
RESEARCH ARTICLE

Amyloid-β Peptide Exacerbates the Memory
Deficit Caused by Amyloid Precursor Protein
Loss-of-Function in Drosophila
Isabelle Bourdet, Aurélie Lampin-Saint-Amaux, Thomas Preat*, Valérie Goguel*

Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI-ParisTech, PSL Research
University, 10 rue Vauquelin, 75005 Paris, France

* valerie.goguel@espci.fr (VG); thomas.preat@espci.fr (TP)

Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer’s disease (AD). APP

can undergo two exclusive proteolytic pathways: cleavage by the α-secretase initiates the

non-amyloidogenic pathway while cleavage by the β-secretase initiates the amyloidogenic

pathway that leads, after a second cleavage by the γ-secretase, to amyloid-β (Aβ) peptides

that can form toxic extracellular deposits, a hallmark of AD. The initial events leading to AD

are still unknown. Importantly, aside from Aβ toxicity whose molecular mechanisms remain

elusive, several studies have shown that APP plays a positive role in memory, raising the

possibility that APP loss-of-function may participate to AD. We previously showed that

APPL, the Drosophila APP ortholog, is required for associative memory in young flies. In

the present report, we provide the first analysis of the amyloidogenic pathway’s influence on

memory in the adult. We show that transient overexpression of the β-secretase in the mush-

room bodies, the center for olfactory memory, did not alter memory. In sharp contrast, β-

secretase overexpression affected memory when associated with APPL partial loss-of-

function. Interestingly, similar results were observed with Drosophila Aβ peptide. Because

Aβ overexpression impaired memory only when combined to APPL partial loss-of-function,

the data suggest that Aβ affects memory through the APPL pathway. Thus, memory is

altered by two connected mechanisms—APPL loss-of-function and amyloid peptide toxicity

—revealing in Drosophila a functional interaction between APPL and amyloid peptide.

Introduction
The Amyloid Precursor Protein (APP) is a major actor of Alzheimer's disease (AD), a progres-
sive neurodegenerative disorder in which the first symptom is the loss of episodic memory [1].
APP is a transmembrane protein that can be cleaved by membrane-associated proteases follow-
ing two exclusive pathways: on the one hand, cleavage by the α-secretase initiates the non-amy-
loidogenic pathway that generates a large secreted fragment sAPPα; on the other hand, the
amyloidogenic pathway is initiated by the β-secretase cleavage that liberates sAPPβ and, after a
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second cleavage by γ-secretase, extracellular Aβ peptides [2]. Aggregation of Aβ peptides forms
extracellular amyloid plaques, a major histopathological hallmark of AD.

Beta-site APP Cleaving Enzyme-1 (BACE1) is the major neuronal β-secretase in the human
brain [3]. BACE1 has been shown to have also many additional substrates [4]. Although
genetic analyses have failed to uncover any BACE1 mutation in patients with familial heredi-
tary AD (FAD), increased β-secretase activity has been reported in FAD [5], and increased
expression has been found in cortex of sporadic AD patients [6–9]. Thus, elevated BACE1 cere-
brospinal fluid levels have been proposed as an early biomarker for AD pathology. Due to its
rate limiting function in Aβ production [10], BACE1 has been a prime therapeutic target to
prevent Aβ generation in AD [11]. However, none of the numerous inhibitors developed that
successfully decrease Aβ release helped preventing the cognitive decline [12], suggesting that
Aβ accumulation might not be the only early event leading to AD.

Several studies have indicated a positive role for BACE1 in memory processes. BACE1 null
mice manifest alterations in performance on cognition [13], while BACE1-mediated cleavage
of APP can facilitate learning and memory [14]. In contrast, BACE1 deficiency has been
shown to rescue memory deficits in mice models of AD [15,16], and more recently, it was
reported that knock-in of human BACE1 leads to age-dependent deficit semantic-like memory
[17].

Functional studies of the APP pathway in rodents are limited because of redundancy due to
three APP-related genes and the lethality of the triple knockout [18,19]. Moreover, AD mouse
studies have mainly relied on the use of constitutive mutants, so that developmental functions
cannot be easily discriminated from direct roles in the adult brain. In contrast, Drosophila mel-
anogaster genome encodes a single non essential APP ortholog named APP-Like (APPL) [20],
and in this organism, expression of genes of interest can be controlled both spatially and tem-
porally [21]. Although relatively simple (100,000 neurons) [22], the Drosophila brain is highly
organized and is able to drive various sophisticated behaviors. The mushroom bodies (MB), a
prominent bilateral structure of the insect brain comprising 2,000 neurons per brain hemi-
sphere [23], constitute the olfactory learning and memory center [24]. Depending on the
sequence of an aversive associative training protocol, distinct types of olfactory memory can be
formed [25], and remarkably, molecular processes at play are conserved from flies to mammals
[26].

