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Abstract
In tree species, genomic prediction offers the potential to forecast mature trait values 
in early growth stages, if robust marker– trait associations can be identified. Here we 
apply a novel multispecies approach using genotypes from a new genotyping array, 
based on 20,795 single nucleotide polymorphisms (SNPs) from three closely related 
pine species (Pinus sylvestris, Pinus uncinata and Pinus mugo), to test for associations 
with growth and phenology data from a common garden study. Predictive models 
constructed using significantly associated SNPs were then tested and applied to an 
independent multisite field trial of P. sylvestris and the capability to predict trait values 
was evaluated. One hundred and eighteen SNPs showed significant associations with 
the traits in the pine species. Common SNPs (MAF > 0.05) associated with bud set 
were only found in genes putatively involved in growth and development, whereas 
those associated with growth and budburst were also located in genes putatively in-
volved in response to environment and, to a lesser extent, reproduction. At one of the 
two independent sites, the model we developed produced highly significant correla-
tions between predicted values and observed height data (YA, height 2020: r = 0.376, 
p < 0.001). Predicted values estimated with our budburst model were weakly but pos-
itively correlated with duration of budburst at one of the sites (GS, 2015: r = 0.204, 
p = 0.034; 2018: r = 0.205, p = 0.034– 0.037) and negatively associated with budburst 
timing at the other (YA: r = −0.202, p = 0.046). Genomic prediction resulted in the 
selection of sets of trees whose mean height was taller than the average for each 
site. Our results provide tentative support for the capability of prediction models to 
forecast trait values in trees, while highlighting the need for caution in applying them 
to trees grown in different environments.
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1  |  INTRODUC TION

A primary goal of association genetics in long- lived organisms such 
as trees is to develop capacity to predict, at early life stages, the trait 
values of mature trees. However, the main traits of interest— such 
as height, volume and disease tolerance— are typically controlled by 
many genes, show quantitative variation, and may vary in expression 
and heritability depending on the environment in which they are 
assessed (Goddard & Hayes, 2009; Schlichting, 1986). Therefore, a 
high number of genetic markers screened in a large number of sam-
ples, which have also been accurately phenotyped, ideally in multi-
ple environments, are required to develop robust predictive models 
for these traits. However, the power of genetic association studies 
is growing rapidly with improvements in the scale, accuracy and 
cost of high- throughput sequencing and genotyping. In particular, 
the accessibility of cost- effective high- throughput genotyping has 
benefited the study of non- model organisms, especially those for 
which genome assembly is challenging due to genome size and/or 
complexity (Prunier et al., 2016; Zimin et al., 2017). Allied to parallel 
efforts in building phenotype datasets, these technical and analyti-
cal advances mean association genetics in a range of tree species is 
now tractable.

In tree breeding, genome- wide single nucleotide polymorphism 
(SNP) markers can be used to predict breeding values and signifi-
cantly increase the rate of gain in subsequent generations in a pro-
cess known as genomic selection or genomic prediction (Meuwissen 
et al., 2001). The use of association analyses to identify SNPs sig-
nificantly associated with traits of interest can further reduce and 
refine the number of SNPs used in predictive models. In this context, 
genomic prediction aims to increase the efficiency of breeding pro-
grammes to improve timber yield and quality and reduce losses due 
to pests and diseases in commercial forestry. Increasingly, it is also 
being used to screen natural populations for their adaptive poten-
tial to future threats such as climate change and disease (Capblancq 
et al., 2020; Isabel et al., 2020). To develop predictive models, mul-
tiple, ideally independent, trials are necessary to identify, test and 
validate the SNPs associated with each trait. In trying to apply ge-
nomic prediction approaches to populations outside breeding pro-
grammes, there are the additional challenges of comparative genetic 
complexity (Herbert et al., 1999), a lack of pedigree information and 
an entirely different selection regime.

In the association analysis and prediction model development 
phase, groups of closely related species that are differently adapted 
but have similar genetic backgrounds can be useful experimental 
systems in which to search for parallel signatures of selection at the 
genomic level (Wachowiak et al., 2015). For such groups, a multispe-
cies genomic approach can improve the power to detect genes in-
volved in adaptation and show whether orthologous loci contribute 
to adaptive variation in different species (Neale & Ingvarsson, 2008). 
Multispecies approaches are reported to improve our understand-
ing of both transcriptomes and genomes (e.g. Ahrazem et al., 2019; 
Cornell et al., 2007; Leebens- Mack et al., 2019; Pellegrini et al., 
1999; Polturak et al., 2018): the use of comparative species analyses 

provides a wide phenotypic base and shared evolutionary history for 
the identification of inter-  and intra- specific genetic variation (van 
Kleunen et al., 2014). Making use of this multispecies approach to 
select SNPs for genomic prediction may also help to locate them 
in influential loci and potentially improve the generality of models 
based upon them.

Globally, pines are among the most important commercial tree 
species (Kanninen, 2010) and are ecosystem- defining in vast areas of 
forest across the northern hemisphere. Understanding the genetic 
architecture of key adaptive traits in pines, such as growth, form, 
disease resistance and phenology is of interest to a wide range of 
stakeholders, including the forestry industry and conservationists. 
Due to their large size and complexity, the assembly of pine genomes 
is particularly challenging, and has only been satisfactorily achieved 
for loblolly pine (Pinus taeda; Zimin et al., 2014) and sugar pine 
(Pinus lambertiana; Stevens et al., 2016), which are among the larg-
est genomes ever sequenced and assembled. However, thousands 
of polymorphic regions potentially suitable for use in genotyping in 
pine species have already been discovered using high- throughput 
sequencing methods such as whole transcriptome studies (Blanca 
et al., 2012; Chancerel et al., 2011; Durán et al., 2019; Geraldes 
et al., 2011; Liu et al., 2014; Parchman et al., 2010; Trick et al., 2009; 
Wachowiak et al., 2015).

So far, most prediction models have been developed and tested 
for wood or fruit quality (Beaulieu et al., 2014; Isik et al., 2016; Kumar 
et al., 2012; Minamikawa et al., 2017; Muranty et al., 2015; Resende, 
Muñoz, et al., 2012; Resende, Resende, et al., 2012; Thistlethwaite 
et al., 2017), although a few have targeted disease resistance (Stocks 
et al., 2019; Westbrook et al., 2020). In pines, association studies and 
tests of genomic prediction have been performed for serotiny (Pinus 
pinaster, Budde et al., 2014; Pinus contorta, Parchman et al., 2012), 
circumference, height, stem straightness (P. pinaster, Bartholomé et al., 
2016), oleoresin flow (P. taeda, Westbrook et al., 2013) and growth 
and wood quality traits (Pinus sylvestris, Calleja- Rodriguez et al., 2020).

Here we study three closely related pine species (P. sylvestris, 
Pinus mugo and Pinus uncinata) which have contrasting growth habits 
and are adapted to different environments. The species are members 
of the same monophyletic group within Pinaceae (Grotkopp et al., 
2004), having diverged within the last 5 million years (Wachowiak 
et al., 2011) and have the same number of chromosomes (2n = 24). 
The three species have weak reproductive barriers between them 
and share many ancestral polymorphisms (Lewandowski et al., 2000; 
Wachowiak et al., 2013). We used trait data from a common garden 
glasshouse experiment (Wachowiak et al., 2018) along with geno-
typing data from a large new multispecies Pinus SNP array (Perry 
et al., 2020) to identify SNPs associated with growth and phenol-
ogy in the three species and to determine their putative function. 
A range of genomic prediction models were developed, and then 
tested using a subset of the P. sylvestris. Finally, we evaluated the 
potential of the models for genomic prediction, by testing the best 
performing set to estimate trait values in an independent multisite 
P. sylvestris field trial. We discuss the potential and limitations of the 
models for genomic prediction.
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2  |  METHODS

Experimental design and analyses performed in the study are sum-
marized in Figure 1.

2.1  |  Plant material and phenotype assessments

Collection of plant material, experimental design and phenotype as-
sessments for the common garden glasshouse trial (referred to here-
after as the association trial) are described by Wachowiak, Perry, 
et al. (2018). Briefly, open- pollinated seeds of the three pine species 
were collected from three to five trees per population from 28 natu-
ral populations in Europe covering the geographical range of each 
species (Figure 2). The collection consisted of 13 populations of P. syl-
vestris (SY), nine P. mugo (MU) and six P. uncinata (UN). Seeds from 
each maternal tree were sown on trays of compost in spring 2010. 
After germination, a provenance– progeny trial was established in an 
unheated glasshouse at the UK Centre for Ecology and Hydrology, 
Edinburgh, UK (latitude 55.861261, longitude −3.207819). Seedlings 
were grown under natural light with automatic watering applied dur-
ing the growing season. The trial was divided into 25 randomized 
blocks with up to five families per population, of which the first 18 
blocks were analysed by Wachowiak, Perry, et al. (2018). A summary 
of the counts of populations, families and total numbers of individu-
als are provided in Table S1. Phenology (traits assessed: BS, timing 
of bud set, BB, timing of budburst) and growth (traits assessed: H, 
total height; I, annual increment— the increase in height from 1 year 
to the next) were recorded for every seedling to evaluate within-  and 
between- species variation (species means for trees sampled in this 
study recorded in Table S2).

