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Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of

the gastrointestinal tract characterized by an exacerbated mucosal immune response.

Macrophages play pivotal roles in the maintenance of gut homeostasis but they are also

implicated in the pathogenesis of IBD. They are highly plastic cells and their activation

state depends on the local environment. In the healthy intestine, resident macrophages

display an M2 phenotype characterized by inflammatory energy, while inflammatory

M1 macrophages dominate in the inflamed intestinal mucosa. In this regard, modifying

the balance of macrophage populations into an M2 phenotype has emerged as a

new therapeutic approach in IBD. Multipotent mesenchymal stromal cells (MSCs) have

been proposed as a promising cell-therapy for the treatment of IBD, considering their

immunomodulatory and tissue regenerative potential. Numerous preclinical studies have

shown that MSCs can induce immunomodulatory macrophages and have demonstrated

that their therapeutic efficacy in experimental colitis is mediated by macrophages with

an M2-like phenotype. However, some issues have not been clarified yet, including

the importance of MSC homing to the inflamed colon and/or lymphoid organs, their

optimal route of administration or whether they are effective as living or dead cells. In

contrast, the mechanisms behind the effect of MSCs in human IBD are not known and

more data are needed regarding the effect of MSCs on macrophage polarization that

would support the observation reported in the experimental models. Nevertheless, MSCs

have emerged as a novel method to treat IBD that has already been proven safe and

with clinical benefits that could be administered in combination with the currently used

pharmacological treatments.

Keywords: multipotent mesenchymal stromal cells, mesenchymal stem cells, inflammatory bowel disease, M1/M2
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https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.00179
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.00179&domain=pdf&date_stamp=2018-03-06
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:per.anderson@genyo.es
https://doi.org/10.3389/fphar.2018.00179
https://www.frontiersin.org/articles/10.3389/fphar.2018.00179/full
http://loop.frontiersin.org/people/428578/overview
http://loop.frontiersin.org/people/528506/overview
http://loop.frontiersin.org/people/484184/overview


Hidalgo-Garcia et al. MSCs and Macrophages in IBD

FUNCTIONAL PLASTICITY OF
MACROPHAGES

Macrophages are tissue resident phagocytic cells that play
fundamental roles in steady-state tissue homeostasis, regulation
of the inflammatory response and host defense. Macrophages
respond promptly to environmental stimuli using multiple
receptors that results in a specific and optimized activation state
ready to deal with the task at hand (Murray, 2017).

The activation states of macrophages were initially divided
into classically activated M1macrophages [induced by interferon
(IFN)-γ], which participate in the anti-microbial response, and
alternatively activated M2 macrophages [induced by interleukin
(IL)-4], which protect against parasites and participate in wound
healing/tissue remodeling (Stein et al., 1992; Hill Charles et al.,
2000). While the prototypic M1/M2 polarization states are
clearly established in vitro, their distinction in vivo has been
difficult due to the multitude of stimuli resulting in mixed
M1/M2 macrophage activation states (Martinez and Gordon,
2014). Recent data points to a continuum of activation states
where stimulation of macrophages with lipopolysaccharide
(LPS), tumor necrosis factor (TNF)-α, IL-10, IL-13, transforming
growth factor (TGF)-β, glucocorticoids (GC), or immune
complexes (IC) gives rise to similar but distinct transcriptional
and functional macrophage activation states along the M1-
M2 axis (Martinez and Gordon, 2014; Murray et al., 2014;
Xue et al., 2014; Murray, 2017). In addition, stimulation of
macrophages with free fatty acids, high-density lipoprotein
(HDL) or with stimuli involved in chronic inflammation
[including prostaglandin (PG) E2 and the toll like receptor (TLR)
2 ligand P3C] results in macrophage activation states that go
outside the M1-M2 continuum (Popov et al., 2008; Xue et al.,
2014) showing the complexity of macrophage activation and
function (Figure 1).