APPL is enriched in the adult MB [27]. Importantly, α- β- and γ-secretases have been char-
acterized in Drosophila, and APPL has been shown to undergo proteolytic pathways similar to
that of APP [28]. Although human APP and Drosophila APPL show no sequence similarity at
the level of the Aβ sequences, an Aβ-like peptide (dAβ) generated after a β-secretase initial
cleavage of APPL has been recently characterized in the fly [29]. Upon aging, APPL overex-
pression leads to ThioflavineS-positive aggregates that are associated with neurodegeneration,
suggesting that APPL processing generates a functional analog of human Aβ [29].

Transgenic flies have been generated to study human Aβ-induced toxicity [30]. Neuronal
expression of secreted human Aβ42 results in many of the features observed in the mouse
model, and moreover, the severity of the neurodegenerative phenotypes correlates with the
amyloidogenic properties of the Aβ peptides [31–36]. Thus similarities between neurotoxic
biochemical pathways induced by Aβ deposition in flies and humans indicate that Drosophila
constitutes a relevant model to study the molecular basis of AD pathogenesis.

Several studies in rodents have suggested that APP plays a positive role in memory [37–39].
Similarly, we showed in Drosophila that APPL is required for memory in young adults [40,41],
supporting the hypothesis that APP loss-of-function may contribute to AD initial symptoms.
Here we provide the first analysis of the influence of the amyloidogenic pathway on memory in
adults. We investigated the effect on olfactory memory of the transient overexpression of the
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Drosophila β-secretase, dBACE [29]. Strikingly, dBACE overexpression in the MB of young
flies led to a memory defect only when associated to APPL partial loss-of-function. Further-
more, similar data were obtained when dAβ was overexpressed in the MB. The results thus sug-
gest that memory is affected by two connected mechanisms: amyloid peptide toxicity and
APPL loss-of-function.

Materials and Methods

Drosophila stocks
All fly strains were outcrossed to a Canton Special genetic background. UAS-dBACE (dBACE)
and UAS-dAβ (dAβ) lines were kindly provided by D. Kretzschmar [29]. The Appld;MBSw line
is described in [41]. For behavioral and quantitative PCR experiments, flies were raised on
standard medium with 60% humidity under a 12 h light/dark cycle at 18°C and 25°C, respec-
tively. As the Appl gene is located on the X chromosome, only females were analyzed for exper-
iments that involved Appld genotypes. To induce transgene expression, the GeneSwitch system
was used as described [42]. A stock solution of RU486 (SPI-Bio) (10 mM in 80% ethanol) was
mixed into molten food at 65°C to a final concentration of 200 μM. The TARGET system [43]
was induced by incubating flies at 30°C for 3 days.

Behavior experiments
Flies were trained with classical olfactory aversive conditioning protocols as described [44].
1–2 day old flies were kept on RU486-containing medium (RU) for 48 h prior to conditioning.
Training and testing were performed at 25°C with 80% humidity. Conditioning was performed
on samples of 30–40 flies with 3-octanol (>95% purity; Fluka 74878, Sigma-Aldrich) and
4-methylcyclohexanol (99% purity; Fluka 66360, Sigma-Aldrich) at 0.360 mM and 0.325 mM,
respectively. Odors were diluted in paraffin oil (VWR International, Sigma Aldrich). Memory
tests were performed with a T-maze apparatus [45]. For 1 min flies were allowed to choose
between two arms, each delivering a distinct odor. An index was calculated as the difference
between the numbers of flies in each arm divided by the sum of flies in both arms. A perfor-
mance index results from the average of two reciprocal experiments with either octanol or
methylcyclohexanol as conditioned stimulus. For odor avoidance tests after electric shock
exposure, and response to electric shock, flies were treated as described [44].

