N-terminal
21 amino acids of the NC resulted in RNA synthesis
loss, whereas all the mutants maintained the ability
to oligomerize and encapsidate viral RNA. Further-
more, Northern blotting analysis of nuclease sensitiv-
ity of gRNAs encapsidated by the NC or mutants
showed that all the mutants failed to protect viral
RNAs from nuclease digestion, suggesting that NCs
are also involved in the protection of viral gRNA
from nuclease digestion for the formation of a func-
tional viral RNA template.56 Similarly, a recent study
showed that the positively charged and polar amino
acids in the surface cleft of the NC of tomato spotted
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wilt virus are critical for viral RNA template func-
tion, and a subsequent study found that the NC of
tomato spotted wilt virus was indeed able to protect
the RNA from the degradation of RNase; the
mutants of NC, R94A/R95A and K183A/Y184A,
which lost the RNA-binding activity, were no longer
able to protect the RNA from RNase degradation.57

NC Regulates Inclusion Body Formation
IBs are characteristic features generated by some
negative-stranded RNA viruses in which viral pro-
teins, genomes, and host factors are concentrated
together for efficient replication of virus.58 NCs are
indispensible for the formation of IBs, or are incorpo-
rated into IBs. Human metapneumovirus NC and P
proteins provide the minimal viral requirements for
human metapneumovirus IB formation, and the N-
terminal 28 amino acids of NC do not need to bind
to P but are necessary for the recruitment NCs to IBs
and formation of cytoplasmic IBs.59 Marburg virus
(MGBV)-induced IBs contain four proteins (NC,
VP35, VP30, and L), which may represent the key
components of the MGBV transcription and replica-
tion machinery.60 The results from immunoelectron
microscopy showed that MGBV NCs assemble into
large aggregates that localize on the membranes of
the rough endoplasmic reticulum (ER), and NCs
formed tubule-like structures similar to MGBV-
induced IBs.61

Our studies also showed that the association of
the NC with P protein of HPIV3 is sufficient for the
formation of IBs, which contain viral RNA, P, and
polymerase in HPIV3 infected cells (Figure 2(b)); the
NC mutant protein (NCL478A) was unable to form
IBs when coexpressed with P protein because
NCL478A lost the ability to interact with P; whereas
coexpressed NC with NCL478A rescued the IB form-
ing ability and replication activity, thereby suggesting
that complexes formed by the NC and NCL478A are
functional and competent to form IBs.5 Similarly,
RSV NC and P were also sufficient to form cytoplas-
mic IBs and further research showed that at early
RSV infection, melanoma differentiation-associated
gene 5 (MDA5) colocalized with viral genomic RNA
and the NC, and at the later of infection, MDA5 and
mitochondrial antiviral signaling (MAVS) were pack-
aged into large viral IBs. When the NC and P were
coexpressed or infection with RSV had begun, the
NC was always infinitely close to MDA5 and MAVS
in IBs throughout, which significantly resulted in a
decrease in the expression of interferon (IFN) β
mRNA, suggesting that NC regulates the formation
of IBs and prevents antiviral signaling by interacting

with MDA5 and localizing close proximity to
MAVS.62 In addition, it was also found that M pro-
tein of RSV can associate with cytoplasmic IBs for
assembly. If a target for novel antiviral therapy can
block the association of M with NC, inhibiting viral
assembly may be possible.63 Other findings suggested
that F protein interaction with IBs is an important
step in the virion assembly process.62

THE EFFECT OF NC ON HOST CELL

NC Regulates Cell Cycle
NC of SARS virus can be modified by sumoylation,
and this modification plays a critical role in the
NC-mediated interference of host cell division.64 In
addition, NCs can be phosphorylated by cyclin-
dependent kinase (CDK) and phosphorylated NCs
directly inhibit the activity of the cyclin–CDK com-
plex, which plays a critical role in cell cycle regula-
tion.65 Both studies suggest that NCs can deregulate
the cell cycle by multiple mechanisms to facilitate
viral replication. Herpes simplex virus,66,67

cytomegalovirus,68,69 and Epstein-Barr virus70 can
arrest the cell cycle at G1 phase. An IBV infection
was shown to induce cell cycle arrest at both S and G
(2)/M phases for the enhancement of viral replication
and progeny production through the interaction of
nsp3 and DNA polymerase δ and induce cellular
DNA damage response (Table 1).72

