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Abstract: The multifunctional protein, voltage-dependent anion channel 1 (VDAC1), is located on
the mitochondrial outer membrane. It is a pivotal protein that maintains mitochondrial function
to power cellular bioactivities via energy generation. VDAC1 is involved in regulating energy
production, mitochondrial oxidase stress, Ca2+ transportation, substance metabolism, apoptosis,
mitochondrial autophagy (mitophagy), and many other functions. VDAC1 malfunction is associated
with mitochondrial disorders that affect inflammatory responses, resulting in an up-regulation of the
body’s defensive response to stress stimulation. Overresponses to inflammation may cause chronic
diseases. Mitochondrial DNA (mtDNA) acts as a danger signal that can further trigger native immune
system activities after its secretion. VDAC1 mediates the release of mtDNA into the cytoplasm to
enhance cytokine levels by activating immune responses. VDAC1 regulates mitochondrial Ca2+

transportation, lipid metabolism and mitophagy, which are involved in inflammation-related disease
pathogenesis. Many scientists have suggested approaches to deal with inflammation overresponse
issues via specific targeting therapies. Due to the broad functionality of VDAC1, it may become a
useful target for therapy in inflammation-related diseases. The mechanisms of VDAC1 and its role
in inflammation require further exploration. We comprehensively and systematically summarized
the role of VDAC1 in the inflammatory response, and hope that our research will lead to novel
therapeutic strategies that target VDAC1 in order to treat inflammation-related disorders.
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1. Introduction

Inflammation is a defense response of the body to stimuli, such as infectious and non-
infectious triggers. Inflammation can be beneficial when it occurs in moderation; however,
excessive inflammation can easily become detrimental events that result in possible damage
to local tissues. In understanding the mechanism of chronic inflammation, we know that it
has a deep relationship with various diseases, for example, type 2 diabetes, atherosclerosis,
asthma, neurodegenerative diseases, cancers and others [1–3].

Mitochondria are vital organelles in eukaryotic cells. They are not only involved
in oxidative phosphorylation, thermogenesis, the biogenesis of iron–sulfur clusters, and
in heme, lipid and amino acid biosynthesis [4–6], they can modulate programmed cell
death [7,8] and control inflammation [9]. Mitochondrial malfunction is related to various
diseases [10–12] that are mainly manifested with a reduction in metabolism, Ca2+ homeo-
static imbalance, increased levels of reactive oxygen species (ROS), lipid peroxidation and
increased apoptosis (Figure 1).
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Figure 1. VDAC1 regulates inflammatory pathogenesis. Mitochondria are the center of energy 
generation, the TCA cycle, glycolysis and lipid metabolism. VDAC1 is the fundamental component 
that maintains mitochondrial function. VDAC1 plays an important role in the regulation of apopto-
sis, mtDNA release, Ca2+ signaling, TCA cycle, glycolysis, lipid metabolism and mitophagy. Im-
paired mitochondrial homeostasis with dysfunctional signal networks results in inflammatory path-
ogenesis and mitochondrial diseases. Abbreviations: ACSL: long-chain acyl-CoA synthase; BAX: 
Bcl-2-associated X protein; CPT1a: carnitine palmitoyltransferase 1A; Cyto c: cytochrome c; HK: 
hexokinase; LC3: microtubule-associated proteins 1A/1B light chain 3; IMM: inner mitochondrial 
membrane; MOMP: mitochondrial outer membrane permeabilization; mtDNA: mitochondrial 
DNA; PINK1: PTEN-induced putative kinase 1; TCA cycle: tricarboxylic acid cycle; Ub: ubiquitin; 
VDAC1: voltage-dependent anion channel 1. 

Voltage-dependent anion-selective channel protein was first purified from parame-
cium mitochondria in 1976 [13]. We now know that there are two isoforms of voltage-
dependent anion channel (VDAC) in yeast, yVDAC1 and yVDAC2, with yVDAC1 being 
the most abundant [14,15]. Three VDAC family members in mammalian mitochondria 
were observed, VDAC1, VDAC2, VDAC3. VDAC1 is the most widely expressed, and con-
tributes to a broad and general role [16–18]. Notably, VDAC2 in mammals contributes to 
anti-apoptotic phenotypes by binding to Bcl-2 homologous antagonist killer (BAK); mito-
chondrial apoptosis is activated, resulting from the homo-oligomerization of BAK when 
VDAC2 is displaced by truncated BH3 interacting-domain death agonist (tBID), Bcl-2-like 
protein 11 (BIM) or Bcl-2-associated agonist of cell death (BAD) [19]. VDAC3, especially 
the indispensable cysteine residues, plays an important role in protecting mitochondria 
from oxidative stress [20]. The transcriptional factors that regulate cell growth, apoptosis, 
energy metabolism, etc., also regulate VDAC gene expressions [21]. More information on 
VDAC isoforms and gene regulation has been documented by Vito De Pinto et al. [18,21]. 
In this review, we focus only on the most abundant isoform, VDAC1, and its relationship 
with inflammation.  

The 3-dimensional structure of VDAC1 shows that the 19 transmembrane β-strands 
form a flexible loop, forming a β-pore containing a 25-residue segment in the N-terminal 
domain. The migration of the N-terminal domain is involved in channel gating, and in the 
formation of VDAC1 dimers that transport metabolites and molecules to maintain mito-
chondrial homeostasis [16,22,23]. This VDAC1 structure was published by three 

Figure 1. VDAC1 regulates inflammatory pathogenesis. Mitochondria are the center of energy
generation, the TCA cycle, glycolysis and lipid metabolism. VDAC1 is the fundamental component
that maintains mitochondrial function. VDAC1 plays an important role in the regulation of apoptosis,
mtDNA release, Ca2+ signaling, TCA cycle, glycolysis, lipid metabolism and mitophagy. Impaired
mitochondrial homeostasis with dysfunctional signal networks results in inflammatory pathogenesis
and mitochondrial diseases. Abbreviations: ACSL: long-chain acyl-CoA synthase; BAX: Bcl-2-
associated X protein; CPT1a: carnitine palmitoyltransferase 1A; Cyto c: cytochrome c; HK: hexokinase;
LC3: microtubule-associated proteins 1A/1B light chain 3; IMM: inner mitochondrial membrane;
MOMP: mitochondrial outer membrane permeabilization; mtDNA: mitochondrial DNA; PINK1:
PTEN-induced putative kinase 1; TCA cycle: tricarboxylic acid cycle; Ub: ubiquitin; VDAC1: voltage-
dependent anion channel 1.

Voltage-dependent anion-selective channel protein was first purified from parame-
cium mitochondria in 1976 [13]. We now know that there are two isoforms of voltage-
dependent anion channel (VDAC) in yeast, yVDAC1 and yVDAC2, with yVDAC1 being
the most abundant [14,15]. Three VDAC family members in mammalian mitochondria
were observed, VDAC1, VDAC2, VDAC3. VDAC1 is the most widely expressed, and
contributes to a broad and general role [16–18]. Notably, VDAC2 in mammals contributes
to anti-apoptotic phenotypes by binding to Bcl-2 homologous antagonist killer (BAK); mi-
tochondrial apoptosis is activated, resulting from the homo-oligomerization of BAK when
VDAC2 is displaced by truncated BH3 interacting-domain death agonist (tBID), Bcl-2-like
protein 11 (BIM) or Bcl-2-associated agonist of cell death (BAD) [19]. VDAC3, especially
the indispensable cysteine residues, plays an important role in protecting mitochondria
from oxidative stress [20]. The transcriptional factors that regulate cell growth, apoptosis,
energy metabolism, etc., also regulate VDAC gene expressions [21]. More information on
VDAC isoforms and gene regulation has been documented by Vito De Pinto et al. [18,21].
In this review, we focus only on the most abundant isoform, VDAC1, and its relationship
with inflammation.

