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A Joint Model for the Kinetics of CTC Count and PSA
Concentration During Treatment in Metastatic
Castration-Resistant Prostate Cancer*

M Wilbaux1†, M Tod1, J De Bono2, D Lorente2, J Mateo2, G Freyer1,3, B You1,3 and E H�enin1

Assessment of treatment efficacy in metastatic castration-resistant prostate cancer (mCRPC) is limited by frequent
nonmeasurable bone metastases. The count of circulating tumor cells (CTCs) is a promising surrogate marker that may
replace the widely used prostate-specific antigen (PSA). The purpose of this study was to quantify the dynamic relationships
between the longitudinal kinetics of these markers during treatment in patients with mCRPC. Data from 223 patients with
mCRPC treated by chemotherapy and/or hormonotherapy were analyzed for up to 6 months of treatment. A semimechanistic
model was built, combining the following several pharmacometric advanced features: (1) Kinetic-Pharmacodynamic (K-PD)
compartments for treatments (chemotherapy and hormonotherapy); (2) a latent variable linking both marker kinetics; (3)
modeling of CTC kinetics with a cell lifespan model; and (4) a negative binomial distribution for the CTC random sampling.
Linked with survival, this model would potentially be useful for predicting treatment efficacy during drug development or for
therapeutic adjustment in treated patients.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 277–285; doi:10.1002/psp4.34; published online on 24 April 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Assessment of treatment efficacy in metastatic castration-
resistant prostate cancer (mCRPC) is limited by the frequent development of nonmeasurable bone metastases. The
count of circulating tumor cells (CTCs) is emerging as a promising surrogate marker, which could replace the widely
used prostate-specific antigen (PSA). • WHAT QUESTION DID THIS STUDY ADDRESS? � CTC kinetic monitoring dur-
ing treatment could be used to predict treatment efficacy in patients with mCRPC. However, relationships between the
kinetics of CTCs and PSA have never been assessed. We built a semimechanistic population model of CTC and PSA
kinetics during treatment. • WHAT THIS STUDY ADDS TO OUR KNOWLEDGE � The proposed semimechanistic model
is the first to quantify the dynamic relationships between the kinetics of PSA and CTC count in treated patients with
mCRPC. It combines several advanced features in pharmacometrics, accounting for the major challenges in CTC analy-
sis. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS � Linked with survival, this
model might provide a useful tool for predicting treatment efficacy during drug development or for adjusting therapeutic
strategy in patients with mCRPC.

Prostate cancer is the most common cancer and the third
leading cause of death from cancer among men in devel-
oped countries.1 The development of metastases signals
the distant spread of prostate cancer cells and the need for
systemic treatments, including androgen-deprivation drugs.
The natural history of prostate cancer with bone metastasis
development, accounting for up to 90% of patients, induces
a bias in the assessment of treatment efficacy, because
most of these lesions are poorly assessable with morpho-
logical imaging techniques and Response Evaluation Crite-

ria In Solid Tumors (RECIST) criteria.2 As a consequence,
other indicators of treatment effects have been developed.

The prostate-specific antigen (PSA) is the most widely
used serum tumor marker in evaluating treatment effect in
prostate cancer.3,4 However, its validity as a surrogate
marker of treatment efficacy is controversial, and the 50%
decline rate recognized by the Prostate Cancer Clinical Tri-
als working group was recently questioned.5,6 Consequently,
new markers are emerging, such as the count of circulating
tumor cells (CTCs), defined by the US Food and Drug
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Administration (FDA) as the number of EpCAM-positive epi-
thelial nucleated cells >4 mm in diameter in a 7.5 mL blood
sample.7,8 CTCs were first described by Ashworth8 in 1869,
who observed “a case of cancer in which cells similar to
those in the tumor were seen in the blood after death.”
These cells correspond to tumor cells that have been
released into the blood and potentially lead to the develop-
ment of new metastases. CTCs are estimated to represent
less than one in a billion of the circulating mononuclear cells
in the blood9; this rarity has required the development of
sensitive and robust detection and enumeration methods to
implement CTC analysis for widespread use in the clinic.9