Quantitative PCR analyses
Total RNA was extracted from 50 female heads with the RNeasy Plant Mini Kit (Qiagen), sub-
mitted to DNase I treatment (Biolabs), and further reverse transcribed with oligo(dT)20 prim-
ers using the SuperScript III First-Strand kit (Life Technologies) according to the
manufacturer’s instructions. We compared the level of the target cDNA to that of the α-
Tub84B (CG1913) cDNA, which was used as a reference. Amplification was performed using a
LightCycler 480 (Roche) in conjunction with the SYBR Green I Master (Roche). For each
experiment, reactions were carried out in triplicate for two dilutions of each cDNA. The n rep-
resents the number of independent experiments performed. To measure specifically mRNA
resulting from the UAS-dAβ transgene, we took advantage of the HA-tag coding sequence that
has been inserted in 3’ of the dAβ sequence [29]. Specificity and size of amplification products
were assessed by melting curve analyses and agarose gel electrophoresis, respectively. Expres-
sion relative to the reference is expressed as a ratio (2-ΔCp, where Cp is crossing point).
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Statistical analyses
Memory scores are displayed as mean ± standard error of the mean (SEM). To compare perfor-
mance indexes from more than two groups, statistical analyses were performed through a
1-way ANOVA, followed by Newman-Keuls pairwise comparisons. Overall ANOVA p-value is
given in the legends along with the value of the corresponding Fisher distribution F(x,y), where
x is the number of degrees of freedom for groups and y the total number of degrees of freedom
for the distribution, while asterisks on the figure represent the pairwise post hoc comparisons,
following the usual nomenclature. Except for graphs comprising the Appld/+;MBSw/+ geno-
type, the wild-type genotype is not included in the ANOVA. To compare memory scores of
two groups, Student’s t tests were used with p< 0.05 as a significance threshold. mRNA quanti-
fication measurements were analyzed from 2-ΔCp ratios in the same way.

Results
It has been suggested that deregulation of BACE1 gene expression could play an important role
in AD pathogenesis [46]. Nevertheless, the incidence of the β-secretase overactivity restricted
to the adult animal has never been addressed. We aimed at studying the effect on memory of β-
secretase overexpression in the adult fly. We took advantage of the conditional GeneSwitch sys-
tem, a genetic tool that allows both spatial [47] and temporal control of the expression of genes
of interest: GeneSwitch becomes active when flies are fed with the RU486 ligand (RU, [48]).

Drosophila olfactory memory can be assessed using a classical aversive conditioning para-
digm in which flies are successively exposed to two distinct odors, one of which is paired with
pulses of electric shock. Depending on the sequence of the training, flies form distinct memory
phases [25]. Learning is assessed immediately after a single cycle of conditioning, whereas
short-term memory (STM) is assessed 2 h after.

We analyzed consequences of dBACE overexpression in the MB using the MB247 driver
that is expressed in the α/β and γ neurons [49]. To restrict expression in the adult MB, we took
advantage of the MB-Switch driver (MBSw, [42]) and a UAS-dBACE transgene [29]. Flies over-
expressing dBACE (MBSw/dBACE) exhibited a STM score that was not significantly different
from that of control flies (Fig 1), showing that STM is not affected by dBACE overexpression
in the MB of young adult flies.

To get a better insight into the potential effect of dBACE overexpression on memory in link
with the APPL pathway, we analyzed the effect of dBACE overexpression in flies expressing a
reduced level of its APPL target. In a previous work, we knocked down APPL expression in the
adult MB by RNA interference (RNAi) with UAS–RNAi transgenes [40]. However, we did not
wish to overexpress simultaneously dBACE and an Appl-RNAi construct because the presence
of two UAS-transgenes in the fly genome may lead to a substantial decrease in the Gal4-me-
diated transcription of each of them. Thus, to avoid a decreased efficiency of Appl knock-
down, we took advantage of the Appld null mutant [50] to generate an APPL partial loss-of-
function (LOF) genetic context. We recently described a Drosophilamodel that endogenously
express about half the wild-type level of Appl and the conditional MBSw driver (Appld/+;
MBSw/+ [41]). Appl/+;MBSw/+ heterozygous flies exhibit a normal learning while STM is
affected [41]. Although the APPL partial LOF thus achieved is not conditional, we showed that
the resulting STM deficit is functional as it can be rescued by overexpressing an APPL form
exclusively at the adult stage [41].