A large number of surface molecules, cytokines, intracellular
enzymes, and transcription factors are used to identify and
differentiate between discrete macrophage activation states.
M1 macrophages are generally distinguished by their high
production of proinflammatory cytokines (IL-6, IL-12, TNF-α)
and the expression of inducible nitric oxide synthase (iNOS)
(in mouse) and indolamine 2,3,-dioxygenase (IDO) (in human).
Markers for M2 macrophages encompass both stimuli-specific
molecules (Xue et al., 2014) and more general M2 markers, such
as CD206 (mannose receptor) and arginase I (Murray et al.,
2014). CD206 is a surface marker for murine (Stein et al., 1992)
and human (Murray et al., 2014) M2 macrophages induced by
IL-4/IL-13 or IL-10 (Mantovani et al., 2004). In contrast, arginase
I expression and activity are frequently used as a marker for
murine, but not human, M2-polarized macrophages (Thomas
and Mattila, 2014). Finally, IL-10 is one of the most used markers
for M2 macrophages due to its higher expression in several M2
macrophage polarization states (except for IL-4/IL-13-induced
M2 macrophages) compared to M1 macrophages.

As mentioned above, macrophages are functionally plastic
cells whose activation states are dictated by the relative
concentration of M1/M2 polarizing stimuli in the local
environment (Wynn et al., 2013; Smith et al., 2016). As a

consequence, switches between macrophage polarization states
(M1 to M2 and vice versa) can be seen during responses to
infection, wound healing and disease, including cancer (Qian
and Pollard, 2010; Wynn et al., 2013). However, it is not clear
whether these changes in macrophage activation status are due to
(i) recruitment of newmonocytes and their subsequent activation
in response to changed local cues or (ii) repolarization of M1
macrophages into M2 macrophages or vice versa, or (iii) a
combination of both (Italiani and Boraschi, 2014). While the
repolarization of M1 into M2 macrophages has been described
(Porcheray et al., 2005; Davis et al., 2013; Tarique et al., 2015;
Kudlik et al., 2016), a recent study showed that human and
murine M1 macrophages failed to convert into M2 cells upon IL-
4 exposure in vitro and in vivo due to mitochondrial dysfunction
(Van Den Bossche et al., 2016).

ROLE OF MACROPHAGES IN IBD

Inflammatory bowel disease (IBD) is a group of chronic
gastrointestinal inflammatory diseases that include Crohn’s
disease (CD) and ulcerative colitis (UC). They both feature
alternating periods of remissions and relapses, characterized by
uncontrolled intestinal inflammation, with disabling symptoms
like diarrhea, abdominal pain, fever, clinical signs of bowel
obstruction, as well as passage of blood or mucus or both.
This implies extended medical and/or surgical procedures that
impair the patients’ quality of life. At present, the etiology
of IBD is not fully elucidated, and most probably results
from an intricate combination of four major factors: genetic
predisposition, compositional and metabolic changes in the
intestinal microbiota (dysbiosis), environmental exposures, and
deregulation of mucosal immune responses (de Souza et al.,
2017).

There is a consensus that IBD appears in genetically
susceptible individuals who display an altered intestinal barrier
function with increased paracellular permeability. These patients
develop an exaggerated immune response toward the intestinal
microbiota that triggers the chronic intestinal inflammation.
In this scenario, cells from both the innate [including
intestinal epithelial cells, monocytes/macrophages, neutrophils,
and dendritic cells (DCs)] and adaptive (including T- and B-cells)
arms of themucosal immune system and their secretedmediators
(cytokines, chemokines, eicosanoids and reactive oxygen and
nitrogen species) are involved in the pathogenesis of IBD (Xavier
and Podolsky, 2007).