NC Regulates Innate Immunity
RNA viral infection of cells can be recognized by two
cytoplasmic RNA helicases: RIG-I and MDA5
(termed RIG-like receptors).73 The binding of an
RNA ligand to these pathogen recognition receptors
leads to phosphorylation and dimerization of IRF3,
which subsequently induces type I IFN production.74

A recent study showed that RIG-I is capable of recog-
nizing incoming NC-packaged viral genomes with a
50ppp double-stranded RNA ‘panhandle’ structure
which triggers IFN activation and is independent of
viral RNA synthesis, suggesting that perhaps RIG-I
thereby directly interacts with the panhandle of viral
genome or the ribonucleoprotein complex and trig-
gers the activation of IRF375 (Figure 3). Cytoplasmic
entry of NCs is the proximal RIG-I-sensitive step
during infection, and viral NCs with a 50ppp double-
stranded RNA panhandle act as a RIG-I activator.73

However, IFN induction and production are also
inhibited by the NCs of many RNA viruses via vari-
ous strategies.

For negative-strand RNA viruses, NC of Andes
virus (ANDV) can uniquely inhibit IFN signaling
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responses by interfering with TBK1 autophosphory-
lation and activation and by inhibiting TBK1-
directed IRF3 phosphorylation and NF-κB activa-
tion.76 In addition, the NC of ANDV acts as a new
protein kinase R (PKR) inhibitor by inhibiting PKR
dimerization, which leads to PKR autophosphoryla-
tion inactivation. By destroying the PKR antiviral
response, the NC of ANDV ensures the continuous
synthesis of viral proteins required for efficient viral
replication and survival in infected hosts77 (Figure 3).
Other studies showed that the lymphocytic choriome-
ningitis virus NC binds to the kinase domain of IκB
kinase-related kinase (IKKε) to block IKKε autocata-
lytic activity and the ability to phosphorylate IRF3,
and the NC-IKKε interaction plays a crucial role in
arenavirus-host interaction.77 With the exception of
Tacaribe virus, all the NCs of arenaviruses from both
Old World and New World antigenic groups disrupt
innate antiviral defense by inhibiting the activation of
IRF-3 as well as the nuclear translocation of IRF-3,78

and several residues spanning residues 382–386 of
the NC of prototypic arenavirus lymphocytic chorio-
meningitis virus have been found to contribute to the
inhibition of type I IFN production.79 For Lassa
virus, an Old World arenavirus, a conserved
DEDDH RNase domain within the NC is involved in

type IFN suppression, thus allowing the establish-
ment of a productive early viral infection and possi-
bly contributing to the process of viral RNA
replication.80 All the catalytic mutants D389A,
E391A, D466A, D533A, and H528A showed a com-
plete loss function of suppressing IFN.81–83 Further-
more, natural killer (NK) cells are strongly activated,
and antigen-presenting cell-mediated NK cell
responses were also significantly increased as evi-
denced by the responses of NK cells to dendritic cells
and macrophages when infected by recombinant
Lassa virus with mutations at residues D389A in the
NC.84 The NC of borna disease virus, a nonsegmen-
ted, negative-stranded RNA virus, inhibits IFN
induction by preventing the nuclear localization of
IRF785 (Figure 3). A recent study also showed that
the NC of borna disease virus inhibits the processing
of NF-κB1p105 into p50 through its ankyrin-like
domain, leading to the suppression of IKK /NF-κB1
pathway activation.86

For positive-strand RNA viruses, NC of
porcine epidemic diarrhea virus also inhibits
sendai virus-induced IFN-β production by directly
interacting with TBK1, and this interaction seques-
ters the connection between TBK1 and IRF313

(Figure 3).

TABLE 1 | Host Cellular Proteins Interact with Viral NCs

Virus Host Cellular Proteins Function in Viral Life Cycle References

Coronaviruses GSK3 Template switching from discontinuous to
continuous transcription

7,8,16

DDX1 Production of longer sgmRNAs and gRNAs

Hantavirus eIF4G Ensure the efficient translation of viral mRNAs 19

eIF4A

Ribosomal protein 19 Help host translation machinery preferentially bind
to the viral transcripts