To assess the effect of dBACE overexpression in an APPL partial LOF genetic background,
we analyzed dBACE overexpression in Appld/+;MBSw/+ flies. As previously described,
Appld/+;MBSw/+ flies displayed a score significantly lower than wild-type (+), showing that
their STM is impaired (Fig 2A). Strikingly, Appld/+;MBSw/dBACE flies overexpressing dBACE
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exhibited an STM score significantly lower than their genetic controls (Fig 2A). When Appld/+;
MBSw/dBACE flies were not fed with RU, they displayed a score significantly higher than that
of flies of the same genotype fed with RU (Fig 2A). These data show that the observed memory
decrease is RU-specific and thus due to the induction of dBACE overexpression in the adult
MB in an APPL LOF context. Interestingly, learning capacity remained unaffected (Fig 2B).
We also assessed whether Appld/+;MBSw/dBACE flies perceived normally the stimuli used for
conditioning. Their ability to avoid electric shocks was unaffected, as was their response to
each odor after electric shock exposure (Fig 2C). Altogether, the data demonstrate that in an
APPL partial LOF context, dBACE overexpression is deleterious for STM. Moreover, since

Fig 1. dBACE overexpression in adult MB does not alter memory. Flies were fed with RU for 48 h before
conditioning to induceUAS-dBACE transgene expression. STM assessed 2 h after one training session is
not affected. The score ofMBSw/dBACE flies is not different from that of the genetic control groups (F(2,77) =
4.048, *p = 0.0214, n� 24, Newman–Keuls post-hoc,MBSw/dBACE vs +/dBACE p > 0.05,MBSw/dBACE
vsMBSw/+ p > 0.05). Bars, Mean ± SEM. PI, Performance index.

doi:10.1371/journal.pone.0135741.g001
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Fig 2. dBACE overexpression exacerbates the memory deficit caused by APPL partial loss-of-
function. Unless indicated (A, w/o RU), flies were fed with RU for 48 h. (A) Flies were submitted to one cycle
training and tested 2 h later. Appld/+;MBSw/+ flies show an STM deficit (F(4,101) = 11.99, ***p < 0.0001,
n� 14, Newman-Keuls post-hoc, Appld/+;MBSw/+ vs + *p < 0.05), and Appld/+;MBSw/dBACE flies exhibit
a STM score significantly lower than the genetic controls (Newman-Keuls post-hoc, Appld/+;MBSw/dBACE
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dBACE overexpression does not affect memory capacity of flies with wild-type level of APPL,
we conclude that the memory deficit induced by dBACE overexpression is functionally related
to the APPL pathway. We next analyzed the level of dBACE overexpression in wild-type and
APPL LOF flies. The level of dBACE mRNA was similar inMBSw/dBACE and Appld/+;MBSw/
dBACE fly heads (Fig 2D), indicating that the augmentation of the memory deficit observed
when dBACE is overexpressed in an APPL partial LOF is not caused by an increase in the level
of dBACE expression. We also analyzed whether the memory deficit induced by dBACE over-
expression in Appld/+;MBSw/dBACE flies was linked to a modulation of Appl level of expres-
sion. ApplmRNA level was similar in Appld/+;MBSw/+ and Appld/+;MBSw/dBACE flies (Fig
2E), showing that the mechanism by which dBACE exacerbates the memory deficit is not
through modulation of Appl transcription.

We further analyzed the effect of dBACE overexpression using a more specific driver. C739
has been shown to label specifically the α/β neurons of the MB [51]. To restrict Gal4 expression
to adulthood, we took advantage of the TARGET system that relies on a thermo-sensitive
Gal80 inhibitor that becomes inactive at 30°C [43]. We observed that dBACE overexpression
driven by the tub-Gal80ts;c739 driver (Gal80;c739), did not affect STM (Fig 3A). We next
aimed to analyze dBACE overexpression in APPL partial LOF flies. As previously observed,
APPL LOF flies (Gal80;c739/+;Appld/+) showed a memory score lower than wild type (Fig 3B).
Furthermore, Gal80;c739/+;Appld/dBACE flies showed a STM score lower than their genetic
control groups (Fig 3B). The memory impairment was not observed when flies were not incu-
bated at 30°C (Fig 3C), showing that it was previously caused by dBACE induction. We verified
that Gal80;c739/+;Appld/dBACE flies showed normal response to electric shock exposure and
olfactory acuity (Fig 3D). In conclusion, these results are similar to that obtained with the
MB247 driver, namely dBACE overexpression does not affect STM in normal flies, whereas it
does exacerbate the memory deficit caused by APPL LOF. Furthermore, they are consistent
with APPL being highly expressed in the α/β neurons [52] known to be involved in aversive
2-hour labile memory and LTM [53], the memory phases specifically affected by APPL partial
loss-of-function [40,41].