The 3-dimensional structure of VDAC1 shows that the 19 transmembrane β-strands
form a flexible loop, forming a β-pore containing a 25-residue segment in the N-terminal
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domain. The migration of the N-terminal domain is involved in channel gating, and in
the formation of VDAC1 dimers that transport metabolites and molecules to maintain
mitochondrial homeostasis [16,22,23]. This VDAC1 structure was published by three
independent groups in 2008 [24–26]. The β1 (26Leu-Ile-Lys-Leu-Asp-Leu-Lys-Thr-Lys-Ser35)
and β19 (273His-Lys-Leu-Gly-Leu-Gly-Leu-Glu-Phe-Gln282) strands are parallel [24,25].
Bcl-2 protein Bcl-xL interacts with β17 (243Ile-Gly-Leu-Gly-Tyr-Thr-Gln-Thr-Leu251) and
β18 (255Ile-Lys-Leu-Thr-Leu-Ser-Ala-Leu-Leu263), fulfilling an anti-apoptotic function by
suppressing mitochondrial release apoptogenic proteins [25]. The conserved and flexible
sequence (21Gly-Tyr-Gly-Phe-Gly25) acts as a bridge that connects the α-helix to β1 [26].
The α-helix is at the midway point of the barrel pore in a horizon position [24]; it acts as a
gate by narrowing the pore cavity to modulate metabolite transportation [26].

VDAC1 is a multifunctional channel protein that is located in the outer membrane
of mitochondria. It modulates cellular metabolism [25,27]. VDAC1 regulates metabolism
between the mitochondria and other parts of the cell by transferring metabolites, such
as pyruvate, malonate, succinate, nucleotides and nicotinamide adenine dinucleotide hy-
drogen (NADH), into the mitochondria to complete subsequent metabolic reactions [27].
VDAC1 is also involved in cholesterol transportation, regulating lipid metabolism, mediat-
ing ion channels, regulating Ca2+ signaling between mitochondria and the endoplasmic
reticulum (ER), and regulating the redox status of mitochondria and the cytoplasm. It has
also been suggested that VDAC1 is a key protein that is involved in mitochondria-induced
cell death [28–31].

VDAC1 is associated with increased release of mitochondrial DNA (mtDNA) [32,33],
which is a signal of impaired mitophagy [34]. Mitophagy plays a central role in maintaining
mitochondrial homeostasis; the process is pivotal in the development of inflammation
and apoptosis [35–38], and is highly related to cytokines release [38,39]. VDAC1 plays an
important role in regulating the mitochondrial involvement in vital activities (Figure 1).
Functional abnormalities in mitochondria may lead to mitochondria-derived pathologic dis-
eases, including inflammation, cardiovascular disease, cancer, neurodegenerative diseases,
diabetes, and so on [10,11,40,41].

VDAC1 may become a potential therapeutic target and a breakthrough for many
diseases. Our current knowledge of VDAC1 is insufficient. It is urgent to carry out further
explorations on the molecular mechanisms of VDAC1, which may hopefully lead to novel
treatment strategies for inflammation-related diseases.

2. Inflammation, VDAC1 Mediates Apoptosis and Mitochondrial Oxidative Stress

Programmed cell death is associated with many different kinds of inflammatory dis-
eases, and is a major determinant of inflammatory disease severity [42]. Many studies
have revealed key pathological mechanisms of apoptosis that are involved in infectious
and inflammatory diseases. Sepsis-derived lymphopenia and immunosuppression are
associated with the apoptosis of lymphocytes and parenchymal tissues [43]. It has been
also indicated that apoptotic inflammatory cells may play an important role in the develop-
ment of inflammation [44–48]. Apoptosis of inflammatory microvascular cells may lead
to dysregulation of microvascular repair and damage that result from a malfunction in
endothelial cells, and cause diseases [49].

2.1. VDAC1 Regulates Inflammation via Mediating Apoptosis

The mitochondrial permeability transition pore (MPTP) is about 1.4 nm in diameter,
and supports solute and ion diffusion under 1500 kDa. It is also known as the mitochon-
drial macro-channel that plays an important role in cell survival and apoptosis [50,51].
The voltage-dependent anion channel (VDAC) is located in the outer mitochondrial mem-
brane (OMM); adenine nucleotide translocase (ANT) is located in the inner mitochondrial
membrane (IMM). VDAC and ANT are considered to be the structural components of the
MPTP [52–54].
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The Bcl-2 family has a close relationship with mitochondria and apoptosis [55]. It is
known that Bcl-2 family member, Bcl-2-associated X protein (BAX), interacts with VDAC1 to
regulate the release of cytochrome c (Cyto c) during apoptosis [56,57] (Figure 2). Oligomer-
ization of BAX is one of the mechanisms that is involved in the mitochondrial apoptosis
pathway [58]. A rat brain model indicates BAX promotes apoptosis by interacting with
VDAC1 to expand the associated pore size, resulting in the increased permeability of mito-
chondria [59]. During apoptosis, VDAC1 assembles into oligomeric structures, forming
a channel that is sufficient to pass Cyto c and release it into the cytoplasm. Cyto c forms
oligomeric apoptosomes by binding to Apaf-1, apostasy activator and deoxyadenosine
triphosphate (dATP); this results in the activation of cysteine protease 9 (caspase-9) that
further activates effector caspases, caspase-3, caspase-6 and caspase-7 [55,60,61]. Ultimately,
the caspase-mediated apoptosis pathway proteolytic cascade begins to cleave organelles
and cellular components, resulting in apoptosis [60].

Apoptosis may cause mitochondrial outer membrane permeabilization (MOMP),
which further induces inflammatory responses via multiple pathways [62] (Figure 2). The
outer mitochondrial membrane pore gradually enlarges after MOMP, further causing
extrusion and rupture of the inner mitochondrial membrane (IMM); this leads to the release
of mitochondrial DNA (mtDNA) into the cytoplasm [62] (Figure 2). The cytoplasmic
mtDNA, together with cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes
(STING), signal the release of pro-inflammatory interferon signal [63,64]. Additionally,
MOMP can induce proteasomal degradation of inhibitors of apoptosis (IAPs), which leads
to nuclear factor-κB (NF-κB)-induced kinase (NIK) to further induce pro-inflammatory
NF-κB signaling as well as activated caspase-8, which in turn results in the maturation of
pro-inflammatory factor interleukin 1β (IL-1β) [62].