The largest population of macrophages in the body resides in
the gastrointestinal mucosa (Lee et al., 1985), where they play
pivotal roles in the maintenance of epithelial and immunological
homeostasis (Pull et al., 2005; Isidro and Appleyard, 2016). The
intestinal macrophage pool is continuously replenished from
Ly6Chigh monocyte precursors recruited in a CCR2-dependent
manner into the intestinal lamina propria (Bain et al., 2014).
In steady state, the local microenvironment of the intestinal
mucosa inducesmonocytic precursors to acquire the homeostatic
phenotypic properties of intestinal-resident macrophages (M2
phenotype). These intestinal macrophages display scavenger and
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FIGURE 1 | The spectrum of macrophage activation. Macrophages can respond to a wide range of stimuli, resulting in the induction of a spectrum of macrophage

activation states. These include M1 macrophages, involved in the protection against bacteria, and M2 macrophages, induced by Th2 cytokines, anti-inflammatory

cytokines (IL-10, TGF-β), immune complexes and glucocorticoids, and participate in anti-parasite immune responses, tissue remodeling/wound healing and inhibition

of immune responses. Furthermore, stimuli associated with chronic inflammation, including PGE2, TNF-α and the TLR2-ligand PC3, induce a macrophage activation

state distinct from the M1/M2 macrophages that have the potential to inhibit T cell proliferation. Defining molecules for murine and human M1 and M2 macrophages

are indicated under each specific polarization state. GC, glucocorticoids; IC, immune complexes; IDO, indoleamine 2,3-dioxygenase; iNOS, inducible nitric oxide

synthase.

bacteriocidal activities together with an inflammatory anergy
which is, in part, induced by commensal microbiota (Ueda et al.,
2010; Zigmond et al., 2014) and intestinal stromal cell cues
(Smythies et al., 2005; Maheshwari et al., 2011). They are also
characterized by an anti-inflammatory gene expression profile
that involves the up-regulation of IL-10, a cytokine with anti-
inflammatory properties (Bain and Mowat, 2014). Importantly,
IL-10 plays a key role in regulating the pro-inflammatory
responses of murine and human intestinal macrophages and
mutations in its receptor, IL-10R, result in acute IBD in humans
(Glocker et al., 2009) and severe spontaneous colitis in mice
(Zigmond et al., 2014). However, in human IBD and murine
experimental colitis, the CD14+ monocytes that are recruited
into the inflamed colonic mucosa fail to become anergic. Instead,
they turn into inflammatory macrophages (M1 phenotype) that
produce high levels of proinflammatory cytokines (including IL-
1β, TNF-α, IL-23), nitric oxide and reactive oxygen intermediates
(Grimm et al., 1995; Tokuyama et al., 2005; Joeris et al.,
2017). Proinflammatory CD14+ macrophages also home to the
mesenteric lymph nodes (MLN) where they promote disease
(Li et al., 2017). In this regard, the inflammatory macrophages
outnumber the resident population, and all the secreted pro-
inflammatory mediators have a deleterious impact on epithelial
permeability, increasing pathogen invasion (Du Plessis et al.,
2013) and promoting accumulation of IL-17-producing innate
and adaptive leukocytes (Coccia et al., 2012).

MODULATION OF MACROPHAGE
ACTIVATION AS A TREATMENT FOR IBD

Considering all the above, the pharmacological alteration of the
balance of macrophage populations in the inflamed intestine,
especially promoting an increase in the anti-inflammatory M2
phenotype, is becoming an attractive therapeutic approach
in IBD. Firstly, administration of in vitro generated M2
macrophages, secreting high levels of IL-10, has been found
to lessen the severity of colitis in mice (Hunter et al., 2010;
Anderson et al., 2013b; Leung et al., 2013). Secondly, mice
infected with schistosome worms acquired a macrophage-
dependent protection against DSS-induced colitis. This
protection was not associated with any known M2 macrophage
activation state or IL-10/TGF-β expression. However, transfer
of colon lamina propria macrophages from infected mice
significantly suppressed colitis in recipient mice (Smith et al.,
2007), highlighting the multitude of immunomodulatory
macrophage activation states. Thirdly, patients with active
CD showed fewer CD68+CD206+ macrophages in the
inflamed mucosa (which indicates alternatively activated
macrophages) than patients with inactive CD (Hunter et al.,
2010). Interestingly, the anti-TNF-α monoclonal antibody,
infliximab, which is successfully used in the treatment of human
IBD (Danese et al., 2015), was found to induce regulatory
macrophages (CD68+CD206+) in vitro (Vos et al., 2011)
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and in patients with IBD responding to treatment (Vos et al.,
2012).