Bud set was defined as the time when a visible apical bud with 
clearly developed scales was formed at the tip of a stem in each 
seedling and was recorded as the number of days since the date on 
which the first plant to set a terminal bud in the trial was observed 
(in the first year of growth: BS2010). Budburst was scored when new 
needles emerged around the tip of the apical bud in the main stem 
and was measured as the number of days since the date on which the 
first plant to burst bud was observed (in the second and third years, 

BB2011, BB2012). Phenology observations were conducted twice a 
week. The height of all pines was measured annually from the sec-
ond to fourth year of the pine growth (H2011, H2012 and H2013). 
The annual increment was estimated for growth between 2011– 12 
(I2012) and 2012– 13 (I2013). On the rare occasions that height was 
lower than in the previous year (due to, for example, human error 
or the loss of the leader) measurements were adjusted to ‘NA’. To 
assess the proportion of variation that is under genetic control, the 
narrow sense heritability (h2) and associated standard error for each 
trait was estimated using the GRM (genetic relationship matrix)- 
based restricted maximum likelihood (GREML) procedure imple-
mented in GCTA (Yang et al., 2011).

An independent multi- site, field- based provenance– progeny 
trial of P. sylvestris (referred to hereafter as the independent trial) 
was also phenotyped and genotyped using the same genotyping 
array and was used to test the predictive power of models devel-
oped using plants in the association trial described above. This trial 
was selected as there was commonality in the traits measured and 
geographical range of Scots pine populations used with the glass-
house trial, however the number of genotyped samples were con-
sidered to be too low to perform association analyses and it was 
therefore used instead to test the predictive power of the models 
in two distinct environments. Seeds from eight families from each 
of 21 native Scottish P. sylvestris populations (Figure 2) were col-
lected in March 2007 and germinated at the James Hutton Institute, 
Aberdeen (latitude 57.133214, longitude −2.158764) in June 2007. 
A subset of trees from two of these sites were genotyped as part 
of this study: a site in the Borders of Scotland (Yair, YA: latitude 
55.603625, longitude −2.893025) was planted in October 2012; a 
site in Aberdeenshire (Glensaugh, GS: latitude 56.893567, longitude 
−2.535736) was planted in spring 2012. Trees transplanted to YA 
were initially grown in an unheated glasshouse whereas trees trans-
planted to GS were started in pots outside. The two transplantation 
sites also generally experience different climates, with the YA site 
typically warmer and drier than the GS site (Table S3) and with a 
longer growing season.

At each trial site, trees were planted in four randomized blocks at 
3 m × 3 m spacing. A guard row of Scots pine was planted around the 
periphery of the blocks. Each block comprised one individual from 

F I G U R E  1  Plant material, datasets and 
analyses used in the study. MU: P. mugo; 
SY: P. sylvestris and UN: P. uncinata
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each of eight families per 21 populations (168 trees). A summary of 
the counts of populations, families and total numbers of individuals 
are provided in Table S1. Budburst and height were assessed annually 
from 2015. Height was measured in the winter before the growing 
season began from 2015 to 2020. Height was also measured before 
the start of the second growing season in March 2008. The annual 
increment was estimated as the increase in height from 1 year to the 
next. Each tree was assessed for budburst stage annually from 2015 
until 2019 at weekly intervals from early spring until budburst was 
complete. Seven distinct stages of budburst were defined (Table S4). 
The number of days for each tree to reach each stage of budburst, 
starting from the day the first tree was observed at each stage at 
each site, was recorded. When trees progressed through budburst 
stages rapidly, skipping a stage between assessments, a mean value 
was taken between the two assessment dates. The duration of the 
core stages of budburst (time taken to progress from stage 4 to stage 
6) was also estimated. Although the method used to record budburst 
was not identical among the association trial and independent trial, 
the trait as described by Wachowiak, Perry, et al. (2018) is equivalent 
to stages 5 and 6 in the independent trial.

To better understand the relationship between different traits 
and for individual traits across different years, Pearson's correla-
tion coefficient and significance values were estimated for trees in 
the association trial for each species separately and for trees in the 
multi- site independent trial for each site separately using a package 

‘Hmisc’ (Harrell Jr, 2020) in R (R Core Team, 2020). Data on indi-
vidual traits measured over multiple years enabled their consistency 
among years to be assessed, as inter- annual variation may occur due 
to seasonal environmental variation, developmental variation and/
or maternal effects (Vivas et al., 2020). Pearson's correlation coef-
ficient and associated significance values between budburst timing 
and duration among years and stages in the independent trial were 
also examined.

Nested ANOVA was performed for growth and phenology in the 
independent trial to assess within- site spatial heterogeneity for each 
site. Data for all trees in the trial was used (i.e. not just the subset 
of genotyped trees), with population as a fixed effect, and families 
nested within population and block as random effects.

2.2  |  Genotyping array

The design of the array, genotyping and SNP calling are as described 
by Perry et al. (2020). Briefly, an array comprising 49,829 SNPs was 
used to genotype 1920 DNA samples (from needles of four pine spe-
cies: the species included here plus Pinus uliginosa) according to the 
Affymetrix Axiom Assay protocol on a GeneTitan and following gen-
otyping, genotype calls were performed using Axiom Analysis Suite 
as recommended by the manufacturer. A subset of trees from the 
association trial described in the previous section were genotyped 

F I G U R E  2  Geographical location of sampled pine populations across Europe (map on left: association trial) and Scotland (map on right: 
independent trial). Pine species: MU, P. mugo; SY, P. sylvestris and UN, P. uncinata. Independent trial map shows genotyped P. sylvestris (SY- 
G) and other P. sylvestris populations included in the trial but not genotyped (SY). Multi- site field sites in independent trial: GS, Glensaugh 
and YA, Yair. Association trial map: Europe base map credit: Natural Earth, Esri France. Independent trial map contains OS data © Crown 
Copyright and database right 2020

Associa�on trial Independent trial

YA

GS
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and consisted of 12 populations of SY (N = 461) and five popula-
tions each of MU (N = 145) and UN (N = 201). Up to 10 trees were 
genotyped per family (except for population SY33 which was geno-
typed up to a maximum of 14 trees per family). Five families were 
genotyped per population with the exception of the following; SY44 
(N families = 4), SY30 (N families = 3) and MU5 (N families = 3). 
Samples were filtered to remove all those with a call rate <80% 
(N removed: MU = 30; SY = 5; UN = 10). A summary of the counts 
of genotyped populations, families and total numbers of individuals 
are provided in Table S1.

The independent trial of P. sylvestris was also partially genotyped 
at each site: 100 trees from YA (15% of the trees at the site) and 
108 trees from GS (16% of the trees at the site), each comprising 
the same five populations (Beinn Eighe, BE; Glen Affric, GA; Glen 
Loy, GL; Glen Tanar, GT and Rhidorroch, RD) with 19– 22 individuals 
per population for each site. There were seven to eight families gen-
otyped for each population with one to three half- siblings in each 
family at each site. These datasets are henceforth referred to as YA- 
SY and GS- SY. A summary of the counts of genotyped populations, 
families and total numbers of individuals are provided in Table S1.

2.3  |  Population genetic structure, kinship and 
statistical power

On the basis of the SNP genotyping results in the association trial, 
population genetic structure was assessed visually by constructing 
a neighbour joining tree in the R package ‘ape’ (Paradis & Schliep, 
2019) based on a distance matrix generated in TASSEL version 5.2.39 
(Bradbury et al., 2007). SNPs with call rate <80% (N = 48) were ex-
cluded. Pairwise kinship (centred identity by state) was estimated for 
each species independently using all polymorphic markers in TASSEL. 
The degree of skewness in the distribution within each species' matrix 
was calculated using the D'Agostino skewness test in the R package 
‘fBasics’ (Wuertz et al., 2020). The statistical power of each species' 
dataset (MU; SY; UN), the P. mugo complex (MU- UN), and the full 
dataset including all species (MU- SY- UN) to detect true associations 
between SNPs and adaptive traits was estimated using the method 
reported by Wang and Xu (2019) under the following assumptions: 
nominal type 1 error (false positive) = 0.05; QTL size = 0.05. Statistical 
power was estimated at different levels of polygenic effect (λ): from 
0.1 (where polygenic variance is 10% of phenotypic variance) to 10 
(where polygenic variance is 10× phenotypic variance). Genotype fre-
quencies of all SNPs subsequently found to be significantly associated 
with the adaptive traits in the MU- UN dataset were checked in each 
species separately (MU and UN) to assess the contribution of each 
species to associated genetic variation.