2.2. VDAC1 Mediates Mitochondrial Oxidative Stress in Immune Responses

ROS from mitochondria can be dramatically induced under the stimulation of radia-
tion, cigarette smoke, air pollution, inflammatory factors, tumor necrosis factor, hyperlipi-
demia, hypoxia, and so on. Notably, the ROS are mainly generated from the respiratory
complex that is located in the IMM [65,66]. Malfunctioning mitochondria hyperproduce
ROS which negatively affect other components of mitochondria, for example, mtDNA,
membrane lipids, oxidative phosphorylation, etc. [67,68]. The mtDNA is mainly localized
in the IMM, and mtDNA can easily be oxidized by ROS to generate oxidized mtDNA
fragments (fomtDNA) [69]. The released mtDNA acts as ligands for different danger signal
sensors, activating the innate immune response (Figure 2). These risk sensors include the
cytoplasmic cyclic GMP-AMP synthase (cGAS); Toll-like receptor 9 (TLR9); nucleotide-
binding domain and leucine-rich repeat (LRR) containing P3 (NLRP3) inflammasome; and
absent in melanoma 2 (AIM2) inflammasome [65]. Through these pathways, mtDNA can
induce the secretion of inflammatory cytokines, and induce the recruitment of immune
cells at different sites, providing the conditions for inflammation in many diseases [65].
It has been shown that VDAC1 oligomer pores promote MOMP and allow the release of
mtDNA into the cytoplasmic matrix in living cells, where mtDNA fragments escape from
the mitochondria through direct interactions at the N-terminus of VDAC1 [32]. At the
same time, the inhibition of VDAC1 oligomerization eliminates cytoplasmic and circulating
mtDNA. Therefore, single-stranded or double-stranded DNA escapes into the cytoplasm
through the permeability transition pore that is composed of VDAC1. VDAC1 indirectly
participates in mtDNA induction by mediating the translocation of the subsequent mtDNA
inflammatory response [32]. VBIT-3 and VBIT-4, as well as VBIT-12, were reported to
interact with VDAC1 by disrupting its oligomerization, resulting in altered intracellular
Ca2+ concentration and decreased ROS levels, thereby protecting mitochondrial malfunc-
tion related to apoptosis and inflammation [70,71]. This response was found to alleviate
type 2 diabetes [72], lupus [32], atrial myocardium fibrosis [73], ulcerative colitis [74] and
amyotrophic lateral sclerosis [71]. Additionally, silencing VDAC1 in cancer cells can sup-
press tumor cell proliferation, in vivo and in vitro [75,76]. Silencing VDAC1-enhanced
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mitochondrial function and synaptic activity provides a potential therapeutic approach
for neuron-related diseases (Alzheimer’s, etc.) [77,78]. Increasing evidences indicates that
targeting VDAC1 with small molecules may be worth further investigation since it may
provide novel strategies against diseases that are associated with mitochondrial disorder.
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9; TBK1: TANK-binding kinase 1; TNF: tumor necrosis factor; VDAC1: voltage-dependent anion 
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Figure 2. VDAC1 mediates apoptosis and mtDNA release to promote cytokines expression and
inflammatory pathogenesis. (A) Bcl-2 family member, BAX, interacts with VDAC1 to release cy-
tochrome c into the cytoplasm, promoting apoptosis. (B) MOMP induces proteasomal degradation of
IAPs, which causes NIK to further induce the pro-inflammatory NF-κB signal and activate caspase-
1/8; this in turn results in the maturation of pro-inflammatory factor IL-1β. (C) Mitochondrial over-
produced ROS oxidize mtDNA to fomtDNA. The mtDNA and fomtDNA pass the VDAC1 oligomers
channel or the oligomerization BAX pore into the cytoplasm. The released mtDNA/fomtDNA induce
the cGAS-STING pathway to promote interferon gene expressions via TBK1-IRF3 to up-regulate
IFN-α/β, or through TBK1-NF-κB to enhance TNF-α, IL-6 and IL-12. Additionally, mtDNA interacts
with TLR9 and promotes TNF-α, IL-6 and IL-12 expression via NF-κB signaling. Moreover, the
released mtDNA induces the NLRP3 inflammasome and AIM2 inflammasome to enhance caspase-
1/8 activation to promote IL-1β/IL-18 maturation. Abbreviations: AIM2: absent in melanoma 2;
BAX: Bcl-2-associated X protein; cGAS: cyclic GMP-AMP synthase; Cyto c: cytochrome c; fomtDNA:
oxidized mtDNA fragments; IAP: inhibitors of apoptosis; IFN: interferon; IL: interleukin; IRF3:
interferon regulatory factor 3; IMM: inner mitochondrial membrane; MOMP: mitochondrial outer
membrane permeabilization; mtDNA: mitochondrial DNA; NF-κB: nuclear factor-κB; NIK: NF-κB
induced kinase; NLRP3: nucleotide-binding domain and leucine-rich repeat (LRR) containing P3;
ROS: reactive oxygen species; STING: stimulator of interferon genes; TLR9: Toll-like receptor 9; TBK1:
TANK-binding kinase 1; TNF: tumor necrosis factor; VDAC1: voltage-dependent anion channel 1.

The cGAS-STING pathway mediates the escape of mtDNA from stressed mitochon-
dria, provoking inflammation and further leading to calcium uptake and the triggering
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of VDAC oligomerization [33]. The cGAS is a newly discovered sensor that serves as a
hazard-associated molecular pattern for the detection of cytoplasmic mtDNA [79]. The
mtDNA binds to cGAS in a sequence-independent manner, and then induces a conforma-
tional change in the catalytic center of cGAS; this allows the enzyme to convert GTP and
ATP into the second messenger, cyclic GMP-AMP. Cyclic GMP-AMP is a molecule that
high-affinity gametes of STING subsequently recruit and activate TANK-binding kinase
1 (TBK1) and interferon regulatory factor 3 (IRF3) through a phosphorylation-dependent
mechanism [80]. STING also activates NF-κB, which together with IRF3, turns on the
transcription of type I interferon (IFN) and other cytokines [81], forming the basis for
subsequent inflammatory responses.

Toll-like receptor 9 (TLR9) is a cellular DNA receptor of the innate immune system.
It plays a key role in the immune inflammatory response [82,83]. TLR9 is expressed as a
homodimeric complex on the inner surface of the endosomal membrane. TLR9 is activated
by unmethylated CpG sequences that are present in DNA molecules, including mtDNA;
it binds specifically to the N-terminus of the C-shaped leucine-rich repeat region of TLR9
through mitogen-activated protein kinase (MAPK). The NF-κB pathway of activated B cells
interacts with the MyD88 adaptor protein, leading to the transcription of inflammatory
cytokines, such as tumor necrosis factor-α (TNF-α), IL-6 and IL-12, thereby activating the
inflammatory response [83,84].

As an important component of innate immunity, the NLRP3 inflammasome plays
an important role in the body’s immune response to disease occurrence [85]. NLRP3 can
be bound by oxidized mtDNA that is released during apoptosis [86]. Although the exact
mechanism is unclear, evidence has suggested that mtDNA is essential for NLRP3 signaling.
For example, autophagy that eliminates damaged mitochondria prevents inflammasome
activation [87]; drugs that inhibit mtDNA synthesis also inhibit NLRP3 inflammasome
activation [86]. The reintroduction of oxidized DNA into macrophages restores the inhibi-
tion of mtDNA synthesis NLRP3 activation [88]. The formation of oligomerized VDAC1
is associated with mtDNA [32,33]. cGAS-STING signaling mediates the oxidization of
mtDNA that binds with cytosolic NLRP3, in which inflammasome activators stimulate
calcium uptake to open mitochondrial permeability transition pores (mPTP) and trigger
VDAC1 oligomerization [33].

AIM2 is a type of innate immune sensor that detects altered or misplaced DNA
molecules, such as damaged DNA and DNA that is abnormally present in the cytoplasmic
compartment [89–92]. After binding to DNA, AIM2 assembles a multiprotein innate im-
mune complex called the inflammasome, which can lead to the activation of inflammatory
caspases, resulting in the maturation and secretion of cytokines IL-1β and IL-18. AIM2
can also trigger pyroptosis, a pro-inflammatory form of cell death [90]. Recent studies
have shown that the detection of self-DNA by AIM2 is an important factor in diseases that
are associated with disturbances in cellular homeostasis [90,92]. Taken together, targeting
VDAC1 channels in order to reduce apoptosis and mitochondrial oxidative stress may
provide new solutions for treating inflammatory diseases.

