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ABSTRACT Accurate information on haplotypes and diplotypes (haplotype pairs) is required for
population-genetic analyses; however, microarrays do not provide data on a haplotype or diplotype at
a copy number variation (CNV) locus; they only provide data on the total number of copies over a diplotype
or an unphased sequence genotype (e.g., AAB, unlike AB of single nucleotide polymorphism). Moreover,
such copy numbers or genotypes are often incorrectly determined when microarray signal intensities de-
rived from different copy numbers or genotypes are not clearly separated due to noise. Here we report an
algorithm to infer CNV haplotypes and individuals’ diplotypes at multiple loci from noisy microarray data,
utilizing the probability that a signal intensity may be derived from different underlying copy numbers or
genotypes. Performing simulation studies based on known diplotypes and an error model obtained from
real microarray data, we demonstrate that this probabilistic approach succeeds in accurate inference (error
rate: 1–2%) from noisy data, whereas previous deterministic approaches failed (error rate: 12–18%). Apply-
ing this algorithm to real microarray data, we estimated haplotype frequencies and diplotypes in 1486 CNV
regions for 100 individuals. Our algorithm will facilitate accurate population-genetic analyses and powerful
disease association studies of CNVs.

KEYWORDS

copy number
variation

EM algorithm
haplotype
inference

phasing

Large-scale studies employing high-throughput experimental technol-
ogies have recently revealed the genome-wide nature of copy number
variations (CNVs) (Conrad et al. 2010; Freeman et al. 2006; Iafrate
et al. 2004; Kato et al. 2010; McCarroll et al. 2008; Redon et al. 2006;
Sebat et al. 2004), which are variations of the number of DNA seg-
ments .1 kilobase in size, and it is estimated that CNVs occupy as
much as 4–6% of the human genome. The importance of CNVs in

phenotypic traits and disease susceptibility has been revealed in their
associations with HIV infection, autoimmunity, autism, schizophre-
nia, and cancer (Merikangas et al. 2009; Sebat 2007; Speleman et al.
2008). Currently, high-throughput experimental technologies for CNVs
cannot provide data on a haplotype or diplotype (haplotype pair) of
CNVs; instead, they provide data on the total number of copies over
a diplotype or an unphased sequence genotype (e.g., AAB at a CNV
locus, where A and B represent alleles) (Conrad and Hurles 2007; Kato
et al. 2008a; Kato et al. 2008b). This unknown state of haplotypes
hinders precise population-genetic analyses such as analyses of allele
frequencies, linkage disequilibrium (LD), and population differenti-
ation, as well as the development of efficient strategies for disease-
association studies (McCarroll and Altshuler 2007).

To obtain information on haplotypes, algorithms and computa-
tional tools have been developed to infer haplotypes from total copy
numbers or unphased sequence genotypes (Kato et al. 2008a; Kato
et al. 2008b; Shindo et al. 2009; Su et al. 2010). In this regard, algo-
rithms using similar procedures have also been developed to infer
haplotypes from the total copy numbers or unphased genotypes
of .2 DNA copies in polyploid chromosomes (Clark et al. 2004;
Neigenfind et al. 2008; Su et al. 2008). These algorithms are based
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on the implicit assumption that total copy numbers or unphased
genotypes are measured with good accuracy. While reasonable for
data from target-specific assays such as quantitative PCR and the
RETINA technique (Hosono et al. 2008), as was previously demon-
strated (Hosono et al. 2009), it is not always true for data from high-
throughput genome-wide platforms such as microarrays. Microarray
data are noisy overall (McCarroll and Altshuler 2007) and replicate
experiments to correct these inaccuracies often difficult to repeat.
Noise in microarrays causes uncertainty in the determination of total
copy numbers or unphased genotypes. For example, when greater
noise is present in a signal intensity deriving from a total copy number
of 1, the observed measurement may get closer to a signal intensity
expected from a total copy number of two rather than from one copy.
Even though there might be a considerable degree of likelihood of the
observed measurement deriving from a single copy, one might discard
this possibility and errantly conclude two copies were present. Since
previous tools cannot handle multiple possibilities with likelihood
values, the use of wrongly determined total copy numbers as the input
would lead to incorrect haplotype inference.