Several methods have been reported for CTC detection,10

but the CellSearch System (Veridex, Raritan, NJ) is the only
FDA-approved method for enumeration in metastatic breast,
prostate, and colorectal cancers.11–13 The major complica-
tion in CTC analysis is that the number of CTCs obtained in
the aliquot may not reflect the actual number in the whole
blood.9 For instance, Tibbe et al.9 identified three major
sources of variation in CTC counting: (1) the Poisson-
distributed sampling error of the number of CTCs in a blood
sample; (2) the variability in enrichment efficiency; and (3)
the intrareader and interreader variabilities.

Despite these limitations, CTC research has progressed
rapidly in recent years in the effort to demonstrate the
potential application of CTCs as a prognostic or predictive
biomarker in oncology. In patients with metastatic
castration-resistant prostate cancer (mCRPC) receiving
chemotherapy or hormone-based treatments, both baseline
CTC count (<5 vs.� 5) and CTC changes (rise or decrease
between baseline and another time point) during treatment
were more closely associated with patient survival than
were PSA changes.13–15 This finding led to the FDA
approval of the use of CTC counts in the evaluation of
patients with mCRPC. Although dichotomization is fre-
quently used for CTC analyses (<5 or�5 per aliquot), it
has some limitations, first and foremost the loss of statisti-
cal power.5,16,17

Monitoring the kinetics of CTCs using modeling is particu-
larly relevant for several reasons. First, it is a highly sensitive

clinical test based on shedding of tumor cells that, in theory,
will provide information about the evolution of the total tumor
burden, including the primary tumor and the metastases in
an individual patient. Second, it represents a new tool for
evaluating treatment response in large clinical trials. Finally,
there is a need for improved serum biomarkers in mCRPC.
However, the longitudinal kinetics of CTC counts, along with
their relationships with other markers, such as PSA and
tumor burden, needs to be addressed. The main purpose of
the present study was to quantify the dynamic relationships
between the longitudinal kinetics of PSA and CTC counts
during treatment in patients with mCRPC. To achieve this
goal, a semimechanistic model was built, combining several
advanced features in pharmacometrics.

MATERIALS AND METHODS
Data
The data from 223 patients enrolled in the IMMC38 trial,
meant to assess the relationships between categorized
CTC count (<5 or� 5 per aliquot) and survival in patients
with mCRPC, were used.13 Patients were treated by chem-
otherapy and/or hormonotherapy; the administration dates
were collected, but no treatment doses or pharmacokinetic
outcomes were available. CTC counts per aliquot and PSA
concentrations were measured at different timepoints along
treatment. Characteristics of patients are described in
Table 1. A median of four CTC values and four PSA titers
was available per subject until six months after treatment
initiation. The median CTC count was 2 CTC/7.5 mL, with a
range of 0–6,437 CTC/7.5 mL, and the median PSA con-
centration was 116 ng.mL21 with a range of <0.1–
17,800 ng.mL21. A large proportion of CTC counts equal to
0 was observed (40%). The limit of quantification for PSA
concentration was 0.1 ng.mL21.18 PSA observations below
limit of quantification, representing 0.1% of the observed
values, were fixed at limit of quantification/2 in the
dataset.19

Seventy percent of the patients discontinued the study at
180 days. Since the time-to-dropout seemed to be inde-
pendent of PSA and CTC counts (visual inspection), the
probability of dropout was not taken into account in the
model, but the model-based analysis was limited to a six-
month treatment duration to reduce potential statistical
biases.

Individual kinetic profiles were heterogeneous, as illus-
trated in Supplementary Figure S1a,b. Different types of
profiles were observed: some with parallel PSA and CTC
kinetics, others with divergent evolutions.

Model development
A semimechanistic model was built to quantify the dynamic
relationships between the kinetics of CTC counts and PSA
concentrations during treatment in patients with mCRPC.
Because of the characteristics of the data, the model com-
bined different levels of complexity, as follows.