3. Inflammation and VDAC1 Mediates Mitochondrial Ca2+ Transportation

Mitochondrial Ca2+ uptake and release play a key role in cellular physiology by regulat-
ing intracellular Ca2+ signaling, energy metabolism and cell death [93]. The transportation
of Ca2+ across the inner or outer mitochondrial membranes (IMM, OMM) is mainly medi-
ated by several proteins, including VDAC1, mitochondrial Ca2+ monotransporter (MCU)
and Na+-dependent mitochondrial Ca2+ efflux transporter (NCLX) [94,95].

VDAC1 was shown to be highly permeable to Ca2+, and contains a binding site for
ruthenium red, thereby inhibiting channel opening [96,97]. VDAC1 may be a key com-
ponent of the mitochondrial Ca2+ homeostatic mechanism, enhancing the Ca2+ response
through different mechanisms. VDAC1 acts as a large conductance channel that allows
for the rapid diffusion of Ca2+ across the OMM, thereby allowing the exposure of low-
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affinity single transporters in the inner membrane to the high Ca2+ microdomains that are
generated by the opening of the endoplasmic reticulum (ER)-Ca2+ channel [96,97].

Moreover, VDAC1 has been proposed to be part of a larger complex of members,
including the adenine nucleotide transporter, cyclophilin D, peripheral benzodiazepine
receptors and Bcl-2 family members [98], which can interact with the ER. The structural
components interact with each other, and thus become part of the molecular mechanism
of mitochondrial docking with Ca2+. VDAC1 is the major permeation pathway for Ca2+

across the OMM, and VDAC1 mediates Ca2+ transport through the OMM to the IMM space.
It can also facilitate Ca2+ transport from the inner mitochondrial membrane space (IMS)
into the cytoplasm [94] (Figure 3A).

Ca2+ is an important regulatory point of barrier function and inflammation. Ca2+

influx is involved in many steps of the inflammatory cascade, including leukocyte rolling,
arrest, adhesion, and ultimately, transendothelial migration, etc. [99]. Ca2+ is involved in
lymphocytic responses to foreign antigens, and inositol triphosphates (InsP3) are generated
as a result of foreign molecules binding to antigen receptors and stimulating Ca2+ release
from internal storage [100]. Once these stores are emptied, store-operated Ca2+ channels
(SOCs) are activated, allowing lymphocytes to maintain a long-term increase in Ca2+; this
usually occurs in the form of a series of regular Ca2+ oscillations that activate nuclear
factor of activated T cells (NF-AT) [100]. Studies have shown that increased mitochondrial
calcium levels promote the activation of CD4 T cells [101,102]. Immunosuppressants,
such as cyclosporine, function by inhibiting Ca2+-dependent activation of NF-AT; this also
emphasizes the importance of Ca2+ signaling in immune cell activation.

3.1. Neutrophils

Neutrophils are the most abundant type of white blood cells, and are the first re-
sponders to inflammatory stimuli, such as bacterial infection, or tissue damage medium
caused by polarization and migration of mediators such as formyl-Met-Leu-Phe (fMLP)
and IL-8 [103,104], whose dysfunction often leads to severe infections and inflammatory
autoimmune diseases.

In neutrophils, the cytoplasmic free calcium concentration is an important determinant
of cell viability, and is a marker of neutrophil activation; it is closely related to a range
of neutrophil functions [105]. Rapid cell spreading in neutrophils is induced by Ca2+

signaling [106]; Ca2+ influx activates cytoplasmic calpain, which plays an important role in
regulating neutrophil polarization, and in directing their migration toward chemotactic
stimuli [103]. The entry of extracellular Ca2+ into neutrophils affects multiple functions,
including phagocytosis, ROS production, vesicle secretion and degranulation, β2-integrin
activation, and cytoskeletal rearrangement that leads to polarization and migration; these
activities play a key role in the occurrence and development of the neutrophil inflammatory
response [107,108] (Figure 3B).

3.2. Macrophages

Ultrasound, combined with endogenous protoporphyrin IX derived from 5-aminolevulinic
acid (ALA-SDT), induce the apoptosis of macrophages [109]. The inhibition of VDAC1
by 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) was found to prevent ALA-SDT-
induced cell apoptosis in THP-1 macrophages [109]. The VDAC1 of the mycobacterium
avium phagosome is associated with bacterial survival and lipid export in macrophages [110].
Macrophages are an important part of the innate immune system; their main function is
to phagocytose and digest cell debris and pathogens, and they play an important role in
inflammatory responses [111,112].

Ca2+ is an essential second messenger in phagocytosis; indeed, elevated cytosolic
calcium concentrations are required for efficient phagocytosis and maturation of phago-
somes [113]; blocking MCU inhibits macrophage phagocytosis [114]. Studies have shown
that Ca2+ influx into macrophages is the trigger for macrophage activation, and that in-
creased Ca2+ concentrations are associated with macrophage differentiation [115]. An influx
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of extracellular Ca2+ is required to polarize macrophages toward the pro-inflammatory
M1 phenotype, while decreasing Ca2+ leads to anti-inflammatory M2 switching [114,116]
(Figure 3B).
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lipid metabolism. VDAC1 transports Ca2+ between the mitochondria and cytoplasm to maintain
calcium homeostasis. In the energy generation system, the VDAC1 pore maintains substrates,
metabolites, biomolecules, etc., in a balanced manner to sustain salutogenesis. (B) Ca2+ signaling
affects the inflammatory responses of neutrophils, macrophages, dendritic cells and CD4+ T cells.
(C) Inflammatory responses of macrophages, dendritic cells and CD4+ T cells are promoted by
glycolysis/TCA cycle energy generation pathways. Abbreviations: VDAC1: voltage-dependent
anion channel 1; TRPML1: also known as MCOLN1, mucolipin TRP cation channel 1; GRP75:
glucose-regulated protein 75; IP3R: inositol 1,4,5-trisphosphate receptor; DJ1: deglycase DJ-1, also
known as Parkinson disease protein 7, is encoded by the PARK7 gene in human; RyR2: ryanodine
receptor 2; CPT1a: carnitine palmitoyltransferase 1A; ACSL: long-chain acyl-CoA synthase; TCA
cycle: tricarboxylic acid cycle; HK: hexokinase; ATP: adenosine triphosphate; ADP: adenosine
diphosphate; NADH: nicotinamide adenine dinucleotide hydrogen; PEP: phosphoenolpyruvate; Th:
T helper.

3.3. Dendritic Cells

Dendritic cells (DCs) are the most powerful antigen-presenting cells in the body. DCs
uptake, process and present antigens efficiently that are crucial for initiating T cell responses.
They play a central role in initiating, regulating and maintaining immune responses [117].