To overcome this problem, we developed an algorithm that
handles such likelihood values for CNV haplotype inference. This
algorithm is designed as a post-process to be performed after a calling
method, such as Birdsuite (Korn et al. 2008), determines the bound-
aries of CNVs and computes the parameters of a probabilistic model
that determines the most probable total copy numbers or unphased
genotypes in its framework. Likelihood values as inputs of our algo-
rithm are given through such a probabilistic model. We implemented
this algorithm in a computational tool called CNVphaserPro (CNV
phasing tool using probabilistic information). This tool can infer hap-
lotypes composed of not only integer copy numbers (ICNs) but also
single nucleotide variations in a CNV (SNVCs) (Kato et al. 2008a) and
SNPs, whose relationship is illustrated in Figure 1. As a by-product,
this tool can also estimate individual’s diplotypes. We performed
simulation studies based on known haplotypes and real microarray
noise, demonstrating that this tool successfully inferred haplotypes
and diplotypes from noisy microarray data, and that the tool even
had an ability to correct total copy numbers and unphased genotypes

that are wrongly determined due to noise. Encouraged by the success
in simulation studies, we applied the tool to real microarray data for
individuals of European descent from Utah (CEU) and obtained the
estimation of haplotype frequencies and individuals’ diplotypes in
1486 CNV regions along the human genome.

MATERIALS AND METHODS

The algorithm
The aim of the algorithm is to estimate the frequencies of haplotypes
from a group of total copy numbers and/or unphased genotypes with
likelihood values for randomly sampled individuals. Here we call a total
copy number the total number of allelic copies over a diplotype (a pair
of haplotypes) at an ICN site. For example, allelic copy number 1 in one
haplotype and allelic copy number 2 in the other haplotype at an ICN
site result in the total copy number of 3. We call an unphased genotype
a nucleotide sequence for which the phase is unknown but the total
number of each allelic nucleotide base over a diplotype at an SNVC site
is known. For example, regarding the unphased genotype AAG at an
SNVC site, the phase is unknown (it may be A in one haplotype and
both A and G in the other haplotype, or both A and A in one haplotype
and G in the other haplotype, or another) but the total numbers of the
alleles A and G are known as two and one, respectively (Figure 1).

For that aim, we combined an algorithm of Kang et al. (Kang et al.
2004) with the algorithms of CNVphaser (Kato et al. 2008a) and
MOCSphaser (Kato et al. 2008b) so that the proposed algorithm could
incorporate likelihood values for total copy numbers and unphased
genotypes into the framework of the expectation-maximization (EM)
algorithm for CNV phasing. The algorithm by Kang et al., which is
called the GenoSpectrum-EM algorithm, uses the EM algorithm that
considers likelihood values for SNP genotypes to infer SNP haplo-
types, not CNV haplotypes. CNVphaser and MOCSphaser use the
EM algorithm to infer CNV haplotypes from total copy numbers
and unphased SNVC genotypes, but do not consider likelihood values
for total copy numbers or unphased genotypes.

The proposed EM algorithm can be divided into two procedures:
enumeration and iterative calculation. In the initial procedure, we
enumerate all possible diplotypes that are consistent with total copy
numbers or unphased genotypes across multiple sites for every
individual. More specifically, we first enumerate all possible diplotypes
per site. For example, if a total copy number at an ICN site is 3, all
possible diplotypes we enumerate are [0/3] and [1/2], where a slash (/)
represents the separator between haplotypes (we do not distinguish
the order of haplotypes). Similarly, if an unphased genotype at an
SNVC site is AAG, all possible diplotypes are [-/A, A, G], [A, A/G],
and [A/A, G], where a dash (-) represents a deletion and a comma (,)
represents the separator between copy units (we do not distinguish the
order of copy units in a haplotype). Here, we call a copy unit the unit
of DNA sequence that is duplicated in a CNV region (Figure 1). Then,
we enumerate all possible diplotypes across multiple sites. For exam-
ple, if we have the one-site diplotypes [0/3] and [1/2] at an ICN site,
and the one-site diplotype [a/t] at an SNP site, all the possible dip-
lotypes across these two sites are [0_a/3_t], [0_t/3_a], [1_a/2_t], and
[1_t/2_a], where an underscore (_) represents the separator between sites.