2.4  |  Genetic associations and putative functions

Using results from the association trial, identification of SNPs po-
tentially associated with phenology (traits: budburst and bud set) 

and growth (traits: height and increment) was conducted for each 
trait in each year. For all analyses, raw phenotypic data were used. 
Association with SNPs was tested in each species separately (MU; SY; 
UN) as well as in all species combined (MU- SY- UN) and in the P. mugo 
complex (MU- UN). A mixed linear model (MLM) was fitted to each 
locus independently in TASSEL (version 5.2.39). Each MLM analy-
sis included a matrix derived from principal component (PC) scores 
and a kinship covariance matrix (centred identity by state) to allow 
for population stratification. The proportion of true null hypotheses 
was estimated using a false discovery rate approach, retaining SNPs 
associated with traits with adjusted p values <0.05. Two association 
analyses were carried out, firstly including all polymorphic SNPs ir-
respective of minor allele frequency (MAF) value and secondly, by 
applying a MAF filter (excluding SNPs with MAF <0.05).

A multi- locus mixed model (MLMM) approach, with 10 steps, 
was used to identify loci which have large effects (Segura et al., 
2012). Highly significant SNPs (based on the estimations of genetic 
variance, p < 0.001) were included in a forward– backward step-
wise approach, one by one, as cofactors in the model. The kinship 
matrix used in the MLM approach was also included, but PC scores 
were not used. Rather than using PC scores to estimate population 
structure the MLMM approach uses a kinship matrix to describe 
the covariance structure, which is thought to perform better when 
population structure is complex (Segura et al., 2012). The multiple 
Bonferroni criterion, defined as the largest model whose cofactors 
all have a p- factor below a Bonferroni- corrected threshold of 0.05 
(Dunn, 1961), was used to indicate the best model.

Single nucleotide polymorphisms were divided into two classes 
on the basis of their minor allele frequency: MAF >0.05: common; 
MAF <0.05: rare. As the majority of traits are controlled by many 
genes of very small effect it is likely to be important to consider 
every SNP identified. Each SNP found to be significantly associ-
ated with a trait (when no MAF filter was applied, in order to com-
pare the putative function of genes containing rare and common 
variants) was also examined to compare the putative function of 
the genes on which they are located with the trait in question. To 
do this, the full unigene sequence in which each SNP is located 
was BLASTed against the uniprotkb_viridiplantae database, the 
result with the highest score (minimum e- value 1E- 50) for each 
unigene was retained, and the putative function determined by 
a literature survey using the search term ‘protein name function 
plant.’ Where the protein was uncharacterized, the protein domain 
and/or family was recorded and the most likely function inferred. 
Where putative functions could be determined the genes were 
grouped according to their role in the following phenotypic re-
sponses: ‘Response to environment’ (including abiotic and biotic 
stress response), ‘Growth and development’ (including cell divi-
sion, differentiation and senescence); ‘Reproduction’ (including 
flowering time and seed yield). Although many cellular processes 
(e.g. metabolism, signalling pathways, DNA binding, transcription 
and translation) were also identified as putative functions, these 
were assumed to be underlying control and expression of pheno-
typic functions and were not assigned a function.
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2.5  |  Prediction models: construction and 
internal assessment

Phenotypic prediction multiple linear regression models were con-
structed in R using data generated from the association trial. A 
number of different models were constructed and compared using 
different sets of SNPs and different traits to train the model (the dif-
ferent models assessed are listed in Table 3). Predictive models were 
constructed using SNPs identified as potentially associated with vari-
ation in phenology (trait: budburst: BB2011) and growth (traits: height 
and increment: H2013 and I2013). To assess the relative contribu-
tion of SNPs identified using the multispecies compared to a single 
species approach, predictive models for both growth and phenology 
were constructed using SNPs identified from either (a) all species' 
datasets (i.e. MU- SY- UN, MU- UN and SY); (b) just datasets containing 
SY (i.e. MU- SY- UN and SY); (c) just SY. Predictive models were also 
constructed using the same number of randomly selected SNPs from 
all polymorphic loci with the same proportion of rare and common 
SNPs as the other prediction models. Ten sets of randomly selected 
SNPs were tested for each trait and 95% confidence intervals were 
reported. Additionally, predictive models were constructed using all 
available polymorphic SNPs for SY. All models for both phenology 
and growth (SNPs associated with trait from MU- UN- SY, MU- UN and 
SY; SNPs associated with trait from MU- SY- UN and SY; SNPs associ-
ated with trait from SY; random SNPs; all polymorphic SNPs) were 
run both with and without a MAF filter (retaining only SNPs which 
were common in the datasets from which the significant associations 
were originally identified). As recommended when the number of loci 
is greater than the number of samples, we elected to construct the 
prediction model based on all polymorphic SNPs using ridge regres-
sion with the R package ‘rrBLUP’ (Endelman, 2011), rather than the 
multiple linear regression method. For all models, where necessary, 
family means were used to replace missing genotype data. The predic-
tive models were initially run using an internal training set comprising 
60% of SY trees from the association trial, which had been used to 
identify associated SNPs, and predictive accuracy assessed using the 
remaining 40% of SY trees (the internal testing set) in the associa-
tion trial. Models were run using SY trees and not UN or MU as our 
intention was to carry out subsequent testing of the models in this 
species alone. We used budburst and growth but not bud set data as 
subsequent model testing was applied to data from an independent 
trial for which only these traits were available. Pearson's correlation 
coefficient and significance for correlations between predicted values 
generated by the predictive models and observed values for both phe-
nology and growth (both H2013 and I2013 were tested to see which 
performed best for the growth model) were estimated using the R 
package ‘Hmisc’ (Harrell Jr, 2020).

The SNPs used in each prediction model were assessed for 
their variation among SY populations using the R package ‘hierfstat’ 
(Goudet & Jombart, 2020). Basic statistics including overall observed 
heterozygosity (HO), mean gene diversities within populations (HS), 
inbreeding coefficient (FIS) and population differentiation (FST) were 
estimated for each set of SNPs described above.

2.6  |  Prediction models: independent assessment

The SNPs identified as potentially associated with budburst and 
growth were tested for their predictive power using genotype and 
phenotype data from an independent trial of P. sylvestris, estab-
lished at contrasting sites (YA and GS) in 2012. Genotyped trees 
from YA and GS were assigned predicted values for both phenol-
ogy and growth using multiple linear regression models constructed 
using either all available SNPs or only those found to be signifi-
cantly associated with the trait (final predictive models, chosen 
based on their performance in the initial internal test). As models 
tend to work best in material that is closely related to those used 
in model development (Beaulieu et al., 2011), the model using all 
available SNPs was also trained using only SY trees from Scotland 
grown in the association trial (N = 227). Observed values for growth 
(height and increment) and budburst (timing and duration) at multi-
ple years (2015– 2020 for increment and 2015– 2019 for budburst) 
were compared with values generated by the predictive models. 
Multiple years were used to ensure that annual variation caused 
by seasonal differences could also be considered. Height is a cu-
mulative measure, and therefore, only the most recent (2020) and 
the measurements made after the first year of growth (2008) were 
compared with the predicted values. Furthermore, the use of height 
measurements at both young and more mature ages allowed the 
impact of maternal effects to be examined and tested. In order to 
identify SNPs which are good predictors of final height, the use of 
trees whose traits are not confounded by maternal effects is im-
portant. To assess the performance of the predictive models, the 
Pearson's correlation coefficient and significance values between 
predicted and observed values for phenology and growth were es-
timated for each site (GS and YA) separately using the R package 
‘Hmisc’ (Harrell Jr, 2020). The use of two sites in independent test-
ing also allowed comparison of the performance of the predictive 
models in different environments.

The effectiveness of using the predictive model as a genomic 
selection tool was also tested and compared with other selection 
methods. For each method, 10 trees were selected from each trial 
site: for genomic selection, the 10 trees at each site with the highest 
values generated by the predictive model were chosen; for pheno-
type selection, the 10 tallest trees at each site prior to the start of 
the second growing season (measured in March 2008) were chosen. 
The average height at 13 years (2020) of the 10 trees selected using 
each method was compared. The trees selected using each method 
were also compared to the 10 tallest trees at each site at age 13.

