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We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a
novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter.We show that TSS is consistent with
static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes
in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept
and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may
trigger a temporary reorganization of elements in the semantic network.

1. Introduction

Language has been studied from a wide variety of perspec-
tives, including aesthetical, evolutionary, and mathematical
[1]. An essential function of language is to convey meaning,
endowing speakers, writers, listeners, and readers with the
ability to encode and decode behaviorally relevant informa-
tion in auditory and visual tokens. Any attempt to quantify
the intuitive notion of meaning involves, in particular, a
characterization of the semantic similarity between words.
Semantic quantification has in fact become a pressing issue in
machine learning and linguistics, with growing applications
ranging from automated recommendation and customer
service systems [2] to speech analysis in psychiatry [3].

An extensive body of literature has lent support to the
hypothesis that frequency of cooccurrence of words and
semantic similarity between the corresponding concepts are
codetermined, including psychophysics of word association
[4] and coextensivity of neural activation of associated words
[5, 6]. Typically, subjects associate faster two related words
than unrelated ones, that is, if they belong to the same
category [7]. This feature can be quantified by analysing text

databases looking for cooccurrence of words and defining
semantic spaces that may cluster words coming from the
same category [8]. This kind of approaches grows beyond
computational capacity very easily, and so several dimension-
ality reduction techniques have been applied to treat these
problems (e.g., Latent Semantic Analysis [9] or topic models
[10]).

A widely used computational correlate of this hypothesis
is Latent Semantic Analysis and related measures, which esti-
mate semantic similarity on a vector space defined by word
frequencies [9]. Similarity, measured in the newly defined
vector space, shows accordance with several experiments
such as word synonyms [11], conceptual match between
topic knowledge and text information [12], or measuring the
coherence of texts [13].

Frequencies have been evaluated from large text corpora
[11] and, recently, from web-based document aggregation
[14]. These methods have been very successful in providing a
stationary map of word similarity. However, the organization
of the lexicon changes dynamically both in the time scale
of human development [10, 15] and in the longer time scale
of cultural transformation [16, 17]. Our goal is to investigate
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the dynamics of semantic organization, developing a con-
sistent measure of word similarity computable in narrow
temporal windows.

In order to estimate semantic spaces in short periods of
times, Latent Semantic Analysis [9], topic models [15], or
Word2Vec [18] must recalculate the whole semantic space for
each time window. At each instant, a representative corpus of
text must be collected to train the corresponding semantic
space. Instead, we focus on estimating the semantic space by
studying the activity in the social network with a similarity
measure computationally cheap to calculate.

To this aim we implemented a word cooccurrence mea-
sure based on the social networking and microblogging
service Twitter. There is growing interest in the analysis of
Twitter timelines (e.g., [19, 20]), driven by the ability of this
corpus to identify with exquisite temporal resolution the
collective expression of human thought. The fundamental
difference between previous studies and our work is that our
analysis is not based on tracking the “trending topics” defined
by a handful of words [21]. Instead we assume that semantic
content is inherently distributed but with a structure that is
subject to a “topic-driven” evolution and, possibly, its own
internal dynamics.

2. Methods

2.1. Twitter Semantic Similarity Algorithm. Normalized
Google distance proposes a method for measuring similarity
between words analysing cooccurrence relative to their
individual frequencies in the World Wide Web [22]. Current
implementations fail because of accuracy of occurrence
estimation of queries. Moreover, Google corpus provides
an almost-static database with no fine-grain temporal
information. Based on these previous results, we developed
Twitter Semantic Similarity (TSS), estimating similarity
between words with a high-resolution temporal precision.

Twitter is an online platform for microblogging with
messages 140-character long, with more than 50 million
tweets per day. Twitter provides access to automatic crawling
of tweets, at a limited rate, approximately 180 queries every 15
minutes, through the Twitter API (here we used Twitter API
version 1.1). To search through Tweets database a search key
must be provided and optional parameters are available. The
search key is a string with up to 1,000 characters including
spaces. Each querymay return amaximumof 100 tweets, with
their time stamps. Due to this limitation, it is not possible to
retrieve every tweet containing a word, or bag of words, or
all tweets framed in a period of time. Instead, we propose
the use of the provided time stamp of tweets to calculate
the velocity of production of tweets containing the word.
Thus, we estimate the frequency of a word in Twitter from
its velocity of occurrence.