In this procedure, we also calculate a likelihood across multiple
sites for each diplotype, following the assumption of Kang et al. (2004)
that the occurrence of an experimental measurement, such as a signal
intensity, at one site given a diplotype is independent of that at an-
other site (also see Equations 1 and 6 below). Note that this assump-
tion does not require linkage equilibrium – copy numbers or
genotypes at multiple sites are independent of each other. Also note

Figure 1 Illustration of ICN, SNP, and SNVC sites. (Upper part) “ICN”,
“SNP”, and “SNVC” represent integer copy number, single nucleotide
polymorphism, and single nucleotide variation in a CNV, respectively.
A “copy unit” represents the unit of DNA sequence that is duplicated
in a CNV region (Kato et al. 2008a). In this illustration, most invariant
bases in copy units are omitted for the purpose of simplicity. Lower part:
High-throughput experimental technologies give data on the total num-
ber of copies over a diplotype or an unphased sequence genotype.
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that, for microarray probes that are determined to be in the same state
by a segmentation tool, it might be necessary to aggregate the corre-
lated measurement values (e.g., through median) into one value to
treat the probe locations as one site.

Under the assumption, the likelihood lj,k is calculated as follows:

lj;k ¼ Prðxj;k jdj;kÞ ¼
YS
s¼1

Prðxj;k;sjdj;k;sÞ (1)

where k denotes the index for the diplotype of individual j, and s and
S denote the index for a site and the total number of sites in a given
dataset, respectively. The variable xj,k denotes the observed measure-
ments such as the signal intensities or the log ratio intensities across
multiple sites, and xj,k,s denotes the observed measurement at site s
in xj,k. The symbol dj,k denotes the diplotype indexed by k for in-
dividual j across multiple sites, and dj,k,s denotes the one-site dip-
lotype at site s in dj,k. The last term Pr(xj,k,s | dj,k,s) is equal to the
probability of xj,k,s given the total copy number or unphased geno-
type of diplotype dj,k,s (because we do not distinguish the signal
intensities of, for example, [0/3] and [1/2]), and this probability is
calculated from a statistical model of signal intensities or log ratio
intensities in microarrays. The choice of a statistical model and
a method to estimate its parameters is left to a user. For example,
in simulation studies, we used those of Birdsuite (Korn et al. 2008),
which employs a Gaussian mixture model and parameter estimation
by the expectation-maximization algorithm. We obtained the last
term probability, or likelihood, directly from the probability density
of a signal intensity in a normal distribution of the model.

After enumeration, we perform the iterative calculation, in which
we iteratively repeat the expectation (E) and the maximization (M)
steps. In the E step, we calculate the proportion of the frequency of
a diplotype to the sum of the frequencies of all diplotypes in an
individual, using likelihood lj,k. The equation at the E step is:

wj;k ¼
lj;kPðdj;kÞPDj

k¼1 lj;kPðdj;kÞ
(2)

where wj,k denotes the diplotype proportion, Dj denotes the number
of possible diplotypes of individual j, and P denotes the population
frequency. P(dj,k) is calculated from Hardy-Weinberg equilibrium
(HWE):

Pðdj;kÞ ¼ Pðhl=hmÞ ¼
n PðhlÞPðhmÞ if l ¼ m
2PðhlÞPðhmÞ if l 6¼ m

(3)

where the diplotype dj,k consists of the haplotypes indexed by l and
m (hl and hm). At the M step, the frequency of a haplotype is
calculated from the number of the haplotype in consideration of
the diplotype proportion calculated at the E step. The equation at
the M step is:

PðhiÞ ¼
PN

j¼1

PDj

k¼1 dðhi; dj;kÞ � wj;k

2N
(4)

dðhi; dj;kÞ ¼
( 2 if dj;k includes two hi
1 if dj;k includes one hi
0 if dj;k includes no hi

(5)

where N denotes the number of individuals in the dataset. After this
M step, the iteration goes back to the E step to update the diplotype
proportion, and in turn goes to the M step to update the haplotype

frequency until the log-likelihood converges. The log-likelihood
ln L is:

ln L ¼ ln
YN
j¼1

 XDj

k¼1

Prðxj;k j dj;kÞ � Prðdj;k j uÞ
!