A simple hypothesis to explain how β-secretase overexpression affects memory is that it
leads to an increase in Aβ production. Indeed, it has already been shown in mammals that β-
secretase overexpression leads to an increase in amyloid peptides production, thus generating a
gain-of-toxicity [54]. However, the lack of efficient antibodies that could specifically recognize
endogenous dAβ in the MB of Appld/+;MBSw/dBACE flies did not allow us to analyze dAβ pro-
duction. To circumvent this issue, we analyzed memory in transgenic flies expressing Drosoph-
ila amyloid peptides, a model to mimic a gain-of-toxicity context. For this purpose, we used a
construct allowing expression of a putative dAβ peptide corresponding to the Aβ region of
APP [29]. The expression of dAβ peptides in adult MB did not affect STM (Fig 4A), while

vs Appld/+;MBSw/+ ***p < 0.001, Appld/+;MBSw/dBACE vs +/dBACE ***p < 0.001). Appld/+;MBSw/
dBACE flies not fed with RU (w/o RU) display a STM score significantly different from flies of the same
genotype fed with RU (Newman-Keuls post-hoc, *p < 0.05), and similar to Appld/+;MBSw/+ flies (Newman-
Keuls post-hoc, p > 0.05). (B) Learning is not affected. To assess learning, flies were tested immediately after
one cycle training (F(2,27) = 0.8522, p = 0.4385, n� 8). (C) Neither shock reactivity (F(2,21) = 2.747, p = 0.0896,
n� 7) nor olfactory acuity (octanol, F(2,46) = 0.3490, p = 0.7073, n� 15; methylcyclohexanol, F(2,52) = 2.959,
p = 0.0610, n� 17) is impaired. Bars, Mean ± SEM. PI, Performance index. (D, E) Analysis of dBACE and
Appl transcription. Total RNA was extracted fromMBSw/dBACE, Appld/+;MBSw/+ and Appld/+;MBSw/
dBACE heads. Resulting cDNA was quantified using tubulin (Tub) expression as a reference. Results shown
are ratios to the reference. (D) Quantification of dBACEmRNA level (t test, p = 0.8376, n = 4). (E)
Quantification of ApplmRNA level (t test, p = 0.2330, n = 3). Bars, Mean ± SEM. ns, not significant.

doi:10.1371/journal.pone.0135741.g002
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expression in the MB of APPL partial LOF flies (Appld/+;MBSw/dAβ) resulted in STM scores
significantly decreased compared to that of the controls (Fig 4B). When Appld/+;MBSw/dAβ
flies were not fed with RU, they displayed a score significantly higher than that of flies of the
same genotype fed with RU (Fig 4B), showing that the phenotype is specific of dAβ expression

Fig 3. dBACE overexpression in the α/β neurons exacerbates the memory deficit caused by APPL partial loss-of-function. (A, B, D) In order to
induce Gal4-dependent transcription, flies were incubated for 3 days at 30°C. (A, B, C) Flies were submitted to one-cycle training, and memory was assessed
2 h later. (A) STM is not affected when dBACE is overexpressed. The score ofGal80;c739/dBACE flies is not different from that of the two genetic control
groups (F(2,48) = 1.045, p = 0.3599, n� 16). (B) As expected,Gal80;c739/+;Appld/+ flies display a STM deficit (F(3,46) = 10.57, ***p < 0.0001, n� 11,
Newman-Keuls post-hoc,Gal80;c739/+;Appld/+ vs + *p < 0.05).Gal80;c739/+;Appld/dBACE flies exhibit a memory score significantly lower than their two
genetic controls (Newman-Keuls post-hoc,Gal80;c739/+;Appld/dBACE vsGal80;c739/+;Appld/+ **p < 0.01, andGal80;c739/+;Appld/dBACE vs Appld/
dBACE **p < 0.01). (C) WhenGal80;c739/+;Appld/dBACE flies were not incubated at 30°C, they display a STM score that is not significantly different from
one of their genetic control groups (F(3,64) = 9.313, ***p = 0.0001, n� 12, Newman-Keuls post-hoc,Gal80;c739/+;Appld/dBACE vsGal80;c739/+;Appld/+
*p < 0.05, andGal80;c739/+;Appld/dBACE vs Appld/dBACE p > 0.05). (D) Neither shock reactivity (F(2,33) = 0.6421, p = 0.533, n� 9) nor olfactory acuity
(octanol, F(2,31) = 0.1687, p = 0.8456, n� 8; methylcyclohexanol, F(2,31) = 0.1016, p = 0.9037, n� 8) is impaired. Bars, Mean ± SEM. PI, Performance index.