MULTIPOTENT MESENCHYMAL STROMAL
CELLS

Multipotent mesenchymal stromal cells (MSCs) are non-
hematopoietic, perivascular cells with tissue regenerative and
immunomodulatory abilities that have emerged as a promising
cell-therapy for regenerative medicine, autoimmune disease
and cancer. The interest in MSCs began when Friedenstein
originally described the existence of a rare non-hematopoietic
bona fide stem cell in the bone marrow that could give rise to
multiple skeletal tissues (bone, cartilage, and fibrous tissue) when
transplanted in vivo (reviewed in Friedenstein, 1990). These
cells were designated osteogenic stem cells or bone marrow
(BM) stromal stem cells and were later found to promote bone
remodeling and hematopoiesis in vivo (Bianco et al., 2008;
Méndez-Ferrer et al., 2010). Subsequently, cells with similar
morphology and in vitro differentiation potential were isolated
by plastic adherence from several adult and neonatal tissues
and organs, including adipose tissue, muscle, umbilical cord
and placenta (da Silva Meirelles, 2006). These cells were named
“multipotent mesenchymal stromal cells,” to distinguish them
from the osteogenic stem cells/BM stromal stem cells described
by Friedenstein (Owen and Friedenstein, 1988). The current
minimal criteria to define human MSCs are (i) plastic adherence
under normal culture conditions in vitro (ii) expression of
CD73, CD90 and CD105 and lack of expression of CD45,
CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface
molecules and (iii) differentiation into osteoblasts, adipocytes
and chondroblasts in vitro (Dominici et al., 2006). Although the
in vivo function and differentiation potential of MSCs appear
to depend on their tissue of origin (Sacchetti et al., 2016), in
vitro expandedMSCs can migrate to sites of injury/inflammation
(Kidd et al., 2009), secrete trophic factors and are potent
regulators of the innate and adaptive immune responses in vitro
and in vivo (Di Nicola et al., 2002; Constantin et al., 2009;
Gonzalez-Rey et al., 2009; Anderson et al., 2013a, 2017; Gao
et al., 2016) (Figure 2). Several clinical trials have evaluated the
immunomodulatory and tissue regenerative potential of both
autologous and allogeneic MSCs with promising results (Quarto
et al., 2001; Connick et al., 2012; von Bahr et al., 2012).

MSCs AND THEIR POTENTIAL
APPLICATION AS A CELL THERAPY FOR
IBD

MSCs are nowadays considered a promising future treatment
of IBD. Administration of syngeneic, allogeneic and xenogeneic
MSCs ameliorates experimental colitis by regulating Th1/Th17
responses, inducing regulatory T cells (Tregs) and reducing
the levels of proinflammatory cytokines in the inflamed colon
(Hayashi et al., 2008; Gonzalez-Rey et al., 2009; Li et al., 2013).
Clinical trials using MSCs for the treatment of fistulizing CD
(Ciccocioppo et al., 2011; Panés et al., 2016; Dietz et al., 2017),

luminal CD (Duijvestein et al., 2010; Forbes et al., 2014; Zhang
et al., 2017) and UC (Hu et al., 2016) have shown encouraging
clinical responses and safety.