Considering the word𝑤 and the time stamp series {𝜏
𝑖
(𝑤)}

of 𝑁 tweets containing 𝑤 (any number of occurrences of 𝑤
in the tweet), the frequency Φ(𝑤) may be estimated as the
average time between tweets in this series. Formally,

Φ (𝑤) = (

∑
𝑁−1

𝑖=1
(𝜏
𝑖+1 (
𝑤) − 𝜏𝑖 (

𝑤))

𝑁 − 1

)

−1

. (1)

The size of the time stamp series, 𝑁, is an adjustable
parameter that depends on the Twitter API, with a limit in
100 tweets per query. We use 𝑁 = 30. Thus, for a word 𝑤,
velocity is estimated as the mean of the difference between
consecutive time stamps of the last 30 tweets containing 𝑤.

We similarly estimate the frequency of cooccurrence of
two words 𝑤

1
and 𝑤

2
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tweets that contain both, regardless of their relative order
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with𝛼 being a scaling factor (we use𝛼 = 1/4 obtaining a good
scale). In the case that 𝑤

1
and 𝑤

2
are not present in Twitter,

we define TSS = 0.
No preprocessing phase is needed; for example, search

terms may be one word, multiple words, or hashtags. Note
that terms may be surrounded by quotations marks, search-
ing the multiple-word term in the Twitter API.

2.2. Common Semantic Categories. To evaluate the TSS algo-
rithm, we defined three semantic categories containing a list
of words. These categories were chosen as standard intuitive
categories from common objects or concepts of everyday life:

Fruits: apple, banana, blackberry, blueberry, cherry,
coconut, grape, kiwi, lemon lime, mango, melon,
watermelon, orange, tangerine, papaya, passion fruit,
peach, pear, pineapple, pomelo, raspberry, and straw-
berry.
Animals: bull, cow, chicken, donkey, goat, horse, pig,
rabbit, sheep, dolphin, shark, octopus, turtle, bird,
eagle, mouse, owl, bear, bat, dog, cat, fly, ant, and tiger.
Colors: blue, green, red, yellow, orange, black, white,
pink, brown, fuchsia, grey, purple, violet, and golden.

2.3. GroupOrganization Performance Based on TSS. To study
global reorganization of semantic network, we implemented
a performance value to quantify how TSS captures the
World Cup group organization. We calculated the TSS value
between all combinations of the 32 qualified countries, that
is, the 32 × 32 symmetric similarity matrix of country pairs.
For each country, we selected the three countries more TSS-
similar to it and assigned a performance value at every
instant. If the three countries belonged to the same World
Cup group we assigned a value of 1.0; if two of them belonged
to the same group, we assigned a value of 2/3; if only one of
them belonged to the same group, we assigned a value of 1/3;
and if none belonged to the group 0 was assigned. We report
the TSS performance as the mean value of the performance
for every country at each instant (Figure 3(b)).

2.4. Classifiers and Cross-Validation. In the machine learning
literature, a classifier is an algorithm that assigns labels to new
incoming data based on a training dataset. A classifier has
two implementation stages: (1) the training phase, consisting
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in learning the underlying patterns of the data and its labels,
with many techniques available for this pattern recognition;
(2) a test phase, where new data, not used for training, is
labeled based on trained classifier. For studying the common
semantic categories we used 𝐾∗ [23] and for the reorganiza-
tion of the countries network due to the World Cup draw, we
used the Naive Bayes classifier [24].

To assess performance of classifier, cross-validation pro-
vides a validation technique. 𝑘-fold cross-validation consists
of partitioning the training data into 𝑘 subsets of the same
size, using 𝑘 − 1 samples as training data and testing the
remaining item.This process is repeated for the 𝑘 subsets, that
is, the 𝑘-fold. This process is repeated for the 𝑘 subsets, and
classifier performance is estimated as the average classifica-
tion performance for all subsets.