¼ ln
YN
j¼1

 XDj

k¼1

lj;kPðdj;kÞ
!

(6)

where u denotes (P(h1), P(h2), ...).
The main difference of this EM algorithm from those of

CNVphaser (Kato et al. 2008a) and MOCSphaser (Kato et al.
2008b) is the inclusion of the likelihood term lj,k in equations 2
and 6. By incorporating this term, total copy numbers and/or
unphased genotypes are probabilistically represented. Equations 3, 4,
and 5 are the same. The main difference of our algorithm from the
GenoSpectrum-EM algorithm of Kang et al. (Kang et al. 2004) lies in
the enumeration procedure, in which our algorithm can enumerate
diplotypes composed of any combination of ICNs, SNVCs, and SNPs,
whereas Kang et al.’s algorithm enumerates diplotypes composed only
of SNPs. The equations in our EM algorithm are essentially the same
as those in Kang et al.’s EM algorithm.

Software
We implemented this algorithm into a computational tool called
CNVphaserPro, which is available online (http://rulai.cshl.edu/people/
kato/). The advancements of this tool from the previous tools (Kato
et al. 2008a; Kato et al. 2008b) are shown in the supporting informa-
tion, Table S1. The tool can handle missing calls and use multiple sets
of randomly-generated initial values for multiple EM runs.

RESULTS

Simulation tests
We tested whether the algorithm could correctly restore haplotype
frequencies in simulated datasets, which were made as follows (Figure
2). We first obtained unphased genotypes from the known haplotypes
(listed in File S1) of 588 individuals at 14 sites (Sachse et al. 1997), and
then randomly generated signal intensities for the unphased gen-
otypes at each site, using two-dimensional normal distributions for
the genotypes. Their means and variances were derived from real
microarray data (Korn et al. 2008). Next, we used these normal
distributions to calculate the probability densities of the signal in-
tensities for all possible unphased genotypes and used them as
likelihood values. For total copy numbers, we took the summation
of the likelihood values across unphased genotypes with the same
copy number to obtain the likelihood values of total copy numbers.
See File S2 for details on generating the simulation data. We input
the likelihood values separately at each site into CNVphaserPro for
one-site inference. We used the known haplotypes directly as the
answer haplotypes.

We first show an example of our results on one-site ICN inference
(Table 1). The estimated frequencies were all close to the answer
frequencies; hence, we concluded that the algorithm succeeds in the
estimation. For comparison, we estimated haplotype frequencies by
the previous algorithm [of MOCSphaser (Kato et al. 2008b) and
CNVphaser (Kato et al. 2008a)], using the most likely total copy
numbers as the input, which were defined as the one with the largest
likelihood value of all possible total copy numbers. As demonstrated
previously (Excoffier and Slatkin 1995; Kato et al. 2008a; Kato et al.
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2008b), we quantified the degree of estimation error by the total
variation distance TV:

TV ¼ ð1=2Þ
X
i

jpi 2 p̂ij (7)

where pi and p̂i are the true and estimated frequencies of the hap-
lotype i. As a result, the estimation error of the current algorithm
was much less than that of the previous algorithm (the error rate 2%
vs. 12%) (Table 2). When we compared the most likely total copy
numbers with the answer total copy numbers, 22% were incorrect,

on average. This indicates that total copy numbers determined with
the largest likelihood value are often incorrect due to microarray
noise, which would result in the poorer estimates by the previous
algorithm.