Effect of MSCs on Macrophage
Polarization in Vitro
Numerous studies have demonstrated that MSCs can induce
immunomodulatory M2-like macrophages in vitro that can
inhibit T cell and NK cell function and induce Tregs (Gonzalez-
Rey et al., 2009; Anderson et al., 2013b; Melief et al., 2013a;
Chiossone et al., 2016). Conditioned medium of murine
adipose tissue-derived MSCs (ASCs) was found to induce
regulatory macrophages in vitro, which were distinct from IL-4
activated macrophages. These ASC-induced macrophages were
characterized by high arginase I activity, IL-10 production and
expression of LIGHT, heme oxygenase (HO)-1 and arginase
II, possessing immunomodulatory capacity in vitro and in
experimental colitis and sepsis (Anderson et al., 2013b).
Furthermore, murine BM-MSCs have been shown to induce high
IL-10 production in both M-CSF-derived BM-macrophages and
in thioglycollate-induced peritoneal macrophages (Cho et al.,
2014; Kudlik et al., 2016). Importantly, some studies have
suggested that MSCs can repolarize M1 macrophages (induced
by M-CSF + LPS or GM-CSF + IFN-γ) into IL-10 expressing
M2macrophages (Németh et al., 2009;Manferdini et al., 2017). In
general, the main MSC-derived molecule that promotes the M2
activation state is PGE2, although other effector molecules could
also be involved (Table 1).

Similarly, human ASCs (Manferdini et al., 2017), BM-MSCs
(Melief et al., 2013a; Chiossone et al., 2016; Vasandan et al.,
2016), and amniotic MSCs (Magatti et al., 2017) induced an M2
activation state in CD14+ monocytes (stimulated or not with
either M-CSF or GM-CSF). In all cases, the M2 activation state
was characterized by CD206 expression and IL-10 secretion and
when analyzed, depended on MSC-derived PGE2 (Table 1). One
study also implicated IDO activity in MSCs in the induction
of CD206+IL-10high M2 macrophages (François et al., 2012).
However, IDO is also expressed in some types of M2-like
macrophages that could make the effects of pharmacological
inhibition of IDO on MSC-mediated macrophage polarization
difficult to interpret (Xue et al., 2014; Selleri et al., 2016).

In addition, exosomes from murine and human MSCs
have been shown to induce IL-10highCD206+ macrophages
(Henao Agudelo et al., 2017; Lo Sicco et al., 2017; Mao
et al., 2017a). Song et al. found that human umbilical cord
(UC)-MSC-derived exosomes transferred microRNA (miR)-
146a to macrophages, inducing an M2 phenotype (Song Y.
et al., 2017). Interestingly, Phinney et al. showed that MSCs
exposed to oxidative stress shed exosomes containing depolarized
mitochondria, which are taken up by macrophages. However,
in order to prevent an TLR-mediated inflammatory response
to the engulfed mitochondria, MSCs simultaneously shed miR-
containing exosomes that repress TLR signaling and production
of inflammatorymediators inmacrophages (Phinney et al., 2015).

MSCs can also prevent the GM-CSF/IL-4-induced
differentiation of monocytes into immature dendritic cells
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FIGURE 2 | Therapeutic properties of multipotent mesenchymal stromal cells. MSCs have emerged as a promising cell therapy for inflammatory/autoimmune

diseases and in regenerative medicine due to their (i) secretion of trophic factors that promote a regenerative microenvironment, (ii) their capacity to differentiate into

adipocytes, osteoblasts, and chondroblasts in vitro and in vivo and (iii) their immunomodulatory capacity where MSCs can inhibit the activation of T cells, NK cells, and

B cells, prevent the maturation of dendritic cells (iDC) and promote immunological tolerance through the induction of M2 macrophages and regulatory T cells (Tregs).

(iDCs) in vitro. Here, the presence of MSCs promotes a
CD14+CD1a−IL-10high “M2-like” macrophage activation state
with low allostimulatory capacity. To date, several MSC-derived
mediators have been implicated in this process, including
hepatocyte growth factor (HGF) (Deng et al., 2016), IL-6 (Melief
et al., 2013a), and lactate (Selleri et al., 2016).