3. Results

3.1. Stationary Semantic Organization via TSS. Our algo-
rithm can compute a matrix of word similarity with a
time resolution which varies between days and can go for
certain subset of the matrix of cooccurrences within the
range of minutes. Before inquiring how concepts evolve in
time for a specific set of experiments we verify that Twitter
Semantic Similarity (TSS) as a stationary measure satisfies a
series of validations that a well-behaved measure of semantic
similarity is expected to pass.

First, we validated that TSS yielded similar results to well-
documented measures of word similarity: cosine distance
based on Latent SemanticAnalysis [9] and standardmeasures
based on Wordnet [25].

To this aim we selected 102,000 pairs of words (chosen
randomly from the 1500more frequent nouns) and computed
their similarity based onWordnet, LSA, andTSS. TSS showed
a very strong correlation of word similarity to LSA (𝜌 =
0.2199, 𝑝 = 0) and to several measures based on Wordnet:
(1) shortest path that connects senses using hypernym and
hyponym relation (𝜌 = 0.298, 𝑝 < 10−275); (2) information-
theoretic definition by Lin [26] (𝜌 = 0.15, 𝑝 < 10−67); and
(3) similarity based on information content by Resnik [27]
(𝜌 = 0.157, 𝑝 < 10−74).

Different algorithms of word similarity have been eval-
uated using TOEFL synonym tests [11, 28]. We analyze if
TSS may discriminate synonyms from random pair of words.
We selected 86 words from a TOEFL practice web page
(TOEFL vocabulary words: http://toeflvocabulary.com/) and
paired them with one synonym and 25 no-synonym words
obtained from the 100K pairs of most frequent nouns. For
each of the 86 words (𝑤), we calculated the TSS and LSA
value for all 26 options, obtaining 2 vectors 𝑑𝑤TSS, 𝑑

𝑤

LSA of 26
components each. If we sort 𝑑𝑤 in increasing order, semantic
measure should show the 𝑤-synonym words last in the list;
that is, most similar words, higher similarity values, should
be the synonyms.Mean position of synonyms in 𝑑𝑤LSA showed
⟨𝑑
𝑤

LSA⟩ = 0.602 ± 0.328, in concordance with previous results
that state 60% of performance in TOEFL vocabulary exam
[28].With this result, synonyms are close to themiddle in the
ordered list, and so TOEFL exam should fail. On the other

hand, for TSS we obtained that 𝑑𝑤TSS showed a higher value,
⟨𝑑
𝑤

TSS⟩ = 0.871 ± 0.204, which is significantly higher than the
null hypothesis (the uniform distribution over the interval)
and the results obtained with LSA.

Second, we verified that typical and easily recognizable
semantic clusters are well described by TSS. To this aim we
generated 1000 sets of 12 words belonging to three semantic
categories: fruits, animals, and colors (see methods for the
complete list of words in each category). For each set, we
calculated the TSS similarity submatrix and run a 10-fold
cross-validation 𝐾∗ classifier [23]. Performance for TSS was
very well above chance (𝐾∗ classification of chance generated
groups is approximately 0.3 ± 0.0001) with values of 0.6846 ±
1.6458×10

−4 (on the same dataset, 0.5543±1.8265×10−4 for
LSA and 0.6736 ± 1.5419 × 10−4 for Wordnet). To exemplify
the capacity of TSS to cluster words in semantic categories,
we used multidimensional scaling (MDS) [29] to project the
semantic network to the 2-dimensional plane (Figure 1(a)).
This representative example shows that words belonging to
the same category cluster together. This particular example
shows finesse of the metrics above and beyond classifying
in broad categories. For instance, animals are subdivided in
two natural categories (cat-dog and horse-cow). Second, the
word orange which refers to a fruit and to a color is mapped
between the two corresponding clusters. Third, within the
fruits, the word apple is misrepresented. We reasoned that
this may be due to polysemy of apple which relates to the
fruit and to the brand. To examine this hypothesis, we first
measured the proximity of the word apple to other fruits in
English and in Spanish. Results showed that manzana (the
word for apple in Spanish) is closer to the fruit cluster than
apple.