Ca2+ signaling plays a key role in the function of DCs. Migration of DCs to secondary
lymphoid organs is indispensable for subsequent T helper cell-mediated adaptive immunity.
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It has been shown that chemokine-induced DC migration is Ca2+-dependent [118]. Ca2+

is involved in the regulation of chemokine receptor expression, cell swelling, cytoskeletal
changes and amphipod formation activities; DC migration relies tightly on the cytosolic
Ca2+ concentration [119]. Activated DCs rapidly up-regulate chemokine receptor 7 (CCR7)
expression, and acquire the ability to migrate into afferent lymphatics and drain lymph
nodes [120]. CCR7 is a G protein-coupled receptor [121] that regulates DC chemotaxis,
survival, migration velocity, cellularity and endocytosis; furthermore, its activation is
accomplished by inducing the mobilization of intracellular calcium stores through the
inositol 1,4,5-triphosphate (IP3) pathway [122,123]. Ca2+ plays an important role in the
inflammatory response because it regulates the function of DCs in various links (Figure 3B).

VDAC1 can regulate mitochondrial function by interacting with a variety of organelles
with Ca2+ channels, cytoplasmic proteins and OMM proteins. VDAC1 promotes efficient
Ca2+ transfer to mitochondria by forming multiprotein complexes with Ca2+ channels in
other organelles, such as the IP3R-VDAC1-GRP75-DJ-1 complex on the ER, RyR2-VDAC1
on the sarcoplasmic reticulum and TRPML1-VDAC1 on the lysosome [124]. VDAC1 can not
only transport solutes up to 5 kDa into mitochondria, it can also mediate the transportation
of various substances, including Ca2+, nucleotides and metabolites (pyruvate, malate,
succinate, NADH/NAD, heme and cholesterol) [76,125,126]. In addition, VDAC1 can also
mediate the transport of Ca2+ into the mitochondrial IMS through the OMM, and can
also promote its transport from the IMS into the cytoplasm. Various functional properties
are indirectly involved in the inflammatory response, so it is speculated that VDAC1 can
become a potential target for the treatment of inflammation.

4. Inflammatory Diseases and VDAC1 in Energy Metabolism

Evidence suggests that altered cellular metabolism exacerbates and determines the in-
flammatory state of cells. Cellular metabolism constitutes a complex network of thousands
of different metabolites and enzymes that are necessary for the production of nucleic acids,
proteins, lipids, carbohydrates, as well as cellular energy [127–129]. Metabolism plays a key
role in maintaining homeostasis, proliferation and cellular activation. Studies have shown
that the cellular function of generating energy in the form of ATP is critical for both resting
and activated cells, and is governed by tight coordination of the integrated metabolic path-
way of glycolysis, the tricarboxylic acid (TCA) cycle and the pentose-phosphate pathway
(PPP) [129–131].

VDAC1 regulates metabolites and molecular transportation. Metabolites and ions
pass through the OMM via VDAC1 into the mitochondrial matrix, or are released into the
cytoplasm [126]. VDAC1 affects metabolism by mediating the transport of metabolites such
as pyruvate, propionate, succinate, adenosine triphosphate (ATP) and adenosine diphos-
phate (ADP), as well as nicotinamide adenine dinucleotide hydrogen (NAD+/NADH),
across the mitochondria. ATP and NADP are mainly exported into the cytoplasm [126].
VDAC1 also regulates the TCA cycle by affecting intramitochondrial Ca2+ [132–134]. At
the same time, Ca2+ can also affect the activity of mitochondrial enzymes that are located
on the outer surface of the IMM, such as glycerophosphate dehydrogenase, by activating
the aspartate carrier to influence the malate-aspartate shuttle as well as glutamate/malate-
dependent respiration [135–137] (Figure 3A). Studies have shown that shutting down [138]
or down-regulating VDAC1 expression reduces the exchange of metabolites between the
mitochondria and the rest of the cell; this results in inhibited cell growth [76,97]. Since
VDAC1 is a key protein on the outer mitochondrial membrane that contributes to metabo-
lite and ion transportation, it is better to know what could happen if it was knocked out.
Microarray analysis of VDAC1-null strain indicated that the expression of mitochondrial
genes was completely reprogrammed; this was accompanied by a significant decrease in
mtDNA. In order to survive, the mitochondrial metabolism became completely re-arranged,
as the TCA cycle turned on the backup pattern to overcome this dysfunction [139]. No-
tably, VDAC1 inhibitors such as VBIT-4 did not detect toxicities, in vitro and in vivo [70],
suggesting that it could be promoted to clinical trials for further investigation. Today,
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increasing evidence supports the immunomodulatory properties of metabolites released
from glycolysis and the TCA cycle during inflammation [140]. Phosphoenolpyruvate (PEP),
lactic acid, succinic acid, citric acid, etc., that are formed during metabolism have been
shown to affect the inflammatory state of cells [140–142].

4.1. TCA Cycle

Metabolites in the process of energy metabolism can participate in inflammatory re-
sponses through different pathways, affecting the secretion of cytokines, the production
of pro-inflammatory mediators, and the activation and differentiation of immune cells.
VDAC1 plays an important role in energy metabolism, and participates in the inflammatory
response by directly mediating the transport of metabolites during respiration and regu-
lating Ca2+ as well as the activity of respiration-related enzymes (Figure 3A,C). Succinic
acid is one of the metabolites that accumulates from the disturbance of the TCA cycle
and the breakdown of hyperglutamine. Succinate accumulation leads to macrophage M1
polarization through the direct inhibition of proline hydrolase, prompting HIF-1α and
IL-1β secretion [143,144]; it acts as an inflammatory stimulator in an autocrine-dependent
manner [143,145]. Lipopolysaccharide (LPS)-induced succinate promotes IL-1β expression
via HIF-1α signaling [144,146]. Extracellular succinate induces a pro-inflammatory re-
sponse in diverse immune cells, increasing the migration and secretion of pro-inflammatory
cytokines TNF-α and IL-1β in dendritic cells and macrophages [144].

Citric acid accumulates in LPS-stimulated macrophages [144,147,148]; autocrine type I
IFN-driven IL-10 suppresses the activity of isocitrate dehydrogenase (IDH) and LPS-treated
macrophages to promote this process [147]. Citrate is generated during the tricarboxylic
acid reaction and, once in the cytoplasm, it is metabolized by ATP-citrate lyase (ACLY) to
acetyl-CoA and oxaloacetate, which are precursors for lipid synthesis, ROS and NO [149].
Citrate affects ICAM-1 and cytokine (e.g., IL-6), contributing to the regulation of endothelial
inflammation [150]; it acts as an anti-inflammatory factor [151,152]. Studies have suggested
that reduced cytoplasmic citrate levels, due to a depletion in circulating immune complexes
(CICs), reduces ROS, NO and prostaglandin production. These changes may impair the
pro-inflammatory differentiation of cells, underscoring the role of certain metabolites in the
inflammatory response [140,149].

4.2. Glycolysis

The glycolytic pathway is critical for the activation, differentiation and function of im-
mune cells (Figure 3C). Canonically activated macrophages display pro-inflammatory prop-
erties that are primarily driven by glycolysis [153]. The metabolic switch in macrophages is
controlled by glycerol-3-phosphate dehydrogenase 2 (GPD2), a key component of the glyc-
erol phosphate shuttle that mediates the transport of electrons to mitochondria [140,154].
Phosphoglycerate dehydrogenase, the rate-limiting enzyme for de novo serine biosynthesis
of glucose, is also required for macrophage M2 polarization, and is critical for macrophage
function [155]. The metabolic response of T cells is similar to that of macrophages; upon
activation, effectors CD4+ and CD8+ T cells shift their metabolic program toward glycolysis
for faster production of ATP to meet energy demands. Studies have shown that inhibition
of glycolysis with 2-deoxyglucose (2-DG) impairs the differentiation of T helper type 1
(Th1) and Th2 cells [156]. In addition, glycolytic enzymes can act as post-transcriptional
regulators of inflammatory genes, and the classical glycolytic enzyme GAPDH can bind to
mRNA. In CD4+ T cells, GAPDH inhibits their translation by binding to IFN-γ, c-Myc, gran-
ulocyte macrophage colony-stimulating factor (GM-CSF) and IL-2 mRNA at the AU-rich
region [140,157,158].