In summary, MSCs can induce M2 polarization of monocytes,
primed M1 macrophages (by GM-CSF or thioglycollate) and
polarized M1 macrophages (by LPS and/or IFN-γ). MSCs also
promote anM2-like macrophage activation state when in contact
with monocytes under dendritic cell stimuli (GM-CSF/IL-4) and
M1 stimuli (LPS+ IFN-γ) (Figure 3).

Effects of MSCs on Macrophage
Polarization in Vivo
MSCs have been revealed to modulate macrophage polarization
in models of inflammatory/autoimmune diseases and tissue
regeneration (Carty et al., 2017), including sepsis (Németh
et al., 2009) wound healing (Zhang et al., 2010) and spinal
cord injury (Nakajima et al., 2012). Several studies have linked
the therapeutic efficacy of MSCs in experimental colitis to the
induction/increase of macrophages with an M2-like phenotype
(Liu et al., 2015; Markovic et al., 2015; Mao et al., 2017b; de
Aguiar et al., 2018). Song W. J. et al. (2017), showed that
human ASCs, through their secretion of tumor necrosis factor-
stimulated gene (TSG)-6, induced M2 macrophage polarization
in the colon and reduced disease severity in DSS-induced colitic

mice. Parekkadan et al. reported that intravenous injection
of BM-MSCs induced CD4+foxp3+ Tregs and prevented
TNBS-induced colitis. Chemical (clodronate treatment) or
surgical depletion (splenectomy) of splenic CD11b+ cells
abolished the therapeutic effect of the MSCs. Moreover, the
injection of CD11b+ macrophages co-cultured with MSCs, but
not skin fibroblasts, also reduced colitis (Parekkadan et al.,
2011).

Supporting the above, several reports have demonstrated that
MSCs injections can inhibit the infiltration of macrophages
into the inflamed colon. de Aguiar et al. described that the
administration of murine ASCs into mice during the induction
of DSS colitis reduced the infiltration of CD11b+F4/80+

macrophages into the MLNs and colonic lamina propria. Also,
MSC-injection increased the protein levels of arginase-1 in the
colon, suggestive of aM2macrophage induction (de Aguiar et al.,
2018). Similarly, the infiltration of monocytes/macrophages
into the inflamed colon was significantly decreased in human
amnion-MSC-treated rats (Onishi et al., 2015) and in human
UC-MSC-treated DSS-colitic mice (Mao et al., 2017b).

IS THE HOMING AND VIABILITY OF MSCs
IMPORTANT FOR THEIR THERAPEUTIC
EFFECTS IN COLITIS/IBD?

Injected MSCs have been shown to home to both the
inflamed/injured colon and/or the MLNs and spleens in colitic
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FIGURE 3 | MSCs can modulate macrophage function through several mechanisms. MSCs can induce M2 polarization of monocytes, primed M1 macrophages

(stimulated with GM-CSF or thioglycollate) and polarized M1 macrophages (polarized with LPS and/or IFN-γ). MSCs can also inhibit the GM-CSF/IL-4-mediated

differentiation of monocytes into immature dendritic cells and prevent the LPS/IFN-γ-mediated polarization into M1 macrophages and instead promote a M2-like

macrophage activation state. MSCs use both active (TSG-6, PGE2, cytokines/growth factors and lactate) and passive (phagocytosis of MSCs by macrophages,

transfer of microRNAs and mitochondria to macrophages) mechanisms to modulate macrophage function.