20,21

RSV eEF1A Facilitate gRNA synthesis and virus production 22

TMV 23,24

TBSV 25,26

PRRSV Poly [ADP–ribose] polymerase 1 Increases the propagation of PRRSV 28,29

Poly (A)-binding protein Enhance viral replication

HCV AP2M1 Essential for vial assembly 30–34

DGAT1 Recruit core protein to lipid 35

MAPKAPK3 Essential for HCV propagation 36

Human myeloid cell factor 1 Proapoptotic property 71

PEDV TBK1 Inhibits IFN-β production 10

LCMV IKKε 69

DGAT1, diacylglycerol acyltransferase 1; GSK3, glycogen synthase kinase-3; HCV, hepatitis C virus; IKKε, IκB kinase-related kinase; MAPKAPK3, mitogen-
activated protein kinase-activated protein kinase 3; NCs, nucleocapsid proteins; PRRSV, Porcine reproductive and respiratory syndrome virus; RSV, respira-
tory syncytial virus; TBK1, TANK-binding kinase 1; TBSV, tomato bushy stunt virus; TMV, Tobacco mosaic virus.
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NC Regulates Production of Cytokine/
Chemokine
Previous studies showed that interleukin-10 (IL-10),
an immunoregulatory cytokine, plays an important
role in PRRSV-induced immunosuppression.87 A
recent study showed that the NC of type 2 PRRSV
significantly increased IL-10 expression in 3D4/2
macrophages, and alanine substitution mutation
analysis indicated that amino acid 33–37 of the NC
play important roles in IL-10 induction. Further-
more, recombinant PRRSV carrying mutations at
residues 33–37 in the NC induced significantly lower
levels of IL-10 production in infected monocyte-
derived dendritic cells.88

For RSV, the NC could be at least partially
responsible for inhibiting T-cell activation by expres-
sing at the surface of infected dendritic cells. Further-
more, NCs were also shown to interfere with

pMHC–T-cell receptor interactions and impair the
assembly of T-cell immunological synapse.89

NC Regulates Apoptosis and Autophagy
NC of Hantaan virus is capable of decreasing p53
levels through a post-translational mechanism that
might be associated with the inhibition of apopto-
sis.90 NC of IAV induces cell death and heterologous
expression of NC of IAV alone can induce apoptosis
in human airway epithelial cells, NC interacts with
Clusterin (CLU), a protein which inhibits the intrinsic
apoptosis pathway by binding to Bax and by inhibit-
ing Bax movement into the mitochondria, and
attenuates the association of CLU with Bax and
hence induce apoptosis.71 Recently a novel function
of IAV NC in inducing host cell death was also iden-
tified via a yeast two-hybrid screen, the researchers
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FIGURE 3 | Viral nucleocapsid proteins (NCs) interfere with several stages of innate immune signaling. When RNA viruses infect cells, retinoic
acid-inducible gene I (RIG1) and melanoma differentiation-associated gene 5 (MDA5) respond to the viral RNA and then activate the adaptor
protein located on the mitochondria virus-induced signaling adapter (VISA), and VISA passes the signal to TANK-binding kinase 1 (TBK1) and IκB
kinase-related kinase (IKKε), both of which are phosphokinases that can phosphosphorylate IFN-regulated factor 3 (IRF3) and interferon regulatory
factor 7 (IRF7). Finally, phosphorylated IRF3 and IRF7 translocate into the nucleus to activate interferon (IFN) promoter and lead to the production
of IFN. Several viral NCs can block the IFN signal transfer; lymphocytic choriomeningitis virus (LCMV) NCs can block the IFN signal transfer through
interfere the function of IKKε; NCs of Andes virus (ANDV) and porcine epidemic diarrhea virus (PEDV) inhibit IFN signal by interfering with function
of TBK1 and IRF3; Arenavirus NCs prevent IRF3 from localizing to nucleus and Borna diseae virus (BDV) NCs prevent IRF7 from localizing to
nucleus.
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identified RING finger protein 43, a RING-type E3
ubiquitin ligase, as a novel interactor of NC and as
an important partner of NC to modulate p53 ubiqui-
tination levels, which causes p53 stabilization and
enhances apoptosis level in IAV-infected cells.91

