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Summary 
Background: We aimed to analyze the regulatory effects of
SIPA1 (signal-induced proliferation-associated protein 1)
on glioma progression and the dominant signaling path-
way. 
Methods: Differential level of SIPA1 in glioma and normal
tissues and cells was determined. Migratory, proliferative,
apoptotic and cell cycle progression changes in A172 cells
with overexpression or knockdown of SIPA1 were exam-
ined. Finally, protein levels of phosphorylated FAKs in
A172 cells intervened by SIPA1, and the FAK inhibitor PF-
562271 were detected. 
Results: SIPA1 was upregulated in glioma cases. Knock -
down of SIPA1 reduced migratory and proliferative rates of
glioma cells, increased apoptotic cell rate, and declined cell
ratio in the S phase. The knockdown of SIPA1 also down-
regulated cell cycle proteins. In addition, SIPA1 upregulat-
ed phosphorylated FAKs in A172 cells and thus boosted
malignant phenotypes of glioma. 
Conclusions: SIPA1 is upregulated in glioma that boosts
migratory and proliferative potentials of glioma cells by acti-
vating the phosphorylation of the FAK signaling pathway. 
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Kratak sadr`aj
Uvod: Cilj nam je bio da analiziramo regulatorne efekte
SIPA1 na progresiju glioma i dominantni signalni put.
Metode: Odre|en je diferencijalni nivo SIPA1 u gliomu i
normalnim tkivima i }elijama. Ispitivane su migratorne,
proliferativne, apoptoti~ke i promene u progresiji }elijskog
ciklusa u }elijama A172 sa prekomernom ekspresijom ili
obaranjem SIPA1. Kona~no, otkriveni su nivoi proteina
fosforilisanih FAK u }elijama A172 sa intervencijom SIPA1
i inhibitorom FAK PF-562271.
Rezultati: SIPA1 je uve}an u slu~ajevima glioma. Pad
SIPA1 je smanjio migracijsku i proliferativnu stopu }elija
glioma, pove}ao apoptoti~ku }elijsku stopu i smanjio
}elijski odnos u S fazi. Sni`avanjem SIPA1 tako|e su sni`eni
i proteini }elijskog ciklusa. SIPA1 je pove}ao fosforilisani
FAK u }elijama A172 i tako poja~ao maligne fenotipe
glioma.
Zaklju~ak: SIPA1 je pove}an kod glioma i poja~ava
migratorne i proliferativne potencijale }elija glioma
aktiviranjem fosforilacije signalnog puta FAK.

Klju~ne re~i: SIPA1, FAK, fosforilacija, gliom
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Introduction 

Gliomas are the leading malignant tumors of the
central nervous system that originate from glial cells of
the neuroectoderm. They represent 80% of primary
intracranial malignancies (1). The average survival
time of glioma is only 12–14 months (2). Currently,
surgery combined radiotherapy, chemotherapy and
biotherapy is preferred to glioma patients, although
they can only prolong the survival for months. The
prognosis of glioma is extremely poor (3). Clarification
of the pathogenesis of glioma and the involvement of
differentially expressed genes in glioma contributes to
the improvement of clinical outcomes (4).

SIPA1 (signal-induced proliferation-associated
protein 1) is a protein relevant to tumor invasiveness
and metastasis. It is located on human chromosome
11q13.3, containing a zinc finger at the C terminal
and a GTPase activator that is highly homologic with
Rap1GAP at the N terminal (5, 6). RapGAP protein
constitutes Rap1GAP and SIPA1 (7). As a specific
RapGAP protein, SIPA1 negatively regulates Rap1 by
converting it to the inactivate GDP-bound state, thus
translocating signals into nuclei that mediates gene
transcription (8). Rap1 is highly homologic with Ras,
sharing similar functions in regulating cell-cell con-
nection, secretion, and adhesion (9). In addition,
SIPA1 also participates in the mediation of cell clon-
ality, adhesion, and migration (10). This study aims to
explore the regulatory effects of SIPA1 on glioma and
the dominant signaling pathway. 

Materials and Methods

Collection of glioma samples

Glioma samples (n=32) were surgically resect-
ed and collected. Glioma cases were pathologically
confirmed, and they did not have preoperative glioma
treatments. Normal brain tissue samples (n=24)
resected during craniocerebral decompression in
patients with brain traumas were collected as con-
trols. The Ethic Committee of The Central Hospital of
Jamusi City approved this study, and written informed
consent was obtained from each patient. 

Cell culture 

The GBM-derived T98G and A172 cell lines,
the grade III astrocytoma-derived U87 cell line and
astrocyte cell line NHA (American Type Culture
Collection (ATCC) (Manassas, VA, USA)) were culti-
vated in Dulbecco’s Modified Eagle Medium (DMEM)
(Gibco, Rockville, MD, USA) supplemented with 10%
fetal bovine serum (FBS) (Gibco, Rockville, MD, USA)
in an incubator containing 5% CO2 at 37 °C. Cell pas-
sage was conducted at 80% of confluence. 