We also inferred individuals’ diplotypes of ICNs by selecting the
diplotype with the largest diplotype proportion value in equation 2
(we did not use a threshold), and then evaluated inference accuracy by
the proportion of inferred diplotypes that were the same as the
answers. The result showed a good accuracy, 95% on average (Table
3). We also used this proportion as the rate of total copy numbers

Figure 2 Illustration of simula-
tion. “Ind.” is short for individu-
als. The symbols “-”, “/”, and
“,” in the top left table repre-
sent a deletion, the separator
between haplotypes, and the
separator between copy units
in a duplication. (1) Using known
diplotypes (Sachse et al. 1997),
we made unphased genotypes.
(2) We randomly generated signal
intensities for the unphased gen-
otypes, using normal distributions
with the means and variances
taken from real microarray data
(Korn et al. 2008). (3) We calcu-
lated the likelihoods of the signal
intensities for all possible
unphased genotypes (or total
copy numbers), based on the nor-
mal distributions above.

n Table 1 Examples of haplotype frequency estimation

Variation Type Haplotypea Known Frequency Estimated Frequency

One ICN site 1 copy 0.9609 0.9607
0 copies 0.0196 0.0199
2 copies 0.0196 0.0194
3 copies NA 1.0 · 10210

— — —

One SNVC site A 0.9600 0.9598
— 0.0196 0.0199
A, A 0.0196 0.0194
B 0.0009 0.0009

A, B NA 2.7 · 10210

— — —

Two SNVC sites -A 0.9592 0.9589
– 0.0196 0.0199

-A, -A 0.0196 0.0194
-B 0.0009 0.0009
AA 0.0009 0.0009
BA NA 3.6 · 1025

— — —

NA indicates that the corresponding haplotypes did not exist in the known dataset.
a The symbols A and B represent different nucleotide bases, and “-” and “,” represent a deletion and the separator between copies in
a duplicated region, respectively. We omitted haplotypes with estimated frequencies of less than 10210 (all such haplotypes did not exist in
the known dataset).
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correctly inferred by the current algorithm, because total copy num-
bers can be obtained simply from diplotypes. Thus, we compared this
rate with the rate of correct ones of the most likely total copy num-
bers. As a result, the former rate (95%) was clearly larger than the
latter rate (78%) (Table 3), which indicates that the current algorithm
has an ability to correct total copy numbers incorrectly determined
with the largest likelihood value. In fact, there were total copy num-
bers that were incorrectly determined with the largest likelihood value
but were correctly inferred by the current algorithm; though we did
find some, albeit far fewer, of the opposite case (Table 3).

We also estimated the frequencies of haplotypes at one- and two-
SNVC sites. In the two-site case, we chose pairs out of the 14 sites
randomly a total of 14 times and input simulated likelihood values at
the pairs into our algorithm. We show examples of results in both
cases (Table 1), which demonstrates that the estimated frequencies
were almost the same as the answer frequencies. The TV index
revealed that the estimation error of the current algorithm was much
less than that of the previous algorithm (the error rate 1–2% vs. 12–
18%) (Table 2). Regarding the inference of individuals’ diplotypes, the
inference results also showed a good accuracy: on average, 95–96%
were correct in both cases (Table 3). As with ICNs, the current algo-
rithm corrected unphased genotypes that were incorrectly determined
with the largest likelihood value (Table 3). Most importantly, im-
provement by the current algorithm from the previous algorithm
was greater in the case of two SNVC sites, which is more complicated
than the single ICN and SNVC cases.

Influence of sample size
We examined the influence of sample size on algorithm performance.
For that purpose, we used population frequencies calculated from the
known haplotypes of the 588 individuals to randomly sample
haplotypes, and then randomly paired them on the basis of HWE
to make answer datasets with different simple sizes. We made 10
replicate answer sets for each simple size. For each answer set, we used

the same procedures as in the first simulation to make an input
dataset.