Glycolysis is essential for the maturation and function of both cDCs and GM-DCs
(GM-CSF-induced DCs); it is critical for DC activation. With 2-DG, a glycolytic inhibitor
that inhibits hexokinase (HK), treatment impairs GM-DC and conventional DCs costim-
ulatory marker expression and IL-12 production, as well as their primary function on T
cells [159,160]. Glycolytic activity is critical for DC migration; glucose-deprived GM-DCs
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show decreased mobility, loss of rounded morphology, increased dendrites and impaired
oligomerization of CCR7, a chemotactic driver that drives DC migration to lymph nodes
factor receptors [161]. The glycogen phosphorylase inhibitor CP91149 disrupts glycogen
metabolism and significantly impairs conventional DC maturation and function, especially
at the earliest stages of GM-DC activation. Disruption of the glucose-pyruvate pathway sig-
nificantly impairs DC maturation, costimulatory molecule up-regulation, cytokine secretion
and T-cell stimulatory capacity [161,162].

Phosphoenolpyruvate (PEP) is produced by enolase-1 during glycolysis, and accu-
mulates in T cells. The accumulation of PEP has a similar pro-inflammatory effect on
macrophages, promoting M1 poles, which increases the expression of pro-inflammatory
cytokines [140,163]. PEP is associated with inflammation via its impact on Ca2+ [140].
PEP can inhibit the ER calcium channel to suppress Ca2+ flux to the ER [140], resulting in
the increased cytoplasmic Ca2+ promoting the activation of nuclear factor of activated T
cells [140,164]. Lactic acid, the final product of glycolysis, can display signaling properties
during inflammation [165]. During this process, lactate suppresses immune responses by
impairing the shift in metabolic reorganization to a pro-inflammatory phenotype and block-
ing pro-inflammatory signaling pathways in monocytes, macrophages and DCs [166,167].
The accumulation of lactate in DCs drives the switch to an anti-inflammatory phenotype by
increasing IL-10 [168]. However, lactate-rich environments have been reported to enhance
Th17 responses in macrophages [169]. Lactate can promote Th17 responses and activate
NF-κB pro-inflammatory signaling of macrophages [169,170]. Lactate is able to enter cells,
stimulate the NF-κB/IL-8 pathway and induce ROS production [171]. Lactate plays a key
role in the regulating macrophage polarization, modification of histones and the inflam-
matory response [172,173]; it also enhances IFN-γ expression and the differentiation of T
helper 1 cell [174]. The various roles of lactate in inflammatory processes have been recently
documented [175].

The initial and rate-limiting steps of glycolysis are mainly catalyzed by HK1, most
of which is bound to the OMM, mainly through mitochondria formed by VDAC1 and
adenine nucleotide translocator (ANT) intermembrane contact sites for transport [176]. It
has also been shown that Hexokinase-2 (HK2) binds to VDAC1 on the OMM to facilitate
the preferential entry of ATP into HK2 for glycolysis [177]. The binding of HK2 with
mitochondrial VDAC1 can be inhibited by chrysin, resulting in decreased glucose uptake
and lactate production [178]. VDAC1 is directly involved in the regulation of the glycolytic
pathway; it affects the activation, differentiation and migration of various immune cells
such as macrophages, DCs, T cells, etc., and affects the production, migration, and release
of various cytokines and pro-inflammatory mediators.

VDAC1 can affect mitochondrial respiration, as a result of its important role in con-
trolling the transportation of substances and metabolites. The intermediates in the Krebs
cycle have a close relation with the inflammation process [127]. The metabolism of PEP,
lactic acid, succinic acid, citric acid, etc., plays an important role in the occurrence and
development of inflammation. In conclusion, VDAC1 could become a new therapeutic
target for inflammation, and this necessitates further study.

5. Inflammatory Diseases and VDAC1 in Lipid Metabolism

Lipid metabolism is an important and complex biochemical reaction in the body; it
is the process of digestion, absorption and decomposition of fat in the body through the
help of various related enzymes, and is of great significance to vital activities [179–182].
Diseases caused by abnormal fat metabolism have become common, such as non-alcoholic
steatohepatitis (NASH), hyperlipidemia, cardiovascular and cerebrovascular diseases, etc.

VDAC1 is involved in cholesterol transport, and is generally considered to be part of
a complex that mediates fatty acid transport through the OMM [75,125,183]. Meanwhile,
VDAC1 also serves as an anchoring site for long-chain acyl-CoA synthase (ACSL), which
is associated with the outer surface of the OMM, and for carnitine palmitoyltransferase
1a (CPT1a), which faces the intermembrane space [183] (Figure 3A). ACSL catalyzes the
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synthesis of fatty acyl-CoA in vivo, which is the first reaction in the human body to utilize
fatty acids; meanwhile, CPT1a is involved in the process of transporting long-chain fatty
acids into the mitochondria so that fatty acids can be broken down to generate usable
energy for cells. It has been reported that CPT1a, ACSL and VDAC1 can form a complex,
and that the long-chain fatty acyl-CoA synthesized by ACSL is transferred from the OMM
to the intermembrane space through VDAC1; furthermore, CPT1a converts acyl-CoA into
long-chain fatty acylcarnitine [183], followed by a series of subsequent oxidation reactions.

It has been found that the phosphorylation state of VDAC1 mediated by glycogen
synthase kinase 3 (GSK3) can control the permeability of the OMM [184]. It has been
observed that a loss of VDAC1 may cause mitochondria to stop oxidizing fatty acids, and
VDAC1 inhibitors can inhibit palmitate oxidation [185,186]. In addition, the VDAC1-based
peptide, R-Tf-D-LP4, can stimulate catabolic pathways that are involved in promoting
fatty acid transfer to the mitochondria, fatty acid oxidation and increasing the expressions
of enzymes and factors that are associated with fatty acid transport to the mitochondria,
thereby enhancing β-oxidation and production of energy [185]. There are experimental
results that show that R-Tf-D-LP4 significantly reduces pathophysiological features, such
as hepatocyte ballooning, and inflammation and liver fibrosis in the HFD-32/STAM mouse
model that is associated with steatohepatitis and/or NASH; meanwhile, this peptide also
reduces the expression of inflammatory macrophages and cytokines (IL-1β and IL-6) in
the liver of HFD-32-fed mice [185]. Dysfunction or deletion of VDAC1 will lead to fat
deposition and abnormal lipid metabolism, increasing inflammatory macrophages and the
expression of cytokines (IL-1β and IL-6). Heightened expression of IL-6 increases autocrine
IL-4, which enhances Th2-type immune responses through automated feedback loops,
playing an important role in inflammation [185].

These findings indicate that VDAC1, as a key factor in mitochondrial lipid metabolism,
can regulate the oxidative decomposition of fat. Abnormal mitochondrial lipid metabolism
caused by its dysfunction will lead to the blocking of oxidative reaction, abnormal modifi-
cation and localization of lipoproteins, etc., which may be related to subsequent causes of
the inflammatory response, and to inflammation-related diseases.