This observation also leads to a test for TSS. It is expected
that TSS should show results which are broadly independent
of language and which may show some discrepancies in
wordswhichmay showpolysemy specifically in one language.
To examine this hypothesis we measured the TSS correlation
(in 20 words of 4 categories: animals, colors, fruits, and
foods) between Spanish and English. The correlation was
highly significant (𝜌 = 0.7304, 𝑝 < 10−29) and within
this set the outliers (points which depart from the diagonal)
were pairs of words relating apple to other concepts: apple-
orange, apple-green, and apple-salad, which are more similar
in Spanish than in English. This effect is probably caused
by the existence of the company apple that produces a
polysemic behavior in English (and not in Spanish) for the
word apple. We performed the same comparison to examine
the correlation between English and the following languages:
Portuguese, German, French, Italian, and Japanese. In all
cases the correlation was significant (𝜌 > 0.5884, 𝑝 < 10−27).

The last test of validity for stationary measures of TSS
is whether it can capture geographical and geoeconomical
measures of world organization. To this aim we selected the
English words of countries of Asia, America, Africa, and
Europe and measure their TSS.

A two-dimensional projection of this similarity matrix
(Figure 1(c)) shows that the measure can identify to a large
extent continental and geographical organization of the
countries. It can clearly parse South America, Europe, and



4 Computational Intelligence and Neuroscience

Blue

Cat
Dog

Horse

Green Orange

Cow

Yellow

Apple
Banana

Grape
Strawberry

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Animals
Colors

Fruits

Component 1

C
om

po
ne

nt
 2

(a)

0 0.125 0.25 0.375 0.5
0

0.125

0.25

0.375

0.5

Apple-salad
Apple-orange

Apple-green

TSS Spanish

TS
S 

En
gl

ish

(b)

Africa
America

Asia
Europe

Norway

Switzerland

Canada

USA.
Netherlands

Finland

Ireland

Japan

England
ItalySpain

South Korea

Portugal

Chile
Peru

Uruguay

Iran

Croatia

0

0.3

0.6

0.9

1.2

South Africa
Egypt

Honduras

Cameroon

Ivory Coast

Brazil

Argentina

Costa RicaParaguay
Bolivia

Angola

Morocco
Nigeria

China

India

Component 1

C
om

po
ne

nt
 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

(c)

Figure 1: Stationary semantic organization using TSS. Panel (a) shows the clustering of 3 groups of words in semantic categories. Concepts
belonging to the same category group together, with the exception of apple, closer to the colors cluster instead of the fruits cluster. Panel (b)
shows the multilingual property of TSS, comparing 190 pairs of concepts in English and Spanish with a strong linear correlation 𝜌 = 0.74,
𝑝 < 10

−29. Outliers (points which depart from the diagonal) are signaled with arrows, corresponding to the polysemic behavior of word apple
in English. Panel (c) shows how TSS captures geographical and geoeconomical measures of world organization (diameter of points represents
each country’s GPD per capita).

Asia, while the separation of North American countries (US
and Canada) is less precise.

To quantify this observation we ran a classifier to see
whether TSS can be used to infer the continent to which
a country belongs. This was done in independent sets of
seventeen: five countries of Asia, Europe and South America,
andCanada and theUS.We used 10-fold cross-validation and
𝐾
∗ classifier and we obtained a performance above 90%.
The projection of the TSS of words referring to countries

alsomade evident an organization based on countries wealth.
The wealthier countries were organized in the center of the
graph while more peripheral countries tended to be poorer
(Figure 1(c)). To quantify this observation we performed a
linear regression of Gross Domestic Product (GDP) as a
function of distance to the mass center of the 5 wealthiest
countries. Results showed a highly significant negative cor-
relation (𝜌 = −0.58, 𝑝 < 10−4).

In summary TSS is a well-behaved measure of stationary
semantic similarity: (1) it covariates with well-documented
measures of semantic similarity; (2) it identifies natural
semantic categories and outliers within these categories; (3)
it is consistent across languages; and (4) it can identify within
the same data more than one classification parameter (wealth
and location in geographical data).