doi:10.1371/journal.pone.0135741.g003
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Fig 4. dAβ expression alters memory only when associated with APPL partial loss-of-function.Unless indicated (B, w/o RU), flies were fed with RU for
48 h prior to either conditioning or mRNA extraction. (A, B) Flies were submitted to one cycle training and memory was tested 2 h later. (A)MBSw/dAβ flies
exhibit a STM score similar to one of the genetic control groups (F(2,53) = 8.421, ***p = 0.0007, n� 17, Newman-Keuls post-hoc,MBSw/dAβ vs +/dAβ p >
0.05,MBSw/dAβ vsMBSw/+ **p < 0.01). (B) Appld/+;MBSw/+ flies show an STM deficit (F(4,144) = 12.41, ***p < 0.0001, n� 26, Newman-Keuls post-hoc,
Appld/+;MBSw/+ vs + **p < 0.01). Appld/+;MBSw/dAβ flies display a score significantly decreased compared to the controls (Newman-Keuls post-hoc,
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in the adult MB. We next analyzed learning and observed that Appld/+;MBSw/dAβ flies exhib-
ited a wild-type performance (Fig 4C). We verified that dAβ expression did not affect either
electric shock reactivity or aversive odors acuity (Fig 4D). Our results show that the overexpres-
sion of amyloid peptide leads to a STM deficit only when associated to an APPL partial LOF.

We next verified that the memory deficit observed in Appld/+;MBSw/dAβ was not caused by
an increase in dAβ expression compared to that ofMBSw/dAβ flies (Fig 4E). We also ruled out
a transcriptional effect of dAβ expression on Appl by showing that there was no difference in
ApplmRNA level in Appld/+;MBSw/+ and Appld/+;MBSw/dAβ flies (Fig 4F). In conclusion,
overexpression of either the β-secretase or dAβ peptides lead to similar phenotypes: an exacer-
bation of the memory deficit observed in an APPL LOF background, while learning remains
unaffected.

Discussion
Initial mechanisms responsible for the appearance of cognitive impairment in AD are still
unclear. Particularly, the potential influence of APP loss-of-function and Aβ toxicity, respec-
tively and in combination, has been poorly characterized. Here, we used Drosophila as a model
to study the involvement of the APP pathway in memory. We investigated the incidence on
memory of transient overexpression in the MB of either the β-secretase or amyloid peptides.
We observed that it is deleterious for short-term memory only when associated to APPL partial
loss-of-function, showing a functional interaction between APPL and amyloid peptides in
memory formation.

In transgenic hAPP-mice, increased expression of human BACE1 has been shown to
worsen learning and memory deficits [55,56], while in normal mice, gene knock-in of hBACE1
generated AD-relevant cognitive impairment [17]. In the present study, we thus anticipated
that increasing the amyloidogenic pathway by overexpressing the fly β-secretase would have a
negative impact on memory. However, although dBACE overexpression was induced for 2–3
days, STM remained unaffected. In contrast, dBACE overexpression driven in the MB of flies
expressing APPL at a reduced level was deleterious for memory as it exacerbated the STM defi-
cit due to APPL partial LOF.

Because dBACE overexpression impairs memory only in an APPL partial LOF background,
the data suggest that this effect is connected to the APPL pathway. Interestingly, learning is
preserved, a phenotype reminiscent of that of APPL partial LOF alone [40], giving support to
the hypothesis that dBACE’s negative influence on memory is connected to the APPL pathway.
We verified that dBACE expression did not modulate Appl transcription. Although the con-
nection between dBACE and APPL could be indirect, a simple hypothesis is that dBACE over-
expression affects memory via APPL processing. In mammalian cell cultures, increased activity
of BACE1 elicits profound alterations in APP metabolism such as elevated levels of sAPPβ,
CTFβ and Aβ peptides, reflecting an increase of the amyloidogenic pathway; and decreased lev-
els of sAPPα, indicating a decrease of the non amyloidogenic pathway [57–60]. In the fly,