6. Inflammatory Diseases Pathogenesis and VDAC1 in Mitophagy

Mitophagy maintains the functional integrity of the mitochondrial network and cel-
lular homeostasis by selectively sequestering and degrading damaged or incomplete mi-
tochondria [187]. As previously described, VDAC1 is associated with inflammation via
various signaling pathways. However, little research has focused on whether and how
VDAC1 is involved in inflammatory diseases pathogenesis via mitophagy. In this section,
we discuss two major questions. We hope this will lead to more investigations into how
VDAC1 contributes to inflammatory diseases pathogenesis via mitophagy. (1) What po-
tential signaling does VDAC1 use to regulate inflammation via mitophagy? (2) VDAC1
controls mtDNA release and promotes inflammation; how does mitophagy modulate
mtDNA levels?

6.1. Mitophagy Regulates Inflammation via VDAC1

Mitophagy plays a key role in the regulation of inflammatory signaling, and the
process of mitophagy limits inflammatory cytokines secretion [36,37,188–190] (Figure 4).

The PTEN-induced putative kinase 1 (PINK1) and the RING family ubiquitin ligase
Parkin were found to be involved in mitophagy [191–194]. This indicates that induced
mitophagy can be accomplished in cells that overexpress Parkin or overexpress PINK1.
PINK1/Parkin acts as key regulator of mitophagy, and is vital in controlling infection
and the inflammatory response [195]. The interaction of two Parkin domains, RING1 and
ubiquitin-like (UBL), affects its activity. UBL binding with RING1 results in the inactive
state of Parkin; PINK1 phosphorylates UBL-Ser65, leading to the activation of Parkin to
promote substrate ubiquitination, with VDAC1 included [196].
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Figure 4. VDAC1, PINK1/Parkin signaling and mitophagy. (A) PINK1/Parkin targets damaged
mitochondria, ubiquitinates VDAC1, and ultimately degrades damaged mitochondria by promoting
mitophagy. (B) Mitophagy modulates NLRP3, MAVS and mtDNA release, affecting the immune
response. NLRP3 activates caspase-1 to promote IL-1β/IL-18 maturation. MAVS enhance IFN-α/β
expression. Meanwhile, mitophagy suppresses NLRP3, MAVS and mtDNA release, which results in
reduced cytokines release. Additionally, mitophagy can also promote mtDNA release, which affects
cytokines expression. Abbreviations: IL: interleukin; IFN: interferon; LC3: microtubule-associated
proteins 1A/1B light chain 3; MAVS: mitochondrial antiviral signaling protein; NLRP3: nucleotide-
binding domain and leucine-rich repeat (LRR) containing P3; PINK1: PTEN-induced putative kinase
1;; Ub: ubiquitin; VDAC1: voltage-dependent anion channel 1.

Studies have demonstrated that Parkin interacts with VDACs, and that VDAC1 is
the target of Parkin-mediated Lys27 polyubiquitination and mitochondrial phagocyto-
sis [27,197–199]. VDACs are effective in helping Parkin identify defective mitochon-
dria, and assist in the subsequent mitochondrial phagocytosis. VDAC1 is necessary for
PINK1/Parkin to target damaged mitochondria [197]. Partial silencing of VDAC1 resulted
in significantly reduced Parkin translocation from the cytoplasm to damaged mitochondria,
while also significantly preventing mitochondrial clearance. Notably, retransfection of
flag-tagged VDAC1 significantly restored Parkin mitochondrial translocation and clear-
ance [197]. Parkin ubiquitinates VDAC1, and ultimately selectively degrades damaged
mitochondria by promoting mitophagy [199]. Notably, the ubiquitylation of VDAC1 was
observed with enhanced expression of Parkin instead of endogenous Parkin [197]. It has
been shown that Parkin’s targeting of defective mitochondria is impaired in the absence of
both VDACs, but that it can be rescued by expressing VDAC1 or VDAC3 in these cells [199].
These pieces of evidence confirm that VDAC1 is important for PINK1/Parkin-involved
mitophagy (Figure 4A). VDAC1 channels and the PINK1 pathway are closely related to im-
paired mitophagy-associated inflammation. Mitophagic stimulation could reverse memory
impairment via PINK1 signaling in Alzheimer’s disease models [200].

The anti-inflammatory mechanism of mitophagy may be achieved by inhibiting the
excess production of IL-1β and IL-18 [201]. Viruses can exploit the inhibitory effect of
mitophagy on IL-1β and IL-18 secretion to evade pathogen clearance [202]. Type I IFNs
are a group of pleiotropic cytokines, including IFN-α and IFN-β, that promote antigen
presentation, NK cell function and lymphocytic responses [203]. Mitophagy could inhibit
type I IFN synthesis [204] (Figure 4B). Studies have shown that viruses can utilize a
unique mitophagic pathway to attenuate type I IFN responses to viral replication [205–207].
Mitochondrial antiviral signaling (MAVS) plays an important role in the regulation of
mitochondrial homeostasis and the native immune response. Mitophagy controls MAVS
that mediates antiviral signaling [208]. MAVS activates NF-κB and IRF3 signaling in
response to viral infection, resulting in enhanced type I IFN levels [208,209]. Immunity
related GTPase M (IRGM), an autoimmunity gene, contributes to regulating the interferon
response by attenuating cGAS-STING and RIG-I-MAVS signaling [210]. Notably, knockout
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of IRGM results in mitophagic deficiency as well [210]. Viral glycoprotein can induce
mitophagy, causing inhibition of the IFN response via promoting MAVS degradation [211].
VDAC1 is one of the vital IL-1β regulatory genes [212]. The hypo-methylation of VDAC1
promoter leads to enhanced VDAC1 levels, resulting in overexpression of IL-1β [212].
Inhibition of VDAC1 leads to an attenuation in TNF-α induced VCAM-1 expression [213].
Attenuation in the activity of the VDAC1 channel would suppress IL-33 release [214]. IL-33
promotes ROS levels, and effects mitophagy by activating AMPK signaling [215]. The
oligomerization of VDAC1 is associated with the interaction with mtDNA [32,33]. Released
mtDNA could trigger a type I IFN response [32]; inhibition of VDAC1 oligomerization
results in decreased mtDNA release and type I IFN signaling [32].

Mitophagy has been shown to have anti-inflammatory effects by down-regulating
inflammasomes [216]. Increasing evidence suggests that the inhibitory role of mitophagy
in NLRP3 inflammasome activation is attributable to impaired mitophagy [88,217]; previ-
ous controlled experiments found increased IL-1β secretion in autophagic mitochondria-
deficient macrophages, accompanied by accumulations of damaged mitochondria, upon
stimulation of various NLRP3 activators [88]. A recent study found that mitophagy can di-
rectly target NLRP3 inflammasome components and IL-1β for lysosomal degradation [218].
The activation of NLRP3 inflammasomes and type I IFN signaling are highly associated
with VDAC1 channels [33]. A natural product, oleanolic acid, shows anti-inflammatory
effects by suppressing NLRP3 inflammasomes; it does so by decreasing VDAC1 expression
and stimulating the overproduction of oxygen species [219].

Taken together, VDAC1 could be in the principal position to affect the mitophagic
response to inflammation that results in cytokines release, IL-1β, IL-18, IFN-α, IFN-β, etc.
VDAC1 is the hub of mitophagy, inflammasomes and inflammatory immune responses.