HCV core protein also can induce apoptosis in
mature dendritic cells, as evidenced by DNA frag-
mentation and annexin V-propidium iodide stain-
ing.92 Furthermore, expression of HCV core protein
induces ER stress and ER calcium depletion in vitro
and in vivo, suggesting that HCV core protein may
trigger apoptosis through ER stress and the modifica-
tion of calcium signaling.93 Moreover, a previous
study showed that a Bcl-2 homology 3 domain in the
core protein is essential for its proapoptotic property
and ability to interact with human myeloid cell factor
1, a prosurvival member of the Bcl-2 family, and this
interaction contributes to the induction of apoptosis
during HCV infection.94 Another study found that
using a broad spectrum caspase inhibitor zVAD-Fmk
only partially inhibited apoptosis induced by HCV
core protein, suggesting HCV core protein also
induces a partially caspase-independent apoptosis.95

However, a study contrarily showed that the core
protein of HCV could inhibit H2O2-induced apopto-
sis mediated by p53. H2O2 can induce ROS and,
consequently, apoptotic cell death, which can elimi-
nate tumorigenic species through the p14–MDM2–
p53 pathway. To overcome H2O2-induced apoptotic
cell death, HCV core protein inhibits p14 expression
via promoter hypermethylation and promotes virus
survival and hepatocellular carcinoma formation.96

Although one research group found that that HCV
core protein can regulate some cellular microRNAs
in Huh7 cells, they also found that microRNA-345
was upregulated when HCV core protein was
expressed, leading to the downregulation of p21
(Waf1/Cip1) and inhibition of curcumin-induced
apoptosis.97 In addition to acting as a cell stress for
inducing or inhibiting apoptosis, HCV core protein
has also been reported to induce complete autop-
hagy, resulting in the fusion of autophagosomes with
lysosomes to form autolysosomes. Elsewhere, HCV
core protein was shown to induce ER stress, leading
to the activation of EIF2AK3 and ATF6, but not the
ERN1–XPB1 pathways, which results in upregula-
tion of ATG12 via ATF4 and DDIT3 increase of
LC3B expression by direct binding of the LC3B pro-
moter region, the key proteins in the development of
autophagy.15

NC of SARS coronavirus, when expressed in
COS-1 monkey kidney cells, induced apoptosis in the
absence of growth factors by downregulating extra-
cellular signal-regulated kinase, phospho-Akt, and

Bcl-2 levels, upregulating c-Jun N-terminal kinase
and p38 MAPK pathways, and activating caspases
3 and 7.14 Another study showed that expression of
the SARS coronavirus NC in COS-1 cells under star-
vation resulted in an increase in reactive oxygen spe-
cies (ROS), and a decrease in both mitochondrial
membrane potential and cytochrome C release into
cytosol, suggesting that NC can induce apoptosis of
COS-1 cells by activating the mitochondrial path-
way.98 Furthermore work is needed to confirm that
this phenomenon is actually recapitulated in vivo,
and the detailed mechanism remains to be elucidated.
The NC of transmissible gastroenteritis virus, an
enveloped virus containing a positive-sense and
single-stranded RNA genome, is known to cause cell
cycle arrest and apoptosis via activation of p53 sig-
naling. Likewise, NC expression in PK-15 cells
reduces cell viability and induces S and G2/M-phase
arrest and apoptosis.99–102

NC Regulates Stress Granule Formation
Stress granules are environmental stress-inducible
cytoplasmic granules containing various mRNAs and
proteins. RSV replication can induce stress response,
and the formation of stress granules enhances RSV
replication. Studies have shown that the stress gran-
ules can transiently interact with IBs formed by NC
and P during RSV infection, suggesting a functional
relationship between stress granules and IBs during
RSV infection.103 Additional research is required to
identify the exact relations and roles of stress gran-
ules and IBs during RSV infection.

THE FUNCTION OF NC IN VACCINE
DEVELOPMENT

Neutralizing antibodies bind to the viral surface gly-
coproteins such as hemagglutinin and neuraminidase
to prevent the virus from entering host cells, but fre-
quent mutation of viral glycoproteins abolishes
antibody-mediated immunity. The NC can be an
important antigen for early diagnosis and for the
development of vaccines for many viruses because its
gene sequence is conserved104,105 (Table 2).