3  |  RESULTS

3.1  |  Intra-  and inter- specific trait variation

Bud set was, on average, earliest for MU and latest for SY with a 
mean difference of nearly 19 days between the two species (Tables 
S2 and S5). Bud set for UN occurred, on average, 8.28 days after MU 
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and 10.63 days before SY. Budburst was similarly earliest for MU but 
was latest for UN in both years assessed although the mean differ-
ence between species was greater in 2012 (15.17 days) than in 2011 
(5.42 days). For all years, on average, MU were the shortest trees and 
SY were the tallest with increment similarly greater in SY than in UN 
or MU. By 2013, SY trees were on average over double the height of 
the average MU tree, with UN trees on average just over two- thirds 
the height of the average SY tree. Narrow sense heritability esti-
mates were highest for bud set (mean h2 = 0.78; Table S6) and height 
(mean h2 = 0.70) and lowest for increment (mean h2 = 0.44). Narrow 
sense heritability estimates were highest for SY (mean h2 = 0.71) and 
lowest for all species combined (mean h2 = 0.55).

Phenotypes for the independent trial are provided in Table S7. The 
relationships between duration and timing of each stage of budburst 
in the independent trial were examined. Due to missing data, only 
budburst stages 4– 6 were analysed. Timing (time taken to reach each 
stage) showed a significant negative correlation with duration (time 
taken to progress from stage 4 to 6) of budburst at each year assessed 
for stage 4, but the relationship was positively correlated for stage 6 
(Table S8). In contrast, the time to reach stage 6 showed a significant 
positive correlation with the duration of budburst. Time to reach stage 
5 was both positively (GS) and negatively (YA) correlated with the du-
ration of budburst. Budburst stages were highly positively correlated 
with one another in all years at both sites (Table S8). Therefore, stage 6 
is used to represent timing of budburst for all further analyses.

The relationships among the traits measured over multiple years 
(including both correlations of individual traits over multiple years 
and correlations of different traits with one another) were examined 
in both the association trial (Table S9) and independent trial (Table 
S10). For MU and UN in the association trial, height and increment 
were highly significantly correlated over each year, as was budburst 
in each year. Although highly significant in all cases, the correlation 
coefficient associated with height in the first year of growth (H2011) 
reduced in each subsequent year for all three species (H2011 and 
H2012: MU, 0.74; SY, 0.81; UN, 0.71. H2011 and H2013: MU, 
0.67; SY, 0.73; UN, 0.66). Bud set in 2010 was significantly nega-
tively correlated with budburst in 2011 in both MU and UN but was 
significantly positively correlated with budburst in both 2011 and 
2012 in SY. Furthermore, bud set in SY was also highly significantly 
correlated with height in all years and increment in 2012 and incre-
ment in 2013 was not significantly correlated with height in 2011 
or 2012. In the independent trial, height in 2020 was highly signifi-
cantly correlated with increment for all years in both GS and YA, 
whereas height in 2008 was not significantly correlated with height 
in 2020, as would be expected if maternal effects were expressed in 
the first year of growth, or increment in any year except 2017 in GS. 
There was little correlation among growth and phenology traits in 
either independent trial site except budburst timing in 2016 which 
was negatively correlated with height and increment after 2015 in 
YA and positively correlated with height in 2020 and increment in 
2015 and 2016 in GS.

The block effect was low at the GS site of the independent trial 
(Table S11) and was only significant for budburst timing and duration 

in 2017 and for increment in 2020. In contrast, blocks were signifi-
cantly different for all traits for the majority of years at YA. Budburst 
timing was not significantly different among populations at either GS 
or YA in any year and was only significant for budburst duration in 
2018 (both sites) and 2016 (GS). There were significant differences 
among populations for height and increment for all years in GS but 
not for increment in 2016 or 2017 at YA. There were significant dif-
ferences among families for all traits at both GS and YA, but this was 
not the case in all years.

3.2  |  Summary of genotyping array

High quality genotypes (call rate >80%) were obtained for over 
94% of trees genotyped within the association trial (N = 762: MU, 
N = 115; SY, N = 456; UN, N = 191, Table S5). There were 9583 
high quality (call rate >80%) polymorphic SNPs which were shared 
among the three species (Table 1), with a further 1352 SNPs which 
were polymorphic in at least two species and monomorphic in a 
third. SNP genotypes obtained for trees from YA and GS were all 
high quality (Table S7).

3.3  |  Population genetic structure, kinship and 
statistical power

The neighbour joining tree generated from the distance matrix in-
dicated the majority of the structure is among species and families 
with weak population structure, as reported in previous studies 
(Wachowiak et al., 2013; Wachowiak, Zaborowska, et al., 2018). The 
pairwise kinship distribution was strongly skewed toward positive 
kinship values for each species (D'Agostino's skewness test, MU: 
z = 101.389, p < 2.2 × 10−16; SY: z = 446.904, p < 2.2 × 10−16; UN: 
z = 153.664, p < 2.2 × 10−16), as expected given the presence of 
half siblings in the association trial. These results support the use of 

TA B L E  1  Counts for each type of SNP in individual species and 
shared among species

Species set

SNP type

CR < 80 Mono Poly

Individual species

SY 9 5767 15,019

MU 4884 4639 11,272

UN 288 5297 15,210

Shared among species

SY and MU 6 3700 9910

SY and UN 0 4161 13,654

MU and UN 242 4170 10,430

SY and MU and UN 0 3446 9583

Notes: Species: SY, P. sylvestris; MU, P. mugo; UN, P. uncinata. SNP type: 
CR < 80, call rate <80%; Mono, monomorphic; Poly, polymorphic.
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mixed model approaches and the correction for population stratifi-
cation prior to testing for genetic association.

The statistical power to detect true associations between SNPs 
and adaptive traits was found to be extremely low for both MU and 
UN even when the polygenic effect was assumed to be 10 x that of 
the phenotypic variance (Table S12). This is likely to be due to the 
low sample numbers, a conclusion supported by the result that the 
statistical power of SY was similarly low if the sample numbers were 
reduced to those of MU and UN: the statistical power remained low 
even when the polygenic effect was increased. The model based on 
the SY dataset was found to have relatively high statistical power, 
and the model based on the joint MU- UN dataset had lower power, 
but significantly more than for each species individually. The statis-
tical power of a model based on the dataset that included all three 
pine species was found to be very high regardless of the polygenic 
effect. For these reasons, the following datasets were analysed for 
associations with traits: the P. mugo complex (MU- UN), SY and all 
three pine species (MU- SY- UN).

3.4  |  Identification of loci associated with traits

One hundred and eighteen SNPs were identified as associated with 
phenology and growth in the three pine species (Table 2; Table S13) 
and included SNPs which were identified in more than one species' 
datasets. There was very little overlap of individual SNPs associated 

among multiple traits or years: four SNPs were associated with more 
than one trait, of which only one (comp51128_c0_seq1_1529) was 
associated with both phenology (trait: BB2011) and growth (trait: 
I2013). The vast majority of SNPs were identified using the MLM 
approach (N SNPs = 113) rather than the MLMM approach (N 
SNPs = 14). There were nine SNPs identified as significantly asso-
ciated with traits in both MLM and MLMM. Almost twice as many 
SNPs were significantly associated with phenology traits (N = 77) 
than growth traits (N = 42). Significantly associated SNPs were iden-
tified for all traits in all years except BB2012. The traits with the 
highest number of associated SNPs were BB2011 (N = 58), I2013 
(N = 34) and BS2010 (N = 19), whereas other years/traits all had 
low numbers of associated SNPs (H2011, N = 3; H2012, N = 1 and 
I2012, N = 1).

A higher number of SNPs associated with traits were identified in 
SY (N = 64) than in MU- UN (N = 44). Only one SNP (comp51128_c0_
seq1_1529) was identified as significant in both datasets although 
it was associated with phenology (BB2011 for MU- UN) and growth 
(I2013 for SY): it was common in MU- UN but rare in SY (Table S13). 
A further 44 SNPs were found to be associated with traits when 
all species were combined within a single analysis, although 11 of 
these were also identified in SY and 23 were identified in MU- UN. 
Applying a multispecies approach led to the identification of 54 
SNPs which would not have been identified if only the SY dataset 
had been used. When no MAF filter was applied prior to screening 
SNPs for association with the traits of interest, 37 SNPs were found 

Trait Species

MLM MLMM

Common Rare Common Rare

Phenology

BB2011 MU- UN 9 (3/1) 25 4

SY 7 (6/2) 11 3

MU- SY- UN 4 (2/1) 19 3

BS2010 SY 4 14

MU- SY- UN (0/1)

Growth

H2011 SY 1

MU- SY- UN 1 1

H2012 MU- SY- UN 1 (1/0)

H2013 SY 2

MU- SY- UN 4 1

I2012 MU- SY- UN 1

I2013 MU- UN 6 (5/0) 1 1

SY 2 (1/0) 20 4

MU- SY- UN 6 (3/0) 4 1 1

Notes: Single nucleotide polymorphisms (SNPs) identified in analyses with a minor allele frequency 
(MAF) filter (excluding MAF < 0.05) are in parentheses: common SNPs identified both with and 
without a MAF filter are to the left of the forward slash; SNPs identified only with a MAF filter are 
to the right of the forward slash.
Species codes: MU, P. mugo; SY, P. sylvestris; UN, P. uncinata. Trait codes: budburst (BB); bud set 
(BS); height (H); increment (I). Common: SNPs with MAF > 0.05; Rare: SNPs with MAF < 0.05.

