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Abstract 10 
 11 
While disease-associated variants identified by genome-wide association studies (GWAS) most 12 
likely regulate gene expression levels, linking variants to target genes is critical to determining 13 
the functional mechanisms of these variants. Genetic effects on gene expression have been 14 
extensively characterized by expression quantitative trait loci (eQTL) studies, yet data from non-15 
European populations is limited. This restricts our understanding of disease to genes whose 16 
regulatory variants are common in European populations. While previous work has leveraged 17 
data from multiple populations to improve GWAS power and polygenic risk score (PRS) 18 
accuracy, multi-ancestry data has not yet been used to better estimate cis-genetic effects on gene 19 
expression. Here, we present a new method, Multi-Ancestry Gene Expression Prediction 20 
Regularized Optimization (MAGEPRO), which constructs robust genetic models of gene 21 
expression in understudied populations or cell types by fitting a regularized linear combination 22 
of eQTL summary data across diverse cohorts. In simulations, our tool generates more accurate 23 
models of gene expression than widely-used LASSO and the state-of-the-art multi-ancestry PRS 24 
method, PRS-CSx, adapted to gene expression prediction. We attribute this improvement to 25 
MAGEPRO’s ability to more accurately estimate causal eQTL effect sizes (𝑝 < 3.98 × 10!", 26 
two-sided paired t-test). With real data, we applied MAGEPRO to 8 eQTL cohorts representing 3 27 
ancestries (average 𝑛 = 355) and consistently outperformed each of 6 competing methods in 28 
gene expression prediction tasks. Integration with GWAS summary statistics across 66 complex 29 
traits (representing 22 phenotypes and 3 ancestries) resulted in 2,331 new gene-trait associations, 30 
many of which replicate across multiple ancestries, including PHTF1 linked to white blood cell 31 
count, a gene which is overexpressed in leukemia patients. MAGEPRO also identified 32 
biologically plausible novel findings, such as PIGB, an essential component of GPI biosynthesis, 33 
associated with heart failure, which has been previously evidenced by clinical outcome data. 34 
Overall, MAGEPRO is a powerful tool to enhance inference of gene regulatory effects in 35 
underpowered datasets and has improved our understanding of population-specific and shared 36 
genetic effects on complex traits.   37 
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Introduction 38 
 39 
Many genetic variants drive complex traits by regulating gene expression1–8. Confident 40 
characterization of genetic effects on gene expression is required for the functional interpretation 41 
of disease-associated variants from genome-wide association studies (GWAS)9–11. For example, 42 
transcriptome-wide association studies (TWAS) integrate GWAS and gene expression data to 43 
enable the identification of gene-disease associations, which can reveal genes underpinning 44 
disease susceptibility, nominate candidate biomarkers for clinical use, or propel therapeutic 45 
development12–14. Despite the potential to unravel the functional mechanisms of diseases, our 46 
current understanding of disease-critical genes has been limited by variant-to-gene linking 47 
strategies that rely heavily on sample size.  48 
 49 
Although there is widespread availability of expression quantitative trait loci (eQTL) summary 50 
statistics, such as across different human tissues from the Genotype-Tissue Expression (GTEx)15 51 
project or from single cell RNA-sequencing data generated by eQTLGen16, datasets from non-52 
European populations are severely limited. Differences in allele frequency, linkage 53 
disequilibrium (LD), and potentially causal variants reduce the applicability of genetic models 54 
(of gene expression and complex traits alike) trained in European populations to non-European 55 
populations17–21 and therefore limit the relevance of disease-gene associations detected by 56 
European TWAS to other global populations. Therefore, there is an urgent need to more 57 
accurately infer which genetic variants regulate gene expression and by how much, specifically 58 
in understudied populations. Orthogonal to cross-ancestry fine-mapping of TWAS associations22, 59 
there also exists an opportunity to prune dense genomic loci with multiple gene-disease 60 
associations to effects that are shared across ancestries, as causal genes are expected to be shared 61 
across ancestries, more so in fact than causal variants. 62 
 63 
Efforts to include diverse groups of individuals in genetic studies have yielded a modest number 64 
of publicly available eQTL summary statistics from non-European populations23–27. Although the 65 
statistical power of the eQTL studies performed in non-European populations remains 66 
considerably weaker than that of European studies (6.5- and 2.6-fold difference in sample size 67 
between European and African American individuals in GTEx15 and the Multi-Ethnic Study of 68 
Atherosclerosis (MESA)24, respectively), these data provide a unique opportunity to capture 69 
varying genetic effects on gene expression across diverse ancestries. However, current gene 70 
expression prediction models (such as LASSO, elastic net, and the best linear unbiased predictor 71 
(BLUP) used in TWAS) can only model the limited individual-level genotype and gene 72 
expression data from a single population to compute noisy estimates of variant-gene effect sizes. 73 
Previous studies have proven the feasibility of leveraging data from multiple populations to 74 
enhance GWAS association power28, polygenic risk score (PRS) accuracy29–31 and GWAS fine-75 
mapping32,33. Thus, we hypothesized that multi-ancestry data would enhance the construction of 76 
cis-genetic models of gene expression by improving the estimation of variant-level effects and 77 
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overall expression prediction accuracy. Current multi-ancestry TWAS approaches do not tackle 78 
the issue of large uncertainty of inferred cis-genetic effects on gene expression in small non-79 
European cohorts. For example, TESLA improves association power by colocalizing a single 80 
eQTL dataset with a cross-population meta-analysis of GWAS summary statistics, producing 81 
results with mixed or uncertain relevance to each ancestry34. Another approach called METRO 82 
models the uncertainty of gene expression models across multiple cohorts to maximize 83 
colocalization with GWAS35, resulting in findings that are highly driven by European data when 84 
other gene models are derived from smaller non-European datasets. To date, multi-ancestry data 85 
has not been used to reduce uncertainty and improve accuracy of population-specific genetic 86 
models of gene expression.  87 
 88 
Here, we introduce a new method, Multi-Ancestry Gene Expression Prediction Regularized 89 
Optimization (MAGEPRO), that improves gene