As a result, with the increase of the sample size, the current
algorithm showed a slight but constant improvement in both the TV
performance and the accuracy of inferred genotypes (Figure 3) or
inferred copy numbers (data not shown), though the values of both
indices were nearly saturated. In contrast, the previous procedures
(the previous algorithm and the method to determine unphased copy
numbers or genotypes by the largest likelihood value) did not always
show a constant improvement. The current algorithm showed a better
TV performance and a better genotype or copy-number inference at
all sample sizes as compared to the previous procedures. In the two-
SNVC case, the current algorithm showed the largest difference in TV
and the accuracy from the previous procedures. In all the cases, the
accuracy of diplotypes inferred by the current algorithm was greater
than 90% even at a sample size of 50 and greater than 95% at a sample
size of 100 or more. The TV values were extremely low at any sample
size in all the cases (6% at a sample size of 50 at two-SNVC sites; less
than 4%, otherwise).

Real data application
We applied the phasing tool to real data taken with NimbleGen HD2
comparative genomic hybridization (CGH) arrays for the HapMap
Phase3 CEU population. We identified 1486 CNV regions for 106
unrelated individuals, and then used the median log-ratio intensities
across probes present in the intersections of CNV segments to obtain
their likelihood values for the total copy numbers of zero to four,
based on the Gaussian mixture model. See File S3 for details on
processing the real data. We next applied the phasing tool to the
likelihood values and estimated haplotype frequencies (File S4) and
diplotypes (File S5) in the CNV regions along the genome. We com-
pared the predicted diplotypes (with the diplotype proportions .
0.98) of two individuals to deletions that were extensively detected
by next-generation sequencing at a high coverage (42·) for the same
individuals (Mills et al. 2011). We found that eight out of the nine of
our deletions were consistent with theirs and only 3.3% (65/1983) out
of our 1/1 diplotypes were inconsistent.

Using all the CNV regions, we drew an allele frequency spectrum
(Figure 4)—a basic graph that summarizes their population-genetic
nature. The graph shows that the zero-copy (A0) and two-copy (A2)
alleles tended to have small frequencies and that the number of the
zero-copy allele was somewhat larger than that of the two-copy allele.
We found 15 CNV regions where both zero-copy and two-copy alleles
had the population frequencies of more than 1%, which indicates that
these are tri-allelic. Twelve out of the fifteen were overlapped with

n Table 2 Error rate of haplotype frequencies estimated by the
current and previous algorithms

Variation Type
TV for the Current

Algorithm
TV for the Previous

Algorithm

One ICN site 0.019 6 0.036 0.123 6 0.122
One SNVC site 0.008 6 0.010 0.118 6 0.117
Two SNVC sites 0.022 6 0.029 0.176 6 0.109

TV measures the deviation of estimated frequencies from answer frequencies.
The numbers are the mean 6 SD across the 14 sets.

n Table 3 Inference accuracy of individuals’ diplotypes and total copy numbers or unphased genotypes

Variation Type
Accuracy of Diplotypes by
the Current Algorithma

Accuracy of the Most Likely Unphased
Copy Numbers or Genotypesb Correctionc Corruptiond

One ICN site 94.9 6 5.4% 78.1 6 20.6% 19.2 6 17.9% 2.5 6 2.9%
One SNVC site 95.6 6 4.3% 78.6 6 20.0% 19.1 6 17.7% 2.2 6 2.3%
Two SNVC sites 94.9 6 6.1% 66.0 6 17.4% 29.4 6 14.7% 0.5 6 0.4%
a Proportion of diplotypes (and also total copy numbers or unphased genotypes) that were correctly inferred by the current algorithm. The numbers are the mean 6
SD across the 14 sets.

b Proportion of correct ones of the most likely total copy numbers or unphased genotypes, which have the largest likelihood value of all possible total copy numbers
or unphased genotypes and therefore we used as the input of the previous algorithm. As with diplotypes, we required that correct ones should agree with answers
over all sites. The numbers are the mean 6 SD across the 14 sets.

c Proportion of total copy numbers or unphased genotypes that were incorrectly determined with the largest likelihood value but were correctly inferred by the
current algorithm. The numbers are the mean 6 SD across the 14 sets.

d Proportion of total copy numbers or unphased genotypes that were correctly determined with the largest likelihood value but were incorrectly inferred by the
current algorithm. The numbers are the mean 6 SD across the 14 sets.
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CNVs in the Database of Genomic Variants (Zhang et al. 2006) and
eight out of the twelve had been defined as multi-allelic CNVs (having
both gains and losses) in CEU or a French population (Conrad et al.
2010; De Smith et al. 2007). We show examples of such CNV regions
overlapped with genes (Table 4). The CNVs overlapped with ACOT11
and CWF19L2 were previously reported as multi-allelic in CEU (Conrad
et al. 2010), but the CNV overlapped with EYA2 was not reported. A
homolog to ACOT11 in mouse has been associated with obesity, but
the function of CWF19L2 is unknown. EYA2 may play a role in eye
development.