Appld/+;MBSw/dAβ vs Appld/+;MBSw/+ **p < 0.01, Appld/+;MBSw/dAβ vs +/dAβ ***p < 0.001). Appld/+;MBSw/dAβ flies not fed with RU (w/o RU), exhibit
scores significantly higher than flies of the same genotype fed with RU (Newman-Keuls post hoc, *p < 0.05), and similar to that of Appld/+;MBSw/+ control
flies (Newman-Keuls post hoc, p > 0.05). (C) Learning is not affected. To assess learning, flies were submitted to one cycle training and tested immediately
after (F(2,30) = 1.684, p = 0.2038, n� 9). (D) Appld/+;MBSw/dAβ flies exhibit wild-type shock reactivity (F(2,34) = 0.7100, p = 0.4992, n� 11), as well as wild-
type olfactory acuity (octanol, F(2,34) = 0.0507, p = 0.9506, n� 11; methylcyclohexanol, F(2,35) = 0.1433, p = 0.8670, n = 12). (E, F) Quantitative PCR
analyses. RNA was extracted fromMBSw/dAβ Appld/+;MBSw/+ and Appld/+;MBSw/dAβ fly heads. Resulting cDNA was quantified using tubulin (Tub)
expression as a reference. Results shown are ratios to the reference. (E) Quantification of dAβmRNA level. PCR reactions were conducted with primers
specific of theUAS-dAβ construct (t test, p = 0.5788, n = 2). (F) Quantification of ApplmRNA level (t test, p = 0.1931, n = 2). Bars, Mean ± SEM. PI,
Performance index. ns, not significant.

doi:10.1371/journal.pone.0135741.g004
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dBACE constitutive overexpression in photoreceptor cells resulted in vacuole formation [61].
These vacuoles were comparable to the ones observed in APPL or dAβ-overexpressing flies,
and may thus result from an increased production of toxic dAβ peptides when dBACE is over-
expressed [29]. dBACE constitutive neuronal co-expression with APPL generates CTFβ and
numerous amyloid deposits [29]. We thus hypothesized that dBACE overexpression in the
adult MB led to an increase in amyloid peptide synthesis. To investigate this hypothesis, we
sought to analyze directly the effect on memory of amyloid peptide overexpression.

Several studies have used Drosophila to model AD with constitutive human or Drosophila
Aβ expression: neuronal expression of human Aβ42 leads to a STM deficit in young adults (5
days old), a learning deficit in older flies (14–15 days old), and formation of amyloid deposits
in 48 days old flies [33,35]. Similarly, constitutive dAβ expression has been shown to generate
amyloid aggregates in old flies (30 days old), whereas no gross abnormalities were seen in 2
days old flies [29]. Two days induction of Arctic Aβ42 overexpression in adult neurons has
been shown to increase fly mortality and to induce neuronal dysfunction without evidence of
neuronal cell loss [62]. In the present study, dAβ transient expression in the adult MB is there-
fore unlikely to generate neurodegeneration.

We observe that dAβ expression in adult MB neurons does not perturb STM, whereas com-
bined with APPL loss-of-function it is deleterious for memory. This result is similar to that
observed when the β-secretase is overexpressed, raising the possibility that they rely on similar
mechanisms. It has been proposed that the physiological role of APP as a modulator of cell-cell
and cell-substratum adhesions in neurites and synapses may be disturbed by its interaction
with Aβ [63]. Direct interactions between Aβ fibrils and APP have been observed, Aβ thus act-
ing as a ligand to its own precursor to enhance APP multimerization, a potential toxic mecha-
nism [64–68]. A more recent study has shown that mimicking Aβ binding to APP in order to
promote APP multimerization in viable neurons triggers the amyloidogenic pathway, resulting
in increased BACE1 levels and Aβ production [69]. In our study, amyloid peptide exacerbates
APPL loss-of-function, thus potentiating memory decline. One hypothesis is that dAβ-induced
memory toxicity may result from a direct interaction between dAβ and APPL.

Altogether our data give further support to the proposal that a deficit in the normal physio-
logical role of APP underlies the initial development of AD. Binding of Aβ fibrils to the extra-
cellular juxtamembrane domain of APP [66–68] could trigger APP loss-of-function and
increase β-secretase cleavage, a process that thus could cause a pathogenic feedback loop.
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