Drug effect kinetics. At a given time, a patient can receive
either an administration of chemotherapy or hormonother-
apy, or both simultaneously. Therefore, the model had to
take into account the kinetics of the effects of the three

Table 1 Patient characteristics

Patient characteristics Data

No. of patients 223

Total number of CTC observations 919

CTC count value 2 (0–6,437)

Baseline CTC count 7 (0–5,925)

Number of CTC count 5 0 365 (40%)

Number of CTC observations per patient 4 (2–6)

Total number of PSA observations 928

PSA concentration (ng.mL21) 116 (LOQ–17,800)

Baseline PSA concentration (ng.mL21) 130 (2–17,800)

Number of BLQ values for PSA 1 (0.11%)

Number of PSA observation per patient 4 (1–6)

Follow-up time, (day) 124 (21–177)

Number of treatment cycles 5 (2–10)

BLQ, below limit of quantification; CTC, circulating tumor cell; LOQ, limit of

quantification; PSA, prostate-specific antigen.

Data are presented as median (min–max).
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regimens: chemotherapy, hormonotherapy, or both. More-
over, because neither doses nor concentrations were avail-
able, an arbitrary amount (equal to 1) was set for the doses
for each treatment cycle.

Models with a common Kinetic-Pharmacodynamic (K-PD)
compartment gathering chemotherapy and hormonotherapy
as well as models with two separate K-PD compartments
for each treatment type were tested. Furthermore, identical
and different kinetic and efficacy parameters for each treat-
ment type were evaluated. Finally, an additional direct effect
of treatment on CTCs was also assessed.

Dynamic relationships between PSA and CTC kinetics.

PSA concentration and CTC count kinetics had no clear
direct relationships (Supplementary Figure S1a,b). The
treatment effects on both PSA and CTCs were assumed to
be mediated through a common latent variable, defined as
an underlying, nonobserved variable.

Interpreting the latent variable as a tumor burden, differ-
ent models for its kinetics were tested: the exponential,
Gompertz, and Logistic models.20,21

Joint modeling of two types of data. PSA concentrations
are continuous data whereas CTC counts are count data
produced by a discrete process. As a consequence, the
simultaneous modeling of count and continuous data was
necessary. The productions of both markers were stimu-
lated by the common latent variable.

The PSA kinetics was described by an indirect model.
The CTC kinetics in the total body blood was modeled by a
cell lifespan model, commonly used for the modeling of life-
spans and delays in pharmacokinetics-pharmacodynam-
ics.22 The main assumption of the cell lifespan model is

that the rate of CTC loss at time t is equal to the production
rate at time t–lifespan.22 The implementation method of the
cell lifespan model is detailed in Supplementary Figure
S2. A model including a PSA production by CTCs was also
tested.

Random sampling of CTCs. CTCs obtained from the cell
lifespan may not reflect the observed cell population. For
instance, a CTC observation of 0 does not imply that no
CTCs are produced. Because the total blood volume (5 L)
is much greater than the aliquot volume (7.5 mL) and the
CTCs are considered to be relatively rare count data, the
observed CTC count from a 7.5 mL aliquot of blood was
interpreted as a random sample of the total CTC count.
The sampling distribution of observed CTC count was con-
sidered to be of the Poisson law family. Different Poisson-
related models were tested: basic Poisson, zero-inflated
Poisson, and negative binomial and zero-inflated negative
binomial models.23

Nonlinear mixed effects model
To take the interindividual variability into account, model
development was performed using nonlinear mixed effects
modeling, and the software NONMEM (version 7.3 by
ICON Development Solutions, Ellicott City, MD) with the
ADVAN 13 subroutine was used.24 Estimations were made
by maximizing the likelihood of the data, using the stochas-
tic approximation expectation maximization algorithm fol-
lowed by importance sampling to obtain the objective
function value for hypothesis testing.