3.2. Dynamics of Semantic Organization. According to most
modern views,mental concepts arise as an emergent property
of their interrelationships. Thus, a concept is defined by
whom it relates to within the network [8, 9, 30–32]. Wordnet,
LSA, NGD, and Word Association metrics have identified
consistent regularities in semantic networks which ought to
be emergent constructs ofmental activity of societies through
time.However, it is expected that the organization of concepts
varies through time; to the extent that language reflects
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Figure 2: Evolution of the concept of light. Panel (a) shows the trajectory of the concept light around concepts commonly associated with
light (blue points) and concepts reflecting chaotic social scenario (red points). Crisis period starts at point (1) and finishes in point (2). Grey
points show the trajectory of light during the control period (3 months after crisis). Standard deviation around the two principal components
of points in control trajectory is shown by the ellipse, showing that during crisis the light concept moves towards chaotic-associated words.
Panel (b) shows the mean TSS of the concept of light for both groups (G1: light concepts, blue line; G2: crisis concepts, red line). Mean TSS
between light and all words in G2 (chaos) showed a positive correlation with min temperature (black line).

thought, these changes should be reflected, specifically, in the
use of words [14, 16]. Here, we capitalize on the capacity of
TSS to identify rapid temporal fluctuations in word similarity
to examine and validate this hypothesis.

3.2.1. Evolution of a Concept: What Do We Think When
We Think of Light? On December of 2013, temperatures in
Buenos Aires rose to unusually high values and elevated the
home demand of energy which led to a major collapse of
the service.This crisis was densely spread between December
16 and 30 through a city with a population of more than 13
million people and resulted inmajor riots, protests, picketing,
and manifestations. During these days, the feeling was that
people in the city of Buenos Aires could hardly talk about
matters unrelated to heat, power supply, and political crisis
and the relation between these concepts. We reasoned at
the time (while waiting for the power supply to come back)
that this was a unique occasion to investigate in quantitative
grounds the drift of a concept. Specifically we hypothesize
that the concept “luz” (which in Spanish refers to light but also
generically to electricity and power supply) would transiently
drift from its static neighborhood of associated concepts
(spark, lamp, lightning, soul, sun, idea, etc.) to a set of
words which would reveal the political and social tension and
conflict and struggle evoked. In other words, our hypothesis
is that, during these days, when Buenos Aires people thought
about light they were not thinking in illumination, creativity,
clarity, and so on but rather in conflict, tension, riots, and so
on.

To examine this hypothesis we first defined two sets
of words. One contains the concepts commonly associated
with light: luminosity, candle, spark, bulb, and creativ-
ity. These concepts were derived from wordassociation.org
(http://wordassociation.org/search/). A second set was gen-
erated by asking fifteen participants about the set of words

which they thought reflected a chaotic social scenario, from
which we derived the highest 15 words.

We then had two sets of words (defined prior to any TSS
measurement) and we could examine the hypothesis that the
concept light should drift from a location close to Group
1 (Common Light Conceptual Neighborhood) to Group 2
during the crisis. We measured the location of the concept
“light” within the semantic network 3 days before the crisis
and up to 28 days after the start of crisis (Figure 2(a)). The
trajectory shows a clear loop during the time of the crisis
which departs from Group 1 words towards Group 2 words.
As a control, we ran a second set of data more than one
month after the crisis had been completed to measure typical
fluctuations of the concept in similar time windows. Results
showed that during this time the concept showed moderate
fluctuations which on average were closer to G1 (and farther
from G2) than during the crisis (G1: 0.23, G2: 0.22, 𝑡-test
𝑝 < 10

−3, df = 142).
To quantify this result we measured the mean TSS of the

concept of light for both groups and the relation between
the position of the concept in the graph and temperature
(Figure 2(b)). Global data of power collapse was not available
and since temperature correlates tightly with power demand
this was the best estimate we had of collapse in power supply.
As hypothesized, the mean TSS between lights and all words
in the G2 (chaos) showed a positive correlation with min
temperature (𝜌 = 0.5180, 𝑝 < 10−28). Conversely, the
mean TSS between light and all words in the G1 (typical light
word associations) showed a negative correlation with min
temperature (𝜌 = −0.1943, 𝑝 < 10−5).