DISCUSSION
We used simulated datasets that were as close to real haplotypes and
microarray noise levels as possible, and we demonstrated successful
estimation by our algorithm. The reason for this success is the use of
likelihoods to quantify fluctuations caused by noise. For example, even
when a signal intensity is observed far away from the center of
a distribution of the original total copy number, our algorithm does
not discard the possibility that the signal came from this copy number,
but considers the signal as a rare outcome with a small likelihood
value. The usefulness of this strategy of incorporating genotype

likelihoods (instead of called genotypes) into haplotype frequency
estimation was demonstrated in SNP cases (Browning and Yu 2009;
Kang et al. 2004; Yu et al. 2009). For example, in one recent study
using BEAGLE version 3.1 (Browning and Yu 2009), this strategy was
incorporated into SNP haplotype phasing based on an hidden Markov
model (HMM). In our study, combining likelihoods with the EM
algorithm based on a multinomial model (Excoffier and Slatkin
1995), we demonstrated its usefulness in CNV haplotype inference.

As a by-product, our algorithm also inferred individuals’ diplo-
types. The accuracy of the diplotype inference went over 90% even at
a sample size of 50 and over 95% at a sample size of 100 or more,
which indicates that even a sample size around 100 is enough for
a good inference in typical cases. By accurately inferring diplotypes,
the algorithm even corrected total copy numbers or unphased geno-
types that were incorrectly determined with the largest likelihood
value. Substantial amounts of 21–34% incorrect rates were decreased
to only 4–5% through correction by the current algorithm.

Most importantly, as the sample size increased, the estimation
error index TV and the accuracy of estimated total copy numbers or
unphased genotypes were improved in the current algorithm, but not
always in the previous procedures. This is because there are always
incorrect unphased copy numbers or genotypes determined with the
largest likelihood value regardless of increasing a sample size (as
shown by the blue lines with cross in Figure 3), as long as signal
intensities coming from different unphased copy numbers or geno-
types are not clearly separated with each other. Thus, increasing a sam-
ple size does not always improve estimation accuracy in the previous
algorithm, but does so in the current algorithm—this is another ad-
vantage of the current algorithm.

There would be several algorithmic issues to be addressed in the
future. Our algorithm assumes HWE; hence, if a population does not
satisfy HWE, the estimation would be worse. Regarding the EM
algorithm used in SNP haplotype inference, it is known that
deviations from HWE do not greatly impact the accuracy (Niu
et al. 2002). In addition, a large-scale CNV study has found that most
CNVs (98% of the bi-allelic CNVs) are in HWE (McCarroll et al.
2008). Furthermore, in the first type of simulation, we demonstrated
accurate estimation by our algorithm for known haplotypes in a nat-
ural population, in which HWE was not artificially introduced. Nev-
ertheless, it is necessary to know how much impact deviations from
HWE have on the accuracy.

Another issue is to handle haplotypes composed of a number of
sites. Currently, to analyze haplotypes composed of a few sites meets
the needs for practical applications in CNV research, because urgent

Figure 3 Influence of sample size on performance. The left y-axis
represents the deviation (the TV index) of estimated haplotype fre-
quencies from answer frequencies for the current (red line with circles)
and the previous (red line with crosses) algorithms. The right y-axis
represents the proportion of diplotypes correctly inferred by the cur-
rent algorithm (blue line with circles) or unphased genotypes correctly
determined with the largest likelihood value (blue line with crosses).
Points in the y-axes at each sample size indicate the mean of values
over 10 different answer sets · 14 different site sets. (A) For one SNVC
site. (B) For two SNVC sites. The result of one ICN site is not shown,
because this result was similar to that of one SNVC site.