The simultaneous modeling of continuous and count data
was permitted in NONMEM by the indication variable
F_FLAG.24 The delay, representing the CTC lifespan, was
implemented in NONMEM with the Absorption LAG (ALAG)
parameter and was calculated with the method of steps
that allowed virtually solving a delay differential equations
system by transforming it into an ordinary differential equa-
tions system.25 Gamma and factorial functions were calcu-
lated using the GAMLN function implemented in NONMEM
7.3.24 Finally, data handling and graphical representations
were performed in R, using the PsN suite and the Xpose
package.26–28

Model selection and evaluation
Selection and evaluation of the best model were achieved
using criteria based on the likelihood, relative standard
errors (RSEs), and shrinkage values, goodness-of-fit plots,
and simulation-based diagnostics.29,30

The agreement between PSA observations and predic-
tions was evaluated using classical goodness-of-fit plots,
such as population predictions vs. observations, individual
predictions vs. observations, and residual analysis. The
ability of the model to predict PSA was assessed using a
visual predictive check (VPC). A total of 100 PSA profiles
were replicated using the population parameters estimated
from the model. The observed values were compared with
the simulated fifth, median, and 95th percentiles with their
confidence intervals (95%).

Different evaluation methods were used to evaluate the
model predictive capacity on CTC count kinetics. For this
kind of data, the probability of having a given number of

Figure 1 Structure of the model. Ac and Ah represent drug
amounts in the chemotherapy and hormonotherapy compart-
ments, respectively (arbitrary unit (AU)). Kc and Kh are the chem-
otherapy and hormonotherapy kinetic rate constants, respectively
(day21). A50c and A50h are the amounts of each treatment pro-
ducing 50% of the maximum effect (AU), respectively. KinLV and
KoutLV are the latent variable production and elimination rate
constants (AU.day21 and day21), respectively. KinPSA and
KoutPSA correspond to the prostate-specific antigen (PSA) pro-
duction and elimination rate constants (ng.mL21.day21.AU21 and
day21), respectively. K0 is the circulating tumor cells (CTC) pro-
duction rate (CTC.day21.AU21). CTCTotal and CTCObs are the
CTC counts in the total body blood and in the aliquot, respectively.
a corresponds to the scaling factor and OVDP to the overdisper-
sion parameter. LV, latent variable.
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CTCs was estimated. Simulation-based graphics were per-
formed: categorical VPCs and overdispersion plot. Categor-
ical VPCs were obtained from 100 simulated replicates of
the data. Then, the median simulated probability of having
a given number of CTCs and its 95% confidence interval
was compared to the observed probability. To obtain an
overdispersion plot, 500 replicates of the data under the
model were simulated. Mean and variance were calculated
for each simulated patient using their longitudinal CTC
measurements. Then, the median of the variance and its
95% predicted confidence interval was computed for each
bin of mean. Finally, the simulated overdispersion was com-
pared to the observed one.

Sensitivity of simulated PSA and CTC kinetics
The model and its parameters were used to simulate indi-
vidual kinetic profiles of CTCs, PSA, and latent variable.

The model was also used to simulate three typical regi-
mens with population parameter estimates: (1) a patient
receiving six cycles of chemotherapy following a classical
design over 180 days; (2) a patient receiving six cycles of
hormonotherapy following a classical design over 180
days; and (3) a patient receiving simultaneously six
cycles of chemotherapy and hormonotherapy over 180
days.

Finally, an instantaneous increase (doubling) of the latent
variable was simulated with a Heaviside function, and simu-
lated PSA and CTC profiles were compared. The time to
reach 90% of the steady-state level for both markers was
assessed. A total of 500 individual simulated profiles, taking
into account the interindividual variability, were also
explored.

RESULTS
Model characteristics
The structure of the proposed model is described in Figure 1.
It required consideration of four levels of complexity, as
follows.

Drug effect kinetics. Because no drug concentration data
were available, a K-PD approach was applied to model the
kinetics of the drug actions.31 Two different K-PD compart-
ments were used to describe the drug effect kinetics for
chemotherapy and hormonotherapy administrations, thus
allowing the estimations of different kinetics and efficacy
parameters for each treatment.

Dynamic relationships between PSA and CTC kinetics.
PSA and CTCs kinetics were assumed to be triggered by
a common unobserved latent variable. The latent variable
kinetics was described by a non-steady-state indirect
model, with zero-order production and first-order elimina-
tion rates.32 Each treatment acted as an inhibitor of the
latent variable production, following a saturable (Emax)
process.