TA B L E  2  Total number of single 
nucleotide polymorphisms (SNPs) 
associated with phenology and growth 
traits in the three pine species identified 
from a mixed linear model (MLM) in 
TASSEL and a multi- locus mixed model 
(MLMM) in R
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to be common in at least one dataset. Applying a MAF filter iden-
tified a further five SNPs, all in phenology traits (Table 2), but also 
failed to identify 26 of the common SNPs identified when no MAF 
filter was applied.

Genotype frequencies for SNPs identified as significantly associ-
ated with adaptive traits in MU- UN were compared for UN and MU 
separately (Table S14). Diversity was much lower in UN than MU 
for the majority of SNPs: 23 of the 36 SNPs identified as associated 
with BB2011 were monomorphic in UN. In contrast, diversity in UN 
was much higher for SNPs identified as significantly associated with 
I2013 (Table S14). Similarly, the standard error for MU was more 
than twice that of UN for BB2011 (MU: 0.73 and UN: 0.33) whereas 
the standard error for both species was similar for I2013 (MU: 0.47; 
UN: 0.32; Table S2).

3.5  |  Putative function of genes containing SNPs 
associated with traits

One hundred and eighteen SNPs associated with phenology and 
growth in the three pine species were located at 114 gene loci (two 
unigenes, comp48223_c0_seq1 and comp47733_c0_seq1, con-
tained three SNPs each). One locus was originally identified in Pinus 
radiata (Doth_comp54682_c0_seq1_159), the remaining were iden-
tified following transcriptome sequencing in P. sylvestris and the taxa 
of the P. mugo complex (Perry et al., 2020: Table S13). The genetic se-
quences containing loci associated with each trait were found to be 
highly similar to proteins with a range of putative functions (Tables 
S15a– c). Of the SNPs identified when no MAF filter was applied, the 
majority of SNPs associated with bud set (all identified in SY) were 
found in genes that code for proteins putatively involved in growth 
and development (61.11%) with a few (exclusively rare) SNPs found 
in proteins putatively involved in response to environment (22.22%, 
Figure 3; Table S15a). In contrast, budburst had high numbers of as-
sociated SNPs (both rare and common) in genes that code for pro-
teins putatively involved in response to environment and growth and 
development (mean contribution of putative function groups coded 
by genes containing SNPs significantly associated with budburst 
across species' datasets as a percentage of the total number of pro-
teins: 39.01% and 39.09% for growth and development and response 
to environment respectively. Table S15b). Whereas the majority of 
SNPs associated with height were found in proteins putatively asso-
ciated with growth and development (Table S15c), SNPs associated 
with increment were found in proteins putatively associated with 
both growth and development and response to environment. There 
are some differences among species in the putative function of pro-
teins containing significantly associated SNPs: the majority of SNPs 
in SY are found in genes coding for proteins putatively associated 
with growth and development for all traits (Figure 3) whereas MU- 
SY- UN and MU- UN have higher proportions of SNPs in genes coding 
for proteins putatively associated with response to environment as 
well as growth and development. Of the five SNPs that were only 
identified as associated with a gene when a MAF filter was applied, 

one was putatively associated with response to environment, one 
with growth and development, one with all three functions and two 
with none of these functions (Table S15a– c).

3.6  |  Prediction models: construction and 
internal assessment

There was a large dropout in the number of SNPs which were suit-
able for inclusion in subsequent predictive models: of the 38 SNPs 
identified as potentially associated with growth (H2013 and I2013) 
in SY, MU- UN and MU- SY- UN datasets, 24 were monomorphic in 
either (or both) the SY and the independent P. sylvestris datasets (YA- 
SY and GS- SY). Therefore, 14 SNPs (nine associated with I2013, four 
with H2013 and one with both I2013 and H2013) were included in 
the model, of which eight were rare in the SY dataset (although only 
three were rare in the MU- SY- UN datasets in which they had been 
identified as associated with the traits). Of these 14 SNPs, five were 
identified in the SY dataset, four in the MU- SY- UN dataset, three in 
both the MU- UN and MU- SY- UN datasets and two in both the SY 
and MU- SY- UN datasets. For the predictive models for budburst, all 
SNPs significantly associated with BB2011 in the SY, MU- UN and 
MU- SY- UN datasets (N = 58) were considered for inclusion. Thirty- 
three SNPs significantly associated in at least one of the association 
trial datasets were monomorphic in at least one of the SY, YA- SY 
and GS- SY datasets. The remaining 25 SNPs (13 were identified in 
SY or in both SY and MU- SY- UN; 11 were identified in MU- UN or in 
both MU- UN and MU- SY- UN; one was only identified in MU- SY- UN) 
were used to construct the predictive models for budburst. Eight of 
the SNPs were rare in the dataset in which they were identified. The 
SNPs used to construct predictive models for growth were found 
to have lower differentiation among populations (FST = 0.03– 0.04, 
Table S16) than the full set of polymorphic SNPs for SY (FST = 0.06). 
The inbreeding coefficient (FIS) was −0.6 to −0.7 for the majority of 
SNP sets (Table S16) with a slightly higher value observed in the SNP 
set for the growth model using trait associated SNPs identified in 
the SY dataset (FIS = 0.9). Observed heterozygosity and gene diver-
sity (HO and HS, respectively) were both higher in the sets of SNPs 
which were filtered to include only those which were common in the 
original dataset.

The performances of each predictive model when tested inter-
nally using the association trial material (i.e. the strength and sig-
nificance of the correlation of predicted values with the observed 
values for each trait) are summarized in Table 3. Models constructed 
using random SNPs were not successful in predicting values that 
were correlated with observed values for each trait, although the 
mean strength of the correlation was much higher for the random 
models trained using H2013 than for either I2013 or BB2011. For 
all models, except those constructed using random SNPs, those 
without a MAF filter always performed better than the equiva-
lent models constructed using only common SNPs, although there 
was little difference in performance for models constructed using 
all polymorphic SNPs (Table 3). The predictive model for budburst 
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constructed using SNPs which were identified in both SY and MU- 
SY- UN resulted in a slightly improved predictive ability (r = 0.41, 
p < 0.001; Table 3) compared to the models which included only 

SNPs identified in SY (r = 0.38, p < 0.001) or those identified in 
all species' datasets (r = 0.40, p < 0.001). For these reasons, the 
final predictive model for budburst was constructed using SNPs 

F I G U R E  3  Contribution of putative 
function groups (G&D: growth and 
development; R: reproduction; RtE: 
response to environment) coded for 
by genes containing single nucleotide 
polymorphisms significantly associated 
with each trait (bud set, budburst, height 
and increment) identified when no MAF 
filter was applied and as a percentage of 
the total number of proteins identified 
for each trait for each species' dataset 
(MU: P. mugo; SY: P. sylvestris and 
UN: P. uncinata). Proteins which were 
uncharacterized, for which no known 
function in plants was found or for which 
only cellular processes could be identified 
are categorized ‘NA.’ Total for each trait 
may be higher than 100% as there may be 
more than one putative function assigned 
to a single protein. MAF: minor allele 
frequency (MAF >0.05: common; MAF 
<0.05: rare)
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Training trait SNP set
Species 
datasets

N SNPs (MAF: 
No/MAF: Yes) MAF: No MAF: Yes

Predictive models: Budburst

BB2011 Budburst a 25/17 0.40*** 0.23**

Budburst b 15/11 0.41*** 0.30***

Budburst c 13/9 0.38*** 0.13

Random NA 16/11 0.08 ± 0.05 0.07 ± 0.05

All SNPs NA 15,019/7712 0.57*** 0.57***

Predictive models: Growth

H2013 Growth b 14/11 0.26*** 0.25**

Growth c 7/4 0.20** 0.19*

Random NA 14/7 0.15 ± 0.06 0.17 ± 0.05

All SNPs NA 15,019/7712 0.49*** 0.48***

I2013 Growth b 14/11 0.19* 0.14

Growth c 7/4 0.19* 0.09

Random NA 14/7 0.09 ± 0.06 0.09 ± 0.06

All SNPs NA 15,019/7712 0.35*** 0.35***

Note: Species datasets, single nucleotide polymorphisms (SNPs) identified as significantly 
associated with the trait in: (a) all species' datasets (i.e. MU- SY- UN, MU- UN and SY); (b) just 
datasets containing SY (i.e. MU- SY- UN and SY); (c) just SY. All models trained using a subset of the 
SY dataset and validated using the remaining SY trees.
MAF: No = no minor allele frequency filter applied; Yes = only common (MAF > 0.05) SNPs 
included. MAF was calculated using the datasets from which the SNPs were originally identified as 
being associated with each trait.
Significance values: *p: 0.01- 0.05; **p: 0.001– 0.01; ***p < 0.001.