mice (Gonzalez-Rey et al., 2009; Liang et al., 2011; Parekkadan
et al., 2011; Castelo-Branco et al., 2012; Fan et al., 2012; Mao
et al., 2017b; Takeyama et al., 2017). However, some recent
studies have reported that only a minor fraction (0.001–1%)
of the injected MSCs actually reaches the inflamed colon. The
lack of homing in different studies can be due to inadequate
culture conditions (De Becker and Van Riet, 2016), prolonged
trypsinization (Chamberlain et al., 2008) or high passage number
of the MSCs, since they lose the expression of chemokine
receptors upon in vitro culturing (Honczarenko et al., 2006).
Activation of MSCs using inflammatory cytokines, like IFN-γ,
TNF-α, and IL-1β, has been demonstrated to induce their surface
expression of chemokine receptors and integrins (Duijvestein
et al., 2011b; De Becker and Van Riet, 2016). Preactivation of
MSCs with IL-1β upregulated the expression of CXCR4 and
increased their homing to the spleen, MLNs and the inflamed
colon of DSS-treatedmice (Fan et al., 2012). Duijvestein et al. also
showed that pretreatment with IFN-γ increased the homing of
MSCs to the inflamed intestine and potentiated their therapeutic
effect in both DSS- and TNBS-induced colitis (Duijvestein et al.,
2011b).

However, several recent reports suggest that the migration
of MSCs to the inflamed colon and/or lymphoid organs is not
necessary for their therapeutic effect in experimental colitis.
Instead, intraperitoneally injected MSCs can remain trapped in
the peritoneal cavity, causing a suppression of the intestinal
inflammation (Bazhanov et al., 2016; Song Y. et al., 2017). In

this line, Sala et al. found that intraperitoneal administration
of MSCs reduced DSS-induced colitis via production of TSG-
6, independently of their homing to the intestine. In fact,
the injected MSCs formed aggregates in the peritoneal cavity,
which remained external to the bowel wall vessels, but able to
promote the induction of colonic macrophages with a regulatory
phenotype (CD11b+F4/80+IL-10highiNOSlow) (Sala et al., 2015).

As discussed above, the therapeutic potential of MSCs in
intestinal inflammation has been linked to their capacity to
actively modulate the immune system, either in lymphoid organs
and the inflamed colon or through immunomodulation in
the peritoneal cavity. However, it is far from clear whether
MSCs are effective in vivo as living or dead/dying cells (Bianco
et al., 2013; Sacchetti et al., 2016), and some recent studies
propose that MSCs can modulate macrophage function through
passive mechanisms. Luk et al. showed that heat-inactivated
MSCs could not inhibit T cell and B cell activation/proliferation
but could modulate monocyte function in response to LPS
(Luk et al., 2016). In another study, Braza et al. found that
intravenously injected MSCs were phagocytosed by murine
lung macrophages that acquired a IL-10highTGF-βhighIL-6low

phenotype in comparison to macrophages that had not ingested
MSCs (Zigmond et al., 2014; Braza et al., 2016). In the same line,
Song et al. described that intraperitoneal injections of freeze-
thaw extracts from human UC-MSCs induced M2 polarization
of intraperitoneal macrophages and reduced DSS-colitis (Song
J. et al., 2017). In summary, MSCs can induce M2 macrophages
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in vivo through active or passive mechanisms, regardless of their
homing to the inflamed colon and secondary lymphoid organs.

In contrast to the plethora of information on how MSCs
modulate the immune system in murine colitis, the mechanisms
behind their effect in human IBD are not known. Due to
technical difficulties, only a few clinical studies have included
sample collection in order to evaluate inflammation and immune
responses in IBD patients receiving either local or systemic
injections of MSCs. Hu et al. showed that administration of
human UC-MSCs reduced the histological score in patients
with UC, as evidenced by the improvement of the mucosal
surface, mucin content in goblet cells, crypt abscesses, gland
collapse, and reduction of the inflammatory infiltrate (Hu
et al., 2016). Also, a decreased amount of pro-inflammatory
cytokines (TNF-α, IL-1β) was observed in mucosal biopsies
in patients with refractory luminal CD receiving intravenous
infusions of autologous BM-MSCs (Duijvestein et al., 2010).
Taken together, although the beneficial effects of MSCs have
been reported in human IBD, data is lacking on the effect of
MSCs on macrophage polarization that support the observations
reported in preclinical studies in experimental models of rodent
colitis.