To allow the latent variable to increase, the baseline
latent variable (LV0) was constrained to be less than the
steady-state condition, defined as follows:

LV05
KinLV

KoutLV
3

expðSFLV Þ
11expðSFLV Þ

where SFLV could have a positive or negative value.
Because no information was available concerning the latent
variable, LV0 was fixed to 1; thus, LV corresponded to the
fractional change in the latent variable from baseline. As a
consequence, the inverse-logit function was applied on
KinLV :

KinLV 5
LV0 3 KoutLV

expðSFLV Þ
11expðSFLV Þ

Joint modeling of two types of data. The latent variable
was supposed to enhance the production of PSA and
CTCs. The PSA concentration kinetics (continuous data)
was described by a non-steady-state model with zero-
order production and first-order elimination rates.32 The
discrete processes for CTC kinetics (count data) in the
total body blood were characterized by a cell lifespan
model.22

Random sampling of CTCs. The observed CTC count
was considered as a random sampling from a Poisson law
family. The best model was the negative binomial distribu-
tion with a mean of k and a variance of k3ð11OVDP3kÞ.
This model allowed taking into account the overdispersion,
characterized by a variance greater than the mean of the
observed CTC counts.

Model formalization
Structural model. The proposed model, shown in Figure
1, was defined by the following equations:

dAc

dt
52Kc3Ac

dAh

dt
52Kh3Ah

dLV
dt

5KinLV 3 12
Ac

A50c1Ac

� �
3 12

Ah

A50h1Ah

� �
2KoutLV 3LV

dPSA
dt

5KinPSA3LV2KoutPSA3PSA

dCTCTotal

dt
5K 03LV2K 03LVD

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Ac and Ah represent drug amounts in the chemotherapy
and the hormonotherapy K-PD compartments, respectively
(arbitrary unit (AU)). Kc and Kh are the chemotherapy and
hormonotherapy kinetics rate constants (day21), respec-
tively. A50c and A50h are the amounts of each treatment
producing 50% of the maximum effect (AU). LV corre-
sponds to the latent variable (AU), and KinLV and KoutLV are
their production rate and elimination rate constants
(AU.day21 and day21), respectively. LVD corresponds to
the latent variable delayed by the lifespan (AU) (detailed in
Supplementary Figure S2). KinPSA and KoutPSA are the
PSA production and elimination rate constants
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(ng.mL21.day21.AU21 and day21), respectively. K0 is the
CTC production rate (CTC.day21.AU21).

The initial conditions of the model at time 0 were as
follows:

Acð0Þ50

Ahð0Þ50

LV ð0Þ5LV0 with LV0 <
KinLV

KoutLV

PSAð0Þ5PSA0

CTCTotal ð0Þ5K03LS3LV0

8>>>>>>>>><
>>>>>>>>>:

LV0 and PSA0 are the initial latent variable value (AU)
and the initial PSA concentration (ng.mL21), respectively.
LS corresponds to the CTC lifespan (day).

Individual parameter distributions in the population.
The individual parameters were assumed to be normally
distributed for K0 and LS parameters and log-normally dis-
tributed for all other parameters, allowing for the estimation
of correlations between parameters.

Observation model for PSA and CTCs. Unexplained
residual variability for PSA kinetics was modeled using an
exponential residual error model, written as an additive
model for the log-transformed PSA observations and pre-
dictions (log-transformation both sides).

Assuming a homogeneous distribution of CTCs, the
expected number of CTCs (k) was scaled by the total CTC
count obtained with the cell lifespan model:

k5CTCTotal 3a

where

a5
Aliquot volume

Total blood volume
5

7:5
5; 000

50:0015:

Finally, the observed CTC count was a random sampling
from a negative binomial distribution with a mean of k. The
probability of observing a number of CTCs equal to n was
calculated as:

PðCTCObs5nÞ5
Cðn1 1

OVDPÞ
n!3Cð 1

OVDPÞ

" #
3

1
11OVDP3k

� � 1
OVDP

3
k

1
OVDP 1k

 !n

where C and n! are the gamma and factorial functions,
respectively. OVDP is the overdispersion parameter, allow-
ing for estimating a variance greater than the mean.