6.2. Mitophagy Modulates mtDNA Levels in Cytoplasm

The mtDNA released into the cytoplasm may lead to the occurrence of inflammatory
responses through the activation of TLR9, NLRP3 inflammasomes, AIM2 inflammasomes
and the cGAS-STING pathway [65,220], and promoting IL-1β production [221]. mtDNA
also mediates inflammatory responses by activating IL-1 receptors, promoting neutrophil
migration and macrophage responses, promoting T cell differentiation and function, as well
as NK cell recruitment [188,222–224]. Mitophagy is the key mechanism that inhibits mtDNA
release [225]. Defective mitophagy enhances cytoplasmic mtDNA levels. Aging results
from mitochondrial injury and impaired mitophagic activation in macrophages. Increased
mtDNA in the cytoplasm promotes STING activation of aged macrophages. The mitophagy
mediated mtDNA-cGAS-STING pathway is involved in different sterile inflammatory
responses [226] and mitochondrial diseases [227]. TNF impacts mitochondrial function,
and blocks mitophagy, and results in mtDNA release and the cGAS-STING-dependent
interferon responses of inflammatory arthritis [228]. The mtDNA is a consequence of the
impaired mitophagy [34,229–231] of PRKN/PINK1 parkinsonism [229], which is associated
with high levels of cytokine IL-6 [229,232]. In the absence of mitophagy, mtDNA release
activates the NF-kB pathway via TLR9, resulting in enhanced transcription of multiple
inflammatory cytokines, including TNF-α and IL-6 [220]. Hepatocyte-specific XBP1 knock-
out mice were found to have impaired mitophagy that resulted from increased mtDNA
release via the cGAS-STING pathway of macrophages in the thioacetamide-induced acute
liver injury model [233]. The same signaling mediates aging macrophages, with defective
mitophagy enhancing the mtDNA cytosolic release of liver sterile inflammation [226]. Ad-
ditionally, impaired mitochondrial integrity, mitophagy, results in accumulating mtDNA
in the cytosol of murine cardiac anomalies models via cGAS-STING-TBK1 signaling [234].
Neutrophils release oxidized mtDNA to drive type I IFN of human systemic lupus ery-
thematosus (SLE) [235]. Lack of proper clearance of neutrophil-released mtDNA may be
the key pathogenesis of SLE [235]. VDAC1 is vital in mtDNA transportation. By targeting
VDAC1-mtDNA, a novel therapeutic approach to human lupus could be uncovered.
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Cytosolic mtDNA triggers inflammatory responses [236]. Mitophagy results in enhanced
cytoplasmic mtDNA, which contributes to inflammation that is associated with lung in-
jury through the TLR9-MyD88-NF-κB pathway [231,237]. These indications from targeting
mitophagy-mtDNA-related signaling could provide novel and promising therapeutic strategies.

The process of mitophagy may limit the secretion of inflammatory factors that directly
regulate mitochondrial antigen presentation and immune cell homeostasis [188] (Figure 4B).
All the evidence indicates that mitophagy inhibits the occurrence and development of
inflammatory responses by affecting the secretion of inflammatory cytokines, in addition
to the maturation, differentiation and function of immune cells. The role of mitophagy
in the occurrence and development of inflammation and autoimmune diseases cannot
be ignored. PINK1-PRKN/PARK2-mediated mitophagy is the most extensively studied
Ub-dependent pathway [188]. The interaction between VDAC1 and Parkin is important
for PINK1/Parkin-directed mitophagy. VDAC1 regulates the release of inflammatory cy-
tokines that result from mitophagy, by affecting this pathway; moreover, the activation and
differentiation of immune cells play an important role in inflammation and autoimmune
diseases. Recent studies found that this autophagic pathway may be closely related to
many diseases, such as primary biliary cirrhosis (PBC) [238], SLE [239], asthma [240,241],
including eosinophilic airway inflammation [242,243], airway hyperresponsiveness, and
airway remodeling [241,244–246]. The regulation of this pathway involving VDAC1 for
the treatment of inflammation-related diseases is of great clinical significance and deserves
further exploration and research.

7. Summary and Conclusions, Current Clinical Conditions and Future Perspectives

Mitochondria are fundamental organelles that execute and coordinate various metabolic
processes in cells. Mitochondria are key organelles that are associated with cellular func-
tions, and well-functioning mitochondria are critical to maintaining tissue homeosta-
sis [247]. Mitochondrial malfunction is a sign of oxidative stress, inflammation, aging
and chronic degenerative diseases [247–249]. VDAC1 is an important regulator of mi-
tochondrial function, and acts as a mitochondrial gatekeeper that is responsible for cell
fate [126]. As a multifunctional protein channel, VDAC1 can coordinate the transport of
proteins and metabolites, and regulates apoptosis as well as other cellular stress-related
processes [126,250]. In addition, VDAC1 can also participate in the regulation of inflamma-
tion by affecting the respiratory chain and promoting the expression of cytokines. VDAC1
is also involved in the production and metabolism of mitochondrial energy, regulating
mitochondrial lipid metabolism and regulating mitophagy, all of which indicate that it is a
promising target for novel therapeutic strategies [29,126].

Cutting-edge research confirms that VDAC is essential for the apoptotic “Find me
signaling” pathway that results from the failure of apoptotic cell clearance, and leads
to the pathogenesis of cystic fibrosis, followed by sterile inflammation [251]. Ulcerative
colitis (UC) may be promoted by VDAC1 overexpression, and novel interacting targets
for the treatment of UC based on VDAC1 are being developed for inflammatory and/or
autoimmune diseases [74]. In addition, research suggests that VDAC1 is also related
to cardiovascular and cerebrovascular diseases [252]. Furthermore, VDAC1 is widely
involved in cancer [28,253], neurodegenerative diseases [254,255], diabetes [72,256], kidney
disease [257,258], aging [259] and other areas of study. These all suggest that VDAC1 is a
reasonable target to develop the next generation of therapeutic drugs.

In recent years, we have witnessed a considerable accumulation of knowledge about
the function of VDACs. Biochemical, molecular and biophysical approaches have advanced
our understanding of the structure-function relationships of VDAC, and have uncovered
a diversity of regulatory mechanisms that control VDAC1 function. The high-resolution
structure of recombinant VDAC1 has been determined, and VDAC1 β-strands have been
identified; dimerization sites, Ile-27, Leu-29, Thr-51 and Leu-227 have been found to be
involved in VDAC1 oligomerization [260]. Deep insights into mechanism regulation still
necessitate further investigation.
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mtDNA inflammation-related clinical trials (NCT03929458, NCT04078035 and NCT040
45223) were completed, but no results were released; other trials are still ongoing (NCT03077
672, NCT05441787, NCT03938909 and NCT04334499). There is only one mitophagy in-
flammation clinical trial (NCT05040503), which is still ongoing. VDA-1102 was designed
to modulate VDAC/HK2, which effects glycolysis and mitochondrial function in cancer and
activated immune cells. VDA-1102-related clinical trials have been conducted against solid tumors
by VidacPharma, and no serious adverse events were found from a Phase II B (NCT 03538951)
study (http://www.vidacpharma.com/clinical-trials, accessed on 20 September 2022).

In conclusion, VDAC1 is closely associated with mtDNA and cytokines release, with
the former being a messenger of impaired mitophagy. Mitophagy regulates inflammation
via VDAC1. VDAC1 plays a principal and pivotal role in maintaining mitochondrial
homeostasis and inflammation-related immune responses. Further investigation of VDAC1
and its related pathways may provide promising therapeutic strategies against multiple
inflammation-associated diseases. We highly expect VDAC1 to become a therapeutic target,
and we hope our research leads to novel treatment strategies and breakthroughs for many
diseases via VDAC1.
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