Antigenic drift and shift of influenza viruses are
among the most significant challenges to the develop-
ment of a vaccine that can provide broad protection
against various types of influenza viruses, and more
importantly, the NCs among all influenza viruses are
well conserved with over 90% homology of amino
acid residues.104 A recent report showed that the NC
of IAV is a major target of immunodominant CD8(+)

T-cell responses, and six novel immunodominant
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epitopes were clustered in the carboxyl terminal
in the NC and were highly conserved, suggesting that
the epitope-rich NC of IAV is a promising target
for the vaccine mediated by T-cell responses.106 In
addition, CD4(+) T-cell responses are also critical for
efficient CD8(+) T-cell response and have a protective
effect against influenza virus. The two most domi-
nant regions (amino acids 457–480 and amino acids
397–420) within the NC have been identified and are
the important dominant targets of the immunodomi-
nant CD4(+) T-cell responses.107 Therefore, it is criti-
cal for the design of T cell-based influenza vaccines
targeted to NCs. Three recombinant PIV5 encoding
NCs of H5N1 (A/Vietnam/1203/2004), between HN
and L (PIV5-NP-HN/L), between F and SH (PIV5-
NP-F/SH), or between SH and HN (PIV5-NP-SH/
HN), induced humoral and T-cell responses in mice
and provided protection against lethal H5N1 virus
challenge.105

The NC of SARS-CoV is also a major antigen,
and vaccination in rhesus macaques with an NC anti-
gen induced T-cell responses against the NC.108 A
DNA vaccine expressing NC can induce B-cell and
T-cell, and humoral responses, and when the NC is
fused with calreticulin, NC-specific humoral and cel-
lular immunity are stronger.108 Also DNA vaccine
of NC fused with lysosome-associated membrane
protein can enhance immunization and a long-lasting
T-cell memory response.109 Furthermore, when
inoculating DNA vaccine plasmids expressing NC
and interleukin 2 (IL-2) were injected into mice, IL2
played an immunoadjuvant role to induce
better specific humoral and cellular immunity.110 In

addition, peptides derived from NCs can also be can-
didates for vaccine development. Several conserved
B-cell and T-cell immunodominant epitopes of the
NC of the coronavirus in mice, monkeys, and
humans have been identified and are significant for
developing SARS diagnostic kits and vaccines.111

Moreover, a new epitope N1 (QFKDNVILL) of the
SARS NC was identified, and its crystal structure
showed that two intrachain hydrogen bonds increase
the interaction of the epitope and the T-cell
receptor.112

In another interesting report, the NC of SARS-
CoV was expressed from Lactobacillus lactis to
develop a mucosal vaccine and induced significant
NC-specific immunoglobulin in the sera.113 With the
progress of the protein expression system, plants
are now considered a promising ‘factory’ for produ-
cing pharmaceutical proteins with the advantages
of safety, low cost, and post-translational modifica-
tions. The NC of SARS-CoV expressed in tobacco
induces strong humoral and cellular responses in
mice.114

CONCLUSION

In the past few years, many advancements have been
made toward identifying the functions of NCs
beyond packaging viral RNA. NCs are becoming
more and more important not only in the viral life
cycle but also in the process of associating with host
cells. In this review, we aimed to summarize the mul-
tifunctional nature viral NCs.

TABLE 2 | Vaccine Development Dependent on NCs

Virus Design Responses References

Influenza
virus

Immunodominant epitopes Immunodominant CD4(+)/CD8(+) T-cell responses 97,98

Recombinant PIV5 encoding NC Humoral and T-cell responses 96

HIV Zinc inhibitors Strong antiviral ability but quite toxic 99

Noncovalent NC inhibitors Great specificity and less toxic 99–105

SARS-CoV DNA vaccine expressing NC fusing with
calreticulin

B-cell and T-cell and specific humoral response 106

DNA vaccine of NC fused with lysosome-
associated membrane protein

Long-lasting T-cell memory response 107

DNA vaccine plasmids expressing NC and IL-12 IL-12 plays an immunoadjuvant and better
specific humoral and cellular immunity

108

Immunodominant epitopes B-cell and T-cell responses 109,110

Expressing from Lactobacillus lactis Significant NC-specific IgG in the sera 111

Expressing in tobacco Strong humoral and cellular responses 112

HIV, human immunodeficiency virus; IL-12, interleukin-12; NCs, nucleocapsid proteins; PIV5, parainfluenza virus 5; SARS, severe acute respiratory syndrome
coronavirus.
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Further research should be done to explore
the specific functions of NCs and mechanisms by
which they interact with cellular proteins, induce
autophagy, apoptosis, and stress granules, and
inhibit IFN signaling responses. Different viruses use

different strategies to associate with the viral life
cycle and host cells. The more we learn about the
functions of NCs, the more we can use NCs to
develop antiviral therapies.
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