Figure 4 Frequency spectrums. The width of
each bin is 2%. Alleles with a very small [,1 /
(2 · the number of individuals)] or large [.12
1 / (2 · the number of individuals)] frequency
are excluded from the counts. (A) The fre-
quency spectrum of alleles. An (n = 0, 1,
and 2) in the box represents an allelic copy
number. (B) The frequency spectrum of total
copy numbers derived from the allelic copy
numbers. Tn (n = 0, 1, ..., 4) in the box repre-
sents an total copy number.
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issues in this field are, first, association studies of CNVs, where current
studies handle CNV regions as single sites (loci) and perform
statistical tests separately per region (Stefansson et al. 2008; The In-
ternational Schizophrenia Consortium 2008), and second, to find
CNVs tagged by SNPs, where two-site haplotypes composed of an
ICN and a SNP sites are phased to calculate a two-site LD index such
as R2 (Conrad et al. 2010; Kato et al. 2010; McCarroll et al. 2008). Our
algorithm can fulfill these needs. In fact, our algorithm finished cal-
culations for one and two sites across 588 samples within a short time
(13 and 187 sec on average for one and two sites, respectively) on our
machine with eight Xeon 2-GHz CPUs and 8 GB RAM, and also for
three sites within a reasonable time (49 min on average). In addition,
the algorithm inferred allelic copy numbers in all the 1486 CNV
regions in the real data application within 18 hr on the same machine.
However, our EM-based algorithm may not be suitable for applica-
tions beyond the current needs, since it takes significant time to
handle a large number of sites due to the exhaustive enumeration.
For example, our algorithm did not complete calculations within
a reasonable time (24 hr) for four sites in some datasets, though the
computational time can be reduced to some degree by cutting off
states with the likelihood value of zero or nearly zero (after normal-
izing likelihood values, since only the relative values are meaningful).

For applications beyond the current urgent needs, the algorithm
will have to be improved. For example, recently the GrEM algorithm
(Shindo et al. 2009) and the algorithm implemented in polyHap v2.0
(Su et al. 2010), which uses an HMM, have been proposed to deal with
a larger number of sites for CNV haplotype inference from data un-
ambiguously determined. They could be extended or modified to
accommodate data with noise. In addition, a computational tool called
cnvHap has recently been developed in order to call (unphased) copy
numbers or sequence genotypes based on a haplotype HMM (Coin
et al. 2010). Although the aim of cnvHap is not to estimate haplotype
frequencies, information on haplotypes might be extracted from this
approach. Other possible approaches include partition-ligation EM
(Kato et al. 2008a; Qin et al. 2002), Gibbs sampling, and coalescent-
based sampling (Niu 2004).

We applied our tool to real ICN data. Although we demonstrated
accurate inference of SNVC haplotypes in simulation studies, it will be
worth trying real SNVC data when such data in a large sample size
(.100 individuals) are accessible. Regarding association studies of
CNVs, current studies using microarrays focus on ICNs or ICN

groups known as gains (.2 copies) and losses (,2 copies). Recently,
a theoretical study examined statistical power in association studies based
on ICN haplotypes (Ohashi 2009). Because SNVCs, which are a form of
variation mixed of SNPs and ICNs, are more likely to have a phenotypic
effect than only SNPs or only ICNs (Hosono et al. 2008; Kato et al.
2008a), it would be important that these studies are extended for SNVC
haplotypes, in which case, our algorithm will be of essential use.

Because microarrays are currently less costly than next-generation
sequencing in the same sample size in genome-wide CNV studies, our
haplotype phasing based on microarray data are cost effective for
rapidly investigating hundreds or thousands of individuals. Recently,
a study has developed a successful method to estimate total copy
numbers from read depth in next-generation sequencing and applied
it to three individuals (Alkan et al. 2009). Taking account of the fact
that read counts fluctuate by noise (Yoon et al. 2009), our likelihood
method would be applicable also for such copy numbers when sample
size is sufficiently obtained in the future.
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