TA B L E  3  Pearson's correlation 
coefficient I and associated significance 
values for comparison of predicted and 
actual values for each trait both with and 
without a minor allele frequency (MAF) 
filter when using prediction models 
constructed with single nucleotide 
polymorphisms (SNPs) significantly 
associated with each trait (Budburst; 
Growth), random sets of SNPs (10 sets of 
randomly selected SNPs for each model 
with 95% confidence intervals reported) 
or all polymorphic SNPs
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identified in both MU- SY- UN and SY, with no MAF filter applied 
to the SNPs. The predictive model for growth also performed best 
when using SNPs identified in multispecies' datasets (MU- SY- UN 
and SY: r = 0.26, p < 0.001; SY only: r = 0.20, p = 0.008). There 
were no SNPs associated with growth and identified exclusively in 
MU- UN which were also polymorphic in SY, YA- SY and GS- SY. Using 
H2013 as a training trait, the predictive model for growth performed 
more poorly using SNPs identified in the SY dataset than using SNPs 
identified in both the SY and MU- SY- UN datasets. However, with 
I2013 as a training trait in the same model, there was no difference 
in performance when the different SNP sets were used. There were 
highly significant positive correlations between observed H2013 
and predicted values when using the predictive models for growth 
whereas using I2013 as the training trait for the predictive model 
resulted in far lower levels of correlation between predicted and 
observed values. Therefore, the final predictive model for growth, 
constructed using SNPs identified in both the SY and MU- SY- UN 
datasets with no MAF filter and using H2013 as a training trait, was 
chosen to be tested independently.

The effect of the trait used to train the model was also seen in 
comparisons of the performance of the models constructed using all 
polymorphic SNPs: for each trait, predicted values were more closely 
correlated with the observed values in models using budburst than 
in those using growth traits (H2013 and I2013). Of the traits used to 
identify associated SNPs and construct the predictive models, the 
one with the lowest h2 (I2013) also had the lowest predictive ability 
in the SY dataset, whereas the trait with the highest h2 (BB2011) had 
the highest predictive ability.

3.7  |  Prediction models: independent assessment

Predicted values were estimated using the final predictive models 
for budburst and growth as well as models constructed using all 
available SNPs and compared with values observed in the independ-
ent trial. The independent field sites share populations and families 
but experience contrasting climates, allowing the models to be in-
dependently tested on traits measured in different environments. 
The predicted values for each trait were not significantly correlated 
with the observed values when using models constructed with all 
available SNPs when trained using the full SY dataset and only for 
increment in 2016 at GS when only SY from Scotland is used to train 
the model (Table 4). In contrast, a number of significant correlations 
were observed in the independent trial when using final predictive 
models for growth and budburst. The predicted values for budburst 
were found to be significantly positively correlated with the duration 
of budburst at GS in 2015 and 2018 (Table 4) indicating a possible 
effect of annual environmental variation on the predictive power of 
the model. They were also negatively associated with budburst tim-
ing at YA in 2017.

The predicted values for growth were found to be significantly 
associated with observed increment measurements at YA in every 
year, but not at GS (Table 4). The correlation between predicted 

values and observed height in 2008 (at age one) was not significant 
at either YA or GS, despite the strong correlation observed between 
predicted values and observed height at age 13 at YA (Figure 4) indi-
cating that the cumulative effect of the trees growing in the environ-
ment at YA contributed to the strength of the association.

The effectiveness of the final predictive model for growth as 
a genomic selection tool was tested by comparing different selec-
tion methods (Figure 5) in trees at both independent trial sites (GS 
and YA). Genomic selection was the most successful method of se-
lecting tall trees growing at YA: trees were on average 6.80% taller 
(227 mm) than trees selected using the phenotype method and 
5.41% (181 mm) taller than the mean height of trees at this site. In 
contrast, the phenotype method was more successful than the ge-
nomic method at GS (5.07% and 7.70% increase in the mean height 
of trees selecting using the phenotype method compared to the ge-
nomic method and site mean respectively), despite the lack of signif-
icant correlation between height at 2008 and height at 2020 (Table 
S10). The coefficient of variation (CV) for trees chosen using the 
phenotype selection method was over 60% greater than for those 
chosen using the genomic selection method at GS (23.68 and 14.63 
respectively), indicating that trees chosen using the phenotype 
method were more variable for this trait at the site. Trees selected 
using the genomic and phenotype selection methods at YA had very 
similar CVs (10.84 and 10.31 respectively). Using the phenotype se-
lection method, there were three trees at GS and none at YA that 
were among the 10 tallest trees at each site. The genomic selection 
method identified one tree at GS and two trees at YA which were 
among the 10 tallest trees at each site. The selected trees were from 
all five of the genotyped populations and included trees from 28 of 
the 40 available families. The majority of families were only repre-
sented by a single tree, although there were exceptions: two indi-
viduals were selected from single families in each of the sites using 
the phenotype method; two individuals were selected from each of 
two families in GS and from each of three families in YA using the 
genomic method.

4  |  DISCUSSION

This study is among the first to use a high throughput genotyp-
ing array to identify SNPs associated with growth and phenology 
traits in conifers and is unique in applying a multispecies approach. 
Association genetics of adaptive traits is of great interest to forestry 
and is being studied in many species such as P. contorta (Mahony 
et al., 2020), Populus trichocarpa (Evans et al., 2014), Picea sitchensis 
(Holliday et al., 2010) and P. taeda (Lu et al., 2017) and the use of 
multiple species has the potential to improve the generality of mod-
els based upon them. Although other multispecies genotyping arrays 
have been developed (e.g. for Eucalyptus, Silva- Junior et al., 2015), 
association analyses are conventionally restricted to a single species.

The high- throughput SNP array allowed nearly 50,000 SNPs (of 
which 20,795 were successfully converted) to be simultaneously 
genotyped in a large number of trees. To increase the sample size 
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of the datasets and the statistical power of our analyses, data from 
P. mugo and P. uncinata, which are both part of the P. mugo com-
plex, were combined. The dropout rate for P. mugo was much higher, 
and the call rate much lower than for P. sylvestris and P. uncinata. It 
is likely that this is a consequence of the dominance of P. sylvestris 

in the sample set used to set allele calling thresholds, coupled with 
the genetic distance between the two species (Perry et al., 2020). 
Despite this, nearly a third of SNPs on the array were high quality in 
all three species and nearly half of all successfully converted SNPs 
were polymorphic in all three species— twice the number reported 

TA B L E  4  Pearson's correlation coefficient (r) and associated significance values for comparison of predicted and observed values for each 
trait

Observed trait Year

Final predictive models Predictive model using all SNPs
Predictive model using all SNPs 
trained with SY from Scotland

GS YA GS YA GS YA

Predictive model: Budburst (training trait: BB2011)

Duration 2015 0.204* 0.080 −0.005 0.088 −0.031 −0.051

2016 0.083 0.149 −0.112 0.016 −0.157 −0.021

2017 0.070 −0.005 −0.131 −0.030 −0.038 −0.055

2018 0.205* −0.080 −0.150 −0.105 0.087 0.072

2019 0.152 0.125 0.099 0.188 0.053 0.016

Timing 2015 0.130 0.034 −0.167 0.167 −0.151 0.089

2016 0.071 −0.004 −0.101 0.004 −0.110 −0.069

2017 0.069 −0.202* −0.093 −0.047 −0.068 −0.012

2018 0.112 −0.168 −0.177 0.029 −0.048 0.062

2019 0.125 −0.037 0.111 0.134 0.046 0.038

Predictive model: Growth (training trait: H2013)

Height 2008 −0.020 0.023 0.093 0.002 −0.056 0.011

2020 0.104 0.376*** 0.034 0.144 0.039 0.118

Increment 2015 0.022 NA 0.060 NA 0.124 NA

2016 0.173 0.299** 0.149 0.158 0.190* 0.142

2017 0.121 0.312** −0.012 0.175 −0.049 0.149

2018 0.012 0.329*** 0.030 0.138 0.028 0.075

2019 0.123 0.205* 0.065 0.111 −0.022 0.107

2020 −0.001 0.262** −0.058 0.110 −0.142 0.078

Predicted values estimated by final predictive models for growth and budburst constructed using single nucleotide polymorphisms (SNPs) significantly 
associated with the traits and assessed for their performance in an internal test. Predictive models constructed using all available SNPs (no MAF filter 
applied, N SNPs = 15,019) trained using the full SY dataset and also trained with only SY trees from Scotland. Duration: time taken for each tree to 
progress from stage 4 to stage 6. Timing: time taken to reach stage 6 of budburst. Description of each budburst stage is given in Table S4.
Significance values: *p: 0.01– 0.05; **p: 0.001– 0.01; ***p < 0.001.