The NONMEM code implementing this model is pre-
sented in Supplementary Material 3.

Model evaluation
According to goodness-of-fit plots presented in Figure 2,
PSA kinetics in treated patients with mCRPC was properly fit
over the six-month period, and VPC showed good agreement
between the distributions of observed and simulated values.

The predictive performance for the CTC counts was
assessed with simulation-based diagnostics: categorical
VPCs and overdispersion plot. These graphics are pre-
sented in Figure 3 and show that both the probability for
a given number of CTCs and the overdispersion were
described well by the model simulations. It also shows
the consistency between the observed proportion of
CTCs equal to 0 and the simulated ones. Finally, a

Figure 2 Evaluation of the model capacity to predict prostate-specific antigen (PSA). (a) Observed logarithms of PSA are plotted vs.
individual transformed predictions. Red line is the identity line. (b) Visual predictive check (VPC): log-transformed PSA values are plot-
ted vs. time. Red areas represent the 95% confidence intervals of the 5th, 95th, and 50th percentiles of simulated data. Blue dots are
the observed values. Blue lines represent the median (solid line), and the 5th and 95th percentiles (dashed lines) of the observations.
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categorical VPC for the frequently used dichotomized
CTC count (<5 vs.� 5) was performed and confirmed the
acceptable predictive performance of the model (Supple-
mentary Figure S3).

Parameter interpretation
Parameter estimates are reported in Table 2. RSEs of typi-
cal mean parameters and interindividual variability, repre-
sentative of estimation precision, were all <20%. Because

of the heterogeneity of the data, interindividual variability
values were large, but supported by satisfactory RSE and
shrinkage values. Correlations between interindividual vari-
ability parameters were estimated; for instance, K0 was
highly correlated with LS (correlation 5 0.99) and KinPSA

highly correlated with PSA0 (correlation 5 0.92).
Parameter estimates showed that chemotherapy had a

greater inhibiting potency than hormonotherapy, as
expected (A50c50.0003; A50h50.004; A50h513*A50c).

Figure 3 Evaluation of the model capacity to predict circulating tumor cell (CTC) counts. (a) Categorical visual predictive checks
(VPCs): the probability of having a number of CTCs for different CTC count categories was plotted vs. time. Red areas are the 95%
confidence intervals of the simulated median probabilities. Blue lines are the observed probabilities. (b) Overdispersion plot: the loga-
rithms of variance were plotted vs. the logarithms of mean. Black line is the identity line. Blue dots are the observations, and the blue
line a lowess of the observations. Red line corresponds to the median of simulated data, and the red area to its 95% predicted
interval.

Table 2 Parameter estimates

Parameter (unit) Estimate

RSE

estimate (%)

IIV

(CV %)

RSE

IIV (%) Shrinkage (%)

Kc (day21) 0.248 4 85 3 63

Kh (day21) 0.449 5 135 3 51

A50c (AU) 0.0003 17 218 8 27

A50h (AU) 0.004 12 168 1 29

LV0 (AU) 1 FIX – 0 FIX – –

KoutLV (day21) 0.00513 20 450 13 36

SFLV (AU.day21) 6.33 1 89 6 27

KinPSA (ng.mL21.day21.AU21) 1.40 9 161 5 6

KoutPSA (day21) 0.00813 9 124 4 21

PSA0 (ng.mL21) 153 8 155 2 1.4

K0 (CTC.day21.AU21) 308 1 12 2 59

LS (day) 58 1 14 2 59

OVDP (AU) 4.9 4 150 1 17

PSA res error 0.3 1 0 FIX – –

RSE, relative standard error; IIV, interindividual variability; CV, coefficient of variation; FIX, fixed value (not estimated); AU, arbitrary unit; CTC, circulating tumor

cell; PSA, prostate-specific antigen; LV, latent variable; Kc, chemotherapy kinetic rate constant; Kh, hormonotherapy kinetic rate constant; A50c, amount of