Cell transfection 

Cells seeded in a 6-well plate were grown to
80% of confluence, followed by the transfection of
vectors constructed by GenePharma (Shanghai,
China) using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA). Transfection efficacy was exam-
ined by quantitative real-time polymerase chain reac-
tion (qRT-PCR) at 24 h. 

qRT-PCR

Cells were lysed in TRIzol (Invitrogen, Carlsbad,
CA, USA) for 5 min, followed by incubation in 200 mL
of chloroform. After 12,000×g centrifugation at 4 °C
for 5 min, the upper layer was collected and incubat-
ed with 500 mL of isopropanol. After 12,000×g cen-
trifugation at 4 °C for 10 min, the precipitant was
washed in 1 mL of 75% ethanol and diluted in 20 mL
of diethylpyrocarbonate (DEPC) water (Beyotime,
Shanghai, China). RNA concentration was measured
using NanoDrop 2000 (Thermo Fisher Scientific,
Inc., Waltham, MA, USA). Using the PrimeScript™RT
Master Mix, reversely transcribed complementary
deoxyribose nucleic acids (cDNAs) were further sub-
jected to qPCR. 

SIPA1-Forward: 5’-TGCAAGATGGTGGCAGTC-
CTC-3’; SIPA1-Reverse: 5’-CTGCCCGCCTCCGACAT-
GATC-3’; GAPDH-Forward: 5’-ACACCATGGG GAAG -
GTGAAG-3’; GAPDH-Reverse: 5’-GTGACCA GGC GC-
CCAATA-3’; Cyclin A2-Forward: 5’-CGCTGGCGGTA-
CTGAAGTC-3’; Cyclin A2-Reverse: 5’-GAGGAACG-
GTGACATGCTCAT-3’; Cyclin D1-Forward: 5’-GCT-
GCGAAGTGGAAACCATC-3’; Cyclin D1-Reverse:
5’-CCTCCTTCTGCACACATTTGAA-3’; Cyclin E1-
Forward: 5’-AAGGAGCGGGACACCATGA-3’; Cyclin
E1-Reverse: 5’-ACGGTCACGTTTGCCTTCC-3’. 

Transwell

Cell suspension (5×104/L) in serum-free medi-
um and medium containing 10% FBS were respec-
tively applied at the top and bottom of a Transwell
insert pre-coated with 200 mg/mL Matrigel. After 24-
h cell culture, cells migrated from the top to the bot-
tom were fixed in 70% ethanol for 30 min and dyed
in 0.2% crystal violet for 10 min, which were then
observed and counted. 

5-Ethynyl-2’- deoxyuridine (EdU)

Cell suspension (2×105/L) was seeded in a 96-
well plate and stained with EdU as recommended by
the commercial kit (Beyotime, Shanghai, China).
EdU-positive cells in 3 random fields per well were
captured for calculating using Image J software (NIH,
Bethesda, MD, USA). 
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Flow cytometry

After 5-min centrifugation at 1,000 r/min and
phosphate-buffered saline (PBS) washing twice, the
precipitant was induced with 5 mL of Annexin V/FITC
and 10 mL of Propidium Iodide (PI) in the dark for 15
min. Cell apoptosis was analyzed by detecting FL1
(488 nm wavelength) and FL2 gate (633 nm wave-
length). In addition, cell cycle distribution was ana-
lyzed using the CellQuestTMD Analysis Software (BD
Biosciences, Franklin Lakes, NJ, USA). 

Western blot

After 30-min lysis of cells, and 15-min centrifu-
gation at 4 °C, 12,000 rpm, protein samples were
prepared for sodium dodecyl sulphate-polyacrylamide
gel electrophoresis (SDS-PAGE) (30 mg per lane) and
transfer on polyvinylidene fluoride (PVDF) mem-
branes (Millipore, Billerica, MA, USA). After blocking
non-specific antigens on membranes, they were
induced with primary and secondary antibodies under
indicated conditions. Protein signals were detected
using Luminol substrate solution. 

Statistical analysis

Statistical Product and Service Solutions (SPSS)
22.0 (IBM, Armonk, NY, USA) was used for statistical
processing. Data were expressed as x⎯ ± s, and differ-
ences between groups were compared using the

independent t-test. A significant difference was set at
P<0.05. 

Results

Upregulation of SIPA1 in glioma 

Compared with normal brain tissues, mRNA and
protein levels of SIPA1 were remarkably upregulated
in glioma (Figure 1A, 1B). Meanwhile, SIPA1 was
more highly expressed in glioma cell lines than astro-
cytes (Figure 1C, 1D). A172 cells were used for the
following experiments since they expressed a relative-
ly high abundance of SIPA1 in the three tested glioma
cell lines. 