3.2.2. Global Reorganization of the Semantic Network. In the
previous section we showed that a single concept may drift
in the semantic network in response to major social events.
Here we investigate the possibility that a cultural event may
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Figure 3: Reorganization of the semantic network caused by World Cup draw. Panel (a) shows the TSS between two sets of countries (32
qualified teams and 32 nonqualified teams) in four instants: 3 days before the draw (D − 3), just before the draw (D − 1), just after the draw (D
+ 1), and a week after the draw (D + 7). By normalizing matrix rows, panel shows internal structure within the concepts representing the 32
countries revealing the outcome of the groups draw. Panel (b) shows the classifier performance predicting the groups conformation every two
hours. Between D − 3 and D − 1 classifier shows poor performance, with a rapid rise between D − 1 and D + 1 (see overlay for a two-minute
resolution performance result), and the final decay after D + 1 until D + 7.

reorganize the entire network in a different set of clusters.
To this aim we capitalize on the example of country words
described previously. This is a relatively simple domain of
semantics, organized by reasonable principles of geography,
culture, and economy. People may think of Sweden and
Norway or Argentina and Uruguay as similar countries,
revealing hence a sense of proximity in a semantic map. This
intuition is testified by the results described in Figure 1(c) and
the analysis described above. However, temporary political
or contemporary events may reorganize this representation.
A war, an international conflict, or even love (as in the
marriage of the prince of Holland to an Argentinean wife)
may temporary relate semantically to countries which before
were thought and conceived as distant.

On December 6, the draw for the Football World Cup
2014 was held in Brazil. The World Cup is organized in
eight groups of four national teams. The teams of each group
play against each other to determine who will qualify to
the final rounds of the best sixteen. From December 3 to
December 14, we recorded the high temporal resolution TSS
between 64 countries: 32 qualified national teams (QT) and
32 countries which did not participate trying to balance
between continents, size, and population (Non-QT).The TSS
three days before the draw already shows that QT are slightly
more similar on average (⟨TSS

3Dic(QT)⟩ = 0.11 ± 0.0089,
⟨TSS
3Dic(Non-QT)⟩ = 0.07 ± 0.0085, 𝑡-test, 𝑝 < 10

−5, df =
2046).

It must be noted that countries attending to the World
Cup do have socioeconomical, demographical, and geo-
graphical similarities. However, the dynamic nature of the
formation of this cluster becomes clear when one analyzes
the TSS matrix one hour before the draw. The similarity
between the concepts representing the countries participat-
ing in the World Cup increases revealing that a clear cluster
matrix shows a first stage (⟨TSS

3Dic(QT)⟩ = 0.11 ± 0.0089,
⟨TSS
6Dic(QT)⟩ = 0.33± 0.0087, paired 𝑡-test, 𝑝 < 10

−200, df =
1023).

An hour after the draw had been completed (it is
important to bear in mind that a large fraction of the world
population follows this draw in real time and with great
expectation) the TSS matrix shows an internal structure
within the concepts representing the 32 countries which
reveals the outcome of the groups.

To quantify the information we run a classifier which,
for each country, sought to identify the three other countries
of its group based exclusively on TSS (see Methods for
classification method). We generated 10000 random distance
matrixes of all countries, showing a classification level, the
chance level, of 0.1471±0.0004. Before the draw (Figure 3(a)),
classification showed a very low value (0.0329 ± 0.0034). This
classification is below chance level due to the geographical
dependence of TSS, as showed in Figure 1. It then ramps
extremely rapidly to values close to 0.8 and fades down
exponentially to values significantly above level previous to
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Figure 4: Episodic organization of the semantic network. We show an example of six countries in two continents and how World Cup
draw reorganizes the semantic network from a continental organization (Panel (a)) to groups organization (Panel (b)) and back to the
geographical organization (Panel (c)). Panel (d) shows how highlighted events impact all the semantic network, by calculating the matrix
norm for TSS matrix at every instance, with each TSS matrix corresponding to TSS between words belonging to the same category (qualified
and nonqualified). From D + 1 until the instant where the two series stop decreasing, these series show a stronger correlation than in other
instants, implying that the World Cup draw modified the expected network (qualified teams) but also the nonqualified teams.

draw (0.1045 ± 0.0045, 𝑡-test, 𝑝 < 10−20, df = 102) where
it remains stable. We emphasize that this is a naive classifier
that assumes that the three countries grouped with any given
country are those with more similar TSS, hence ignoring all
other reasons (geographical, economical, and social) why two
countries might be similar.