F I G U R E  4  Correlations of observed 
height measured in 2020 at age 13 
against predicted values using the final 
predictive model for growth for trees in 
an independent trial at Glensaugh (GS, 
correlation not significant) and Yair (YA)
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by Perry et al. (2020) although sample sizes were much larger in this 
study.

We used the SNP datasets to test for associations with previously 
published phenotypes for the three pine species (Wachowiak, Perry, 
et al., 2018), identifying 118 SNPs significantly associated with varia-
tion in growth and phenology over multiple years, of which nearly half 
would not have been identified without a multispecies approach. As 
shown previously, the between- population variation in both phenol-
ogy and height was far less in P. mugo and P. uncinata than in P. syl-
vestris, reflecting the fact that the latter was sampled from across its 
much broader geographical distribution and across much wider en-
vironmental gradients in photoperiod and temperature (Wachowiak, 
Perry, et al., 2018). Despite the smaller environmental gradient repre-
sented by our P. mugo and P. uncinata sampling, the number of SNPs 
identified as significantly associated with phenology was similar to 
the number of SNPs identified in P. sylvestris, although the number 
of SNPs identified as significantly associated with growth traits was 
much higher in P. sylvestris. The majority of studies on genetic con-
trol of adaptive traits in conifers have also identified multiple QTLs 
or SNPs associated with variation in timing of bud set, budburst and 
growth (Bartholomé et al., 2016; Eckert et al., 2009; Holliday et al., 
2010; Hurme et al., 2000; Jermstad et al., 2001, 2003; Plomion et al., 
1996; Prunier et al., 2013) as expected of complex traits (Mackay, 
2001). For example, Eckert et al. (2015) tested 475 SNPs and found 
six significant associations with height and budburst in sugar pine 
(P. lambertiana) and Budde et al. (2014) identified 17 SNPs signifi-
cantly associated with serotiny in maritime pine (P. pinaster) using an 
array with 251 SNPs from candidate genes. However, there have also 
been a limited number of specific genes implicated in the control of 
adaptive traits in conifers: loci related to budburst/set were identified 
in Picea abies and P. sylvestris (PaFTL2 (Avia et al., 2014) and PsFTL2 
(Gyllenstrand et al., 2007) respectively).

Overall, the majority of SNPs identified in this study were 
rare. Of those that were common, counts were similar among 

P. sylvestris and the P. mugo complex for both phenology (13 and 10 
for P. sylvestris and the P. mugo complex respectively) and growth 
(four and six for P. sylvestris and the P. mugo complex respectively). 
Although one SNP was found to be associated with both phenol-
ogy and growth (the former in the P. mugo complex and the latter 
in P. sylvestris) it was extremely rare in P. sylvestris. Most likely, this 
is a confounding effect due to a small number of individuals (in this 
case, two) with a rare allele at the locus, that are at the tail- end 
of a trait distribution (the two individuals were ranked 366 and 
412 out of 413 for increment in 2013). Although these findings 
seem to support the use of MAF filtering, applying a filter prior to 
association analyses was found to significantly reduce the num-
ber of common SNPs identified, probably as a result of changes to 
the PC scores and kinship matrix (describing population structure 
and relatedness) caused by the removal of rare variants. A further 
benefit of retaining all SNPs at all stages of analyses was to enable 
the evaluation of the relative contribution of rare and common 
SNPs to each trait and to assess the predictive power of models 
constructed using SNPs with and without MAF filtering. There 
were very few instances of the same SNP being associated among 
traits, among species or among years, a finding also reported by 
Westbrook et al. (2013), possibly indicating the involvement of dif-
ferent genes at different stages of development or in response to 
varying environmental conditions, as well as the very small effect 
sizes of most SNPs in polygenic traits (Korte & Farlow, 2013). Our 
earlier comparative genetic studies of a large set of SNPs located 
in nuclear genes similarly found almost no shared polymorphisms 
under selection between different taxa of the P. mugo complex 
(Wachowiak, Zaborowska, et al., 2018).

Phenological variation in Pinus spp. in common garden studies 
has been shown to be significantly associated with the environ-
ment at the site of origin (Howe et al., 2003; Hurme et al., 1997; 
Repo et al., 2000; Salmela et al., 2011; Wachowiak, Perry, et al., 
2018) with trees from northern European populations setting bud 

F I G U R E  5  Height at 13 years (measured before the growing season started in 2020) of 10 trees at Yair (YA) and Glensaugh (GS) selected 
using different methods: Genomic: genomic selection to identify the predicted 10 tallest trees using values from the final predictive 
model for growth (single nucleotide polymorphisms (SNPs) identified in both SY and MU- SY- UN, no minor allele frequency filter applied, 
N SNPs = 14); Phenotype: phenotype selection where the 10 tallest trees at each site prior to the start of the second growing season. The 
dotted line represents the mean height of trees at each site
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and flushing earlier than trees from more southerly populations. 
Whereas environmental cues are expected to play an important 
role in initiating phenological processes (Dougherty et al., 1994) 
including budburst (Laube et al., 2014), bud set is thought to be 
endogenous in Pinus spp., with photoperiod and temperature hav-
ing relatively minor effects (Cooke et al., 2012). In this study, we 
found a high proportion of common SNPs in genes putatively in-
volved in environmental responses (including response to abiotic 
and biotic stress and environmental cues) for both budburst and 
growth, but not for bud set. Common SNPs associated with bud 
set were exclusively located in genes related to growth and devel-
opment. At this stage, assigning unigenes in conifers is largely pre-
sumptive and relies on similarity to domains or families of proteins 
with a large and/or speculative range of functions, many of which 
are, as yet, unexplored or undefined. However, the divergence of 
assignment among SNPs associated with budburst and bud set, 
and its concurrence with physiological understanding of these 
functions, suggests that the assignment is plausible. Furthermore, 
as it has previously been demonstrated that intragenic linkage dis-
equilibrium (LD) decays rapidly in our species (Wachowiak et al., 
2009, 2013), there is a higher likelihood that SNPs identified are 
directly involved in variation of phenology and growth. At present, 
our ability to better characterize the SNPs is limited by the pau-
city of highly similar, well characterized and published protein and 
gene sequences for these species.

Although predictive models constructed using all available poly-
morphic SNPs were the most successful at predicting values in the 
internal validation set they had no predictive ability when tested in 
an independent set of trees, possibly reflecting the divergent geo-
graphical ranges and associated environments of populations used in 
the trials (although training the models using trees from Scotland to 
reflect the geographical range of populations in the independent trial 
resulted in almost no improvement to the models' predictive ability). 
In contrast, predictive models constructed using SNPs identified as 
significantly associated with budburst and growth in the association 
trial were found to be successful at estimating values in both the 
internal assessment and the independent assessment, although in 
the latter the predictive ability of the models varied spatially (among 
the sites) and temporally (among years). The final predictive models, 
chosen for their performance in the internal assessment, comprised 
SNPs from all species' datasets indicating that the multispecies ap-
proach to identify SNPs was justified. When testing these models 
in an independent trial, observed values for height at age 13 and 
increment, over multiple years, were highly significantly correlated 
with predicted values generated by the final predictive model for 
growth, although only at YA. In contrast, the predictive ability of 
the growth model for trees at GS was poor. Phenotypic variation 
is a product of both heritable genetic and environmental variation. 
Furthermore, variation in phenotypic plasticity may cause families 
and populations to respond to environmental variation in different 
ways (Cooper et al., 2019; Gratani, 2014). Consequently, the pre-
dictive ability of models will depend on the interplay between the 
underlying genetic control of the traits, a host of external cues and 

stresses that directly and indirectly determine trait expression, and 
differences among the environments of trees used for association 
analyses and those used for external testing of predictive models. 
Trees growing at the YA site are much larger than at GS, indicating 
that there may be environmental limitations for growth at GS which 
are not present at YA. The trees grown in the glasshouse which were 
used to identify SNPs associated with growth are similarly unlikely 
to have experienced many environmental limitations. The lack of 
environmental limitations for trees growing in both the glasshouse 
(association trial) and at the YA site may explain why the predic-
tive model works well in this set of trees, but does not have any 
predictive ability when tested in trees grown under a more limiting 
environment at GS. Ideally, therefore, a predictive model should be 
used in populations from very similar environments as the popula-
tion used to perform association analyses (Resende, Resende, et al., 
2012). For instance, a predictive model for serotiny constructed by 
Budde et al. (2014) also had variable success when applied to differ-
ent populations of P. pinaster. It is also possible that optimization of 
the prediction models using variable selection approaches such as 
LASSO, would improve results, particularly where genotype × en-
vironment (G × E) interactions are likely to impact the association 
analyses and/or predictions (Crossa et al., 2017).