Knockdown of SIPA1 suppressed migratory and
proliferative potentials of glioma 

SIPA1 level was effectively suppressed by trans-
fection of si-SIPA1 in A172 cells (Figure 2A). After the
knockdown of SIPA1, the migratory cell number
(Figure 2B) and EdU-positive ratio (Figure 2C) were
markedly reduced. In addition, cell apoptosis was
stimulated by transfection of si-SIPA1 (Figure 2D).
Flow cytometry data showed that the knockdown of
SIPA1 in A172 cells arrested cell cycle progression in
the G1 phase, which was further supported by the
downregulation of cell cycle proteins Cyclin A2,
Cyclin D1 and Cyclin E1 in glioma cells with SIPA1
knockdown (Figure 2E, 2F). 

Figure 1 Upregulation of SIPA1 in glioma. (A) The mRNA level of SIPA1 in glioma and normal brain tissues; (B) The protein
level of SIPA1 in glioma and normal brain tissues; (C) The mRNA level of SIPA1 in glioma cell lines; (D) The protein level of SIPA1
in glioma cell lines; *P<0.05. 
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Figure 2 Knockdown of SIPA1 suppressed migratory and proliferative potentials of glioma. (A) Transfection efficacy of si-SIPA1
in A172 cells; (B) Migration in A172 cells with SIPA1 knockdown; (C) EdU-positive ratio in A172 cells with SIPA1 knockdown
(magnification = 40×); (D) Apoptosis in A172 cells with SIPA1 knockdown; (E) Cell cycle distribution in A172 cells with SIPA1
knockdown; (F) Relative levels of Cyclin A2, Cyclin D1 and Cyclin E1 in A172 cells with SIPA1 knockdown; *P<0.05. 

Figure 3 Overexpression of SIPA1 suppressed migratory and proliferative potentials of glioma. (A) Transfection efficacy of SIPA1
overexpression vector in A172 cells; (B) Migration in A172 cells with SIPA1 overexpression; (C) EdU-positive ratio in A172 cells
with SIPA1 overexpression (magnification = 40×); (D) Apoptosis in A172 cells with SIPA1 overexpression; (E) Cell cycle distribu-
tion in A172 cells with SIPA1 overexpression; (F) Relative levels of Cyclin A2, Cyclin D1 and Cyclin E1 in A172 cells with SIPA1
overexpression; *P<0.05. 



Overexpression of SIPA1 boosted migratory and
proliferative potentials of glioma

We analyzed phenotype changes of A172 cells
overexpressing SIPA1 further (Figure 3A). Over -
expression of SIPA1 markedly enhanced migratory
and proliferative potentials of glioma cells (Figure 3B,
3C). In addition, the apoptosis rate was reduced in
A172 cells overexpressing SIPA1 (Figure 3D).
Besides, overexpression of SIPA1 remarkably pro-
longed the S phase and upregulated Cyclin A2, Cyclin
D1 and Cyclin E1 (Figure 3E, 3F). 

Overexpression of SIPA1 activated phosphoryla-
tion of FAK

Interestingly, overexpression of SIPA1 in A172
cells upregulated Phospho-FAK (Try397), Phospho-
FAK (Try576) and Phospho-FAK (Try925), which
were reversed by treatment of the FAK inhibitor PF-
562271 (Figure 4A). To further explore the involve-
ment of the phosphorylated FAK in SIPA1-induced
glioma progression, proliferative ability in glioma cells
overexpressing SIPA1 intervened by PF-562271 was

examined. As expected, the intervention of PF-
562271 reduced the EdU-positive rate, indicating
that the phosphorylation of FAK did participate in
glioma progression boosted by SIPA1 (Figure 4B). 

Discussion 

Glioma is a complicated malignant tumor. Its
pathogenesis remains largely unclear, and brain trau-
mas, nitrite food, occupational hazard and radiation
exposure may be potential risk factors of glioma.
Besides, immune factors are closely associated with
the development of glioma, involving Treg, CD3+T,
CD4+T and CD8+T cells (11). Therefore, differential-
ly expressed genes in gliomas have been well con-
cerned. They can be utilized as specific biomarkers
for guiding the screening, diagnosis and treatment,
and predicting the prognosis of glioma (12). The
development of targeted therapy based on these bio-
markers is a promising approach to improving glioma
patients’ poor prognosis (13, 14).

The cancer-associated role of SIPA1 differs in
human malignant tumors. Hunter et al. (15) first
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Figure 4 Overexpression of SIPA1 activated phosphorylation of FAK. A172 cells were transfected with negative control or SIPA1
overexpression vector, followed by either treatment of PF-562271 or not; (A) Protein levels of Phospho-FAK (Try397), Phospho-
FAK (Try576), Phospho-FAK (Try925) and FAK; (B) EdU-positive ratio in A172 cells (magnification = 40×); *P<0.05. 
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