chemotherapy producing 50% of the maximum effect; A50h, amount of hormonotherapy producing 50% of the maximum effect; LV0, baseline LV; KoutLV, LV

elimination rate constant; SFLV, scaling factor for LV production constant; KinPSA, PSA production constant; KoutPSA, PSA elimination rate constant; PSA0,

baseline PSA; K0, CTC production rate; LS, lifespan; OVDP, overdispersion parameter.
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The CTC lifespan (LS) was estimated at 58 days, and its
production rate (K0) at 308 CTC.day21.AU21. The PSA
half-life (computed as logð2Þ=KoutPSA) was estimated at 85
days, and its production rate (KinPSA) at
1.4 ng.mL21.day21.AU21. The ratio of production rates
(KinPSA=K0) was equal to 0.004 ng.mL21.CTC21.

Sensitivity of simulated PSA and CTC kinetics
Thanks to the interindividual variability, the model allowed
simulations of different types of individual kinetic profiles,
similar to those observed, as illustrated in Supplementary
Figure S1c.

Furthermore, simulations using the model and population
parameters were performed under different treatment types.

Three kinetic profiles of a typical patient were assessed
until 300 days (Figure 4): (1) receiving chemotherapy
alone; (2) receiving hormonotherapy alone; and (3) receiv-
ing both simultaneously. A larger inhibition effect of chemo-
therapy compared to hormonotherapy was observed. The
model allowed regrowth of both biomarkers after stopping
treatment. The magnitude and rate of changes were more
important for CTCs than for PSA.

Finally, simulations were used to explore the sensitivity
of PSA and CTC kinetics to changes in the latent variable
values. Simulated PSA and CTC kinetics were compared
after doubling the latent variable. According to Figure 5,
CTCs reached 90% of steady-state at 195 days, whereas
PSA reached it at 355 days; accounting for interindividual

Figure 4 Simulations under different treatment regimens. The circulating tumor cell (CTC), prostate-specific antigen (PSA), and the
latent variables, all normalized by their baseline values, were plotted vs. time. Different typical patients were represented: (a) receiving
chemotherapy alone, (b) hormonotherapy alone, or (c) both simultaneously. Blue curves represent the PSA kinetics, red curves the
CTC kinetics, and black curves the latent variable kinetics. Vertical lines represent the treatment cycles.

Figure 5 (a) Simulations of prostate-specific antigen (PSA) and circulating tumor cell (CTC) kinetics under latent variable changes.
CTCs, PSA, and the latent variables, all normalized by their baseline values, were plotted vs. time. Black curves represent the latent
variable kinetics, red curves the CTC kinetics, and blue curves the PSA kinetics. Blue and red vertical dashed lines correspond to the
time at which the PSA and CTC reached 90% of steady-state. Black horizontal dashed line is the 90% steady-states. (b) Distribution
of the ratio of time-to-reach 90% of steady-state for PSA over CTC, in a simulated population of 500 patients.
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variability, 91% of simulated patients showed a faster varia-
tion in CTC than PSA after latent variable increase. There-
fore, the CTC kinetics seemed to be more sensitive to
variations of the latent variable in most of the patients.
Similar results were obtained when halving the latent vari-
able (not shown).

DISCUSSION

Assessment of treatment efficacy in patients with mCRPC
is a critical medical issue because of the inefficiency of
morphological imaging tests for monitoring clinical
response. The PSA is the most widely used serum tumor
marker, but its surrogacy value is questioned.5,6 PSA may
soon be replaced by CTC counting, which seems to be a
promising prognostic and predictive marker of survival and
treatment efficacy.13–15