The age of the trees used to identify SNPs associated with traits 
should also be considered with respect to maternal effects, which 
may be more significant at younger ages (Vivas et al., 2020), result-
ing in phenotypes which are less a product of their genotype (and 
environment) than in later life stages. Maternal effects may mask 
or confound attempts to identify SNPs significantly associated with 
adaptive traits, and in this study many more SNPs were identified as 
significantly associated with height and increment in 2013 than in 
2011 or 2012 and an incremental reduction in the strength of the 
relationship between growth in the first year and in the two subse-
quent years was also observed. These findings suggest that maternal 
effects were present in at least the first year of growth but that the 
effect was much less by the third year of growth. The lack of predic-
tive ability in the final predictive model for growth in the indepen-
dent trial at YA for trees in their first year of growth suggests that 
maternal effects may be significant in these trees, but that the effect 
has diminished by age 13 when the predictive ability was very good. 
The usefulness of predictive models in commercial forestry depends 
on their ability to predict traits at final harvest. Lee (1999) found that 
height at 13 years in another commercial conifer species was a good 
predictor of height at final harvest, indicating that our model, with 
high predictive ability in trees at age 13, has the potential to be a 
useful tool for early selection for height at final harvest in Scots pine.

The relationship between bud burst timing and duration was 
found to vary as budburst progressed: trees which were observed 
to reach the first few stages of budburst (where scales were open 
but needles not yet visible) early in the season did not complete the 
whole budburst process sooner as might be expected. Instead, these 
trees took longer overall to complete budburst and it is clear that 
this relationship is not consistent among sites, which emphasizes 
the need for caution in applying genotype– trait relationships across 



344  |    PERRY Et al.

environments. Similarly, the prediction model for budburst had vari-
able accuracy among the two independent field sites: the predicted 
values were significantly (albeit only weakly) positively correlated 
with the duration of budburst for 2 years at GS, but not at YA, while 
the predicted values for budburst were significantly correlated with 
timing of budburst but only at YA in 1 year. This was a negative rela-
tionship, such that trees that were predicted to complete budburst 
early in the season actually completed budburst late. Although this 
initially seems surprising, it does have a plausible biological explana-
tion. The predictive model was constructed using SNPs which were 
identified as significantly associated with the timing of budburst in 
a set of trees from a common garden glasshouse experiment, whilst 
the independent trial data were collected from trees planted out-
doors in a field trial. The environmental difference between the 
glasshouse and the field was clearly substantial, with possibly the 
most important deviation between the two being that temperatures 
in the glasshouse did not drop below freezing throughout the win-
ter. The relationship between the chilling requirement (the accumu-
lation of time spent below a certain temperature) and the initiation 
of budburst is complex: tree species and populations differ in their 
chilling requirement as well as in their forcing requirement (the ac-
cumulation of time spent above a certain temperature) after the 
chilling requirement is met (Körner, 2006). An increase in chill days 
(mean temperature <5°C) can significantly advance budburst timing 
in P. sylvestris (Laube et al., 2014). Heritable genetic variation in the 
timing of budburst is therefore likely to be strongly influenced by 
environmental cues including chilling and subsequent forcing. The 
contrast between the two environments means that trees requir-
ing a greater number of chill days before the initiation of budburst 
will experience a delay in the glasshouse but burst bud earlier in the 
field, resulting in a negative relationship among trait values in the 
two environments. Moreover, variation in the climate ensures that 
chilling and forcing conditions vary among sites as well as annually. 
Although the mean number of annual chill days is higher in GS than 
YA, GS also has fewer growing degree days which may delay the 
onset of budburst in some families or populations.

We found, as has been previously reported (Calleja- Rodriguez 
et al., 2020), that predictive ability in P. sylvestris (estimated as the 
correlation between the genomic estimated breeding values and 
phenotypes) was positively associated with narrow sense heritabil-
ity of the trait. In contrast, the predictive ability of the models in an 
independent multi- site trial was not correlated with the predictive 
ability in the association dataset, possibly because of the differ-
ent environments involved. However, the heritability estimates are 
extremely high for some traits (particularly bud set in P. sylvestris) 
which could be due to the distribution of SNP effect sizes (Young 
et al., 2018) or the average LD between SNPs and causal variants 
being different than it is among SNPs (Evans et al., 2018). As previ-
ously noted, LD decays rapidly in these species and this may indicate 
that there is a higher rate of LD between SNPs and causal variants 
than among SNPs. Our finding that phenological traits (budburst 
and bud set) had higher narrow sense heritability than growth traits 
(height and annual increment) has also been reported in Quercus 

robur (Scotti- Saintagne et al., 2004). Similarly, high narrow sense her-
itability for budburst has been estimated in other conifers (P. abies, 
h2 = 0.8: Aitken & Hannerz, 2001) as has moderate narrow sense 
heritability for height (P. pinaster, h2 = 0.37: Vazquez- Gonzalez et al., 
2021). Variation in narrow sense heritability across years, as was ob-
served in this study, was also reported for Q. robur (h2 = 0.48– 0.80; 
Bogdan et al., 2004) and P. taeda (h2 = 0– 0.75; Balocchi et al., 1993), 
so we might expect the accuracy of genomic prediction to vary con-
siderably by species and by trait.

Predictive models potentially provide a tool with which to de-
termine the phenotype of trees at early life stages, saving both 
time and money. The gain of nearly 7% in height observed using 
genomic selection as opposed to phenotype selection is slightly 
lower than the gain predicted for material derived from existing 
seed orchards (8– 12%: Lee, 1999) but without the extensive and 
expensive trial set up and maintenance. Furthermore, the height 
at harvest of Scots pine (with the average yield class for this spe-
cies of 10) could be expected to increase by 1.08– 1.24 m when 
using predictive modelling based on an average harvest height of 
20– 23 m (McLean, 2019). Predictive models have several potential 
applications including selecting for key traits in commercial breed-
ing programmes and assessing forests for their response to abiotic 
and biotic stress. However, our results show the extent to which 
values generated by predictive models can vary in the strength of 
their correlation with the observed values depending on the envi-
ronment in which they are tested. This may limit the deployment 
of genomic prediction across environments, but also where envi-
ronment changes over time: something that will be a widespread 
issue in the near future (Franklin et al., 2016). Using a multispecies 
approach also highlights the improvements in both numbers of 
SNPs identified as significantly associated with adaptive traits and 
the accuracy of prediction models constructed when using SNPs 
from multiple species' datasets. However, the small- scale compar-
isons between selection methods demonstrated the potential for 
predictive growth models to successfully select taller trees at one 
of our sites. As we had only small sample sizes and a relatively 
small pool of trees from which to select, the approach will require 
further testing using a larger set of trees in future trials.

5  |  CONCLUSIONS

Despite its ecological and economic importance, this study is among 
the first to explore the association between SNPs and key adap-
tive traits in P. sylvestris, demonstrating the utility of the Pinus spp. 
high throughput array (Perry et al., 2020) for identifying genes and 
SNPs associated with phenology and growth traits. Development of 
a predictive model and validation in an independent trial further-
more demonstrates the potential of the approach for accelerated 
tree breeding. However, the study also highlights the limitations 
imposed by genotype by environment interactions. This may affect 
the application of predictive models in populations experiencing dif-
ferent environments from those in which the models were trained. 
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Applying both a conventional single species and a novel multispecies 
approach to association analyses and predictive modelling exposes 
the constraints of the former and benefits of the latter. These re-
sults offer promise for this approach, highlighting the potential for 
improvement of economic traits in Scots pine and justifying future 
genomic studies in this species.
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