These results thus indicate that the temporary orga-
nization of the network is completely dominated by this
episode completely overriding other constituting elements.
To emphasize this idea, we followed the two-dimensional
projection of six countries with the following properties: (1)
Three are South American and three European; (2) after the

draw, each of the South American countries is paired in a
World Cup group with one of the European countries; we
reasoned that (a) before the draw geographical similarity
should dominate the network that should then be organized
in two continental clusters and (b) just after the draw the
network should organize in three clusters dominated by
World Cup groups; and (3) after a few days the network
should revert to its continental organization.Thedata showed
a perfect continental classification (classifier: Naive Bayes,
2-fold cross-validation, 100% performance; see Methods for
details) before the draw (Figure 4(a)) and 0% of group clas-
sification performance. Just after the draw, classifier showed
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a good performance of 83% of correct group classification
(Figure 4(b), Naive Bayes, 2-fold cross-validation) and only
16% of geographical classification performance. A week
after the draw, the geographical classification shows 83% of
performance (Figure 4(c)) while group classification showed
0% performance.

Based on these results, we showed that the draw rear-
ranges the qualified teams shifting from the geographic to
World Cup’s groups organization. However, we hypothesize
that this highlighted event impacts all the semantic network,
including the nonqualified teams subnetwork. To character-
ize this phenomenon we calculated the matrix norm for TSS
matrix at every instance. Each TSS matrix corresponds to all
TSS between words belonging to the same category (qualified
and nonqualified) at a given time. From the time before the
draw (D − 3) until the draw, the qualified and nonqualified
teams show a correlated behavior (Figure 4(d), 𝜌 = 0.50919,
𝑝 < 10

−3). Starting from the instant just after the draw (D
+ 1) until the instant where the two series stop decreasing,
these series show a stronger correlation (𝜌 = 0.71126, 𝑝 <
10
−9). In the remaining time, the series are also correlated

(𝜌 = 0.42327, 𝑝 < 10−3).This shows that theWorld Cup draw
modified the expected network (qualified teams) but also the
nonqualified teams. This behavior evidenced the distributed
effect on the network. During March 2014, the series for the
qualified andnonqualified teamswere not correlated showing
that both subnetworks stabilize to a basal movement, not
orchestrated by the particular event.

4. Conclusions

Many unsupervised algorithms explore semantic organiza-
tion based on frequency of cooccurrence of words from large
corpora. Semantic spaces are computationally expensive to
calculate, prohibiting the estimation of semantic networks in
short periods of times. Instead, we study activity in the social
network to drive a measure of the underlying semantic space
and compare it with previous metrics.

With TSS, we have presented a measure of similarity with
many features that make it a valuable tool to study semantic
structures. We demonstrated that TSS is commensurable
with methods, for example, LSA, Wordnet, that assume a
stationary or slowly varying field of cooccurrences between
the elements of the lexicon. We validated TSS in several tests,
such as categorization or synonym test, which yielded similar
results, and therefore it can be used to substitute them in cases
that do not involve a highly specialized semantic space (e.g., a
professional field). Conversely, TSS allows defining semantics
using more colloquial language expressions, and therefore it
can be thought of as a vernacular database, sensitive to slang
and the emergence of neologisms [33].

However, the most remarkable feature of TSS is its ability
to detect rapid changes in the semantic network without
relying on specific topics and to connect those changes
with real-time events across the world. We quantified the
effect of these events on the semantic content of terms
directly related to them, as well as the ripple effect across
the semantic web. This is particularly important, as the
definition of TSS does not involve any explicit assumption

about the distributed nature of semantics, in contraposition
with semantic indexing and graph-based methods such as
[34, 35].

The idea that our beliefs are dynamic is both common-
sensical and deeply rooted in psychology [36] and philosophy
of language [37], as well as machine learning and artificial
intelligence theories of relational learning [38]. With the
advent of social media, there is growing interest in the
dynamics of information diffusion [39, 40]. Using TSS, we
showed that seemingly permanent lexical elements, such as
terms designing countries, are affected semantically by the
news/event dynamics.While our results should be considered
limited and preliminary, they are consistent with the notion
that language emerges from a complex web of dynamically
interacting elements. In this sense, we hope our work will
contribute to the development of a new formal paradigm
to understand language, reflecting its nature as a social
construction [41].
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