The semimechanistic model reported here is the first to
quantify the joint dynamic relationships between the kinetics
of PSA and CTC count in patients with mCRPC. This atypi-
cal model combines several advanced features in pharma-
cometrics: K-PD modeling, joint modeling of count and
continuous data, both driven by a common latent variable,
and the discrete processes for CTCs, modeled by a cell life-
span model combined with random sampling statistics.
To simplify, the latent variable might be interpreted as the
nonmeasured tumor burden producing CTCs and PSA. This
model allowed taking into account the major challenges for
CTC detection and enumeration: (1) the discrete process;
(2) the Poisson-distributed sampling error; (3) the overdis-
persion; and (4) the high number of CTC counts equal to 0.
This report represents the first use of a cell lifespan model
to describe CTC kinetics. Moreover, although the Poisson
process was already used to take into account the sampling
of blood collection for CTC, this article describes the first
application of negative binomial distribution to model the
overdispersion in this context.9 Failure to address such phe-
nomena may lead to underestimation of standard errors.23

Internal evaluation, based on goodness-of-fit plots and
simulation-based diagnostics, demonstrated the good predic-
tive ability of the model for the kinetics of PSA and CTC
count. The model enabled estimations of important kinetic
parameters, such as PSA and CTC production, CTC lifespan,
and their respective interindividual variabilities. The estimated
PSA half-life of 85 days was in agreement with literature
data.33 The CTC lifespan was estimated at 58 days; obtaining
an experimental estimate of CTC lifespan is difficult, because
of the high rate of null counts and the time-varying production
rate, scientific literature on this topic is conflicting.34,35

The second main finding of the present study is the ability
to generate by simulations the PSA, CTC, and latent vari-
able kinetic profiles under different treatments, including
chemotherapy and/or hormonotherapy agents. The model
was also used to simulate PSA and CTC kinetics under dif-
ferent types of latent variable changes. According to these
simulations, CTC count seems to be more sensitive to the
variation of the latent variable and seems to be an earlier
biomarker compared to PSA. Although CTC and PSA are
causally related to the same process, differences in their

practical impact may arise from different kinetics and sensi-
tivity (in the sense of magnitude of the biomarker variation
in response to a given variation of the latent variable time to
reach the equilibrium). The higher sensitivity of CTC counts
over PSA concentration is consistent with the shorter half-
life of CTC. These observations support the previous results
showing the greater prediction potency of CTC compared to
PSA.13–15 Moreover, both biomarkers are causally related to
the tumor burden and, hence, both should be used and fit-
ted together to improve the prediction of the tumor size.

Nevertheless, some limitations may reduce the impact of
the outcomes presented here. The use of an indirectly
measurable latent variable with uncertain physiological
meaning is confusing and debatable for nonmodelers. Inte-
gration of longitudinal tumor burden observations with a
tumor growth inhibition model could improve the model and
its interpretation. The present semimechanistic model
undoubtedly simplifies the reality of actual biological proc-
esses. For instance, Kim et al.36 recently showed that
CTCs can also reseed the organ of origin via the circulatory
system and express factors leading to accelerated tumor
growth and angiogenesis. This process, called “tumor self-
seeding,” was not taken into account in our model.
Because of these limitations, the results of the present
model need to be confirmed. External validation of the CTC
kinetic model is planned using another mCRPC database.

Nevertheless, this model is the first to quantify the
dynamic links between the kinetics of PSA and CTC count
during treatment in patients with mCRPC. It could serve as
a general framework that could be applied to other cancer
types in order to compare the properties of CTCs. Applica-
tion of the CTC kinetic model in patients treated with other
drugs is also under consideration. Finally, the mixed effect
model allows identifying covariates and quantifying their
impact on CTC kinetics. In particular, pharmacogenomic
data could be tested to identify patients for whom CTC
counting is the most sensitive.

In the future, the present model will be challenged to
establish a link between a CTC kinetic parameter and sur-
vival and to compare the sensitivity and specificity of PSA
and CTC count for predicting treatment efficacy. A link
between the latent variable and survival will also be tested.
If relationships between a CTC kinetic parameter and effi-
cacy outcomes are confirmed and found to be more predic-
tive than those of PSA, longitudinal CTC kinetics modeling
may have several applications. In drug development, moni-
toring CTC kinetics may be used to identify the best drug
candidates and reduce the timeline required for clinical tri-
als.37 CTC kinetic parameters may also be used to predict
future treatment efficacy or risk of early progression and
the potential need for early treatment adjustment.
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