ADVANTAGES AND DISADVANTAGES
USING MSCs FOR IBD

Current treatments for IBD include aminosalicylates,
corticosteroids, immune-suppressants, antibiotics, and biological
drugs (Bernstein, 2015). Despite their efficacy in patients with
either UC or CD, their chronic use is frequently associated
with severe side effects, including osteoporosis/osteonecrosis,
infectious complications and development of lymphoma among
others (Rutgeerts et al., 2005; Siegel, 2011; Garg et al., 2014).
For this reason, there is a real need for the development of new
treatments combining efficacy and safety, which could be the
case of MSCs.

The main advantages of using MSCs for the treatment of
IBD are: (i) administration of MSCs is safe with clinical benefits
for the treatment of IBD, especially fistulizing CD. (ii) MSCs
are easily isolated and can be efficiently cultured in vitro. (iii)
MSC function is not altered by the pharmacological treatments
used in IBD (azathioprine, methotrexate, 6-mercaptopurine
and biologicals like anti-TNF-α), thus supporting their use in
combination with these drugs (Duijvestein et al., 2010, 2011a).
(iv) MSCs could be an option for CD patients refractory to
current drug treatments. Interestingly, it has been shown that
MSCs-treated patients can also regain responsiveness to those
drugs (Ciccocioppo et al., 2015). (v) MSCs can migrate to the
inflamed colon and lymphoid organs. Some studies have reported
low homing efficiency probably due to the entrapment of MSCs
in lungs and loss of homing receptors during in vitro expansion.
Pretreatment of MSCs with inflammatory cytokines improves
their homing to the inflamed intestine and enhances their
therapeutic efficacy in experimental colitis. However, migration
to the colon might not be necessary for their therapeutic
effect.

Nevertheless, there are some aspects that need to be solved
in order to definitively establish the therapeutic use of MSCs:
(i) It is not clear whether autologous MSCs from patients with
IBD possess the same therapeutic capacity as MSCs from healthy
donors (Chinnadurai et al., 2015; Serena et al., 2017). A solution
could be the use of allogeneic MSCs, which are considered
immune evasive due to their low or absent expression of MHC
class I and II and their immunosuppressive nature (Ankrum
et al., 2014; Molendijk et al., 2015; Panés et al., 2016). However,
IFN-γ can increase the expression of both MHC class I and II on
MSCs (Romieu-Mourez et al., 2007) that would make allogeneic
MSCs more susceptible to rejection in an immune-competent
host. This could be a problem for applications where long
term engraftment of MSCs is necessary for a clinical effect. (ii)
Although MSCs administration can increase the pool of Tregs,
some long term follow up studies (>6 months after intervention)
suggest that the beneficial effects of the MSC-therapy wear
off with time (Dave et al., 2017). This indicates a failure of
establishing immunological tolerance and suggests the necessity
of repeated treatments. (iii) No transformation of MSCs has been
detected in any of the patients that have receivedMSCs injections
in clinical trials. However, due to the reported pro-tumorigenic
effect of MSCs in vitro and in vivo (Wei et al., 2015; Chen
et al., 2017), further studies need to address whether infusion
of MSCs increases the rate of colorectal cancer in IBD patients
that already have an increased risk (Ullman and Itzkowitz, 2011).
(iv) Moreover, since MSCs promote intestinal immunotolerance,
there is a risk of infection after the cell administration. This
could be addressed by the use of anti-microbial drugs (Wei et al.,
2017).

In summary, MSCs can be considered as an attractive
therapeutic strategy for the efficient and safe management of
human IBD. Although the exact mechanisms involved require
further clarification, the impact of macrophage polarization
toward the anti-inflammatory M2 phenotype seems to be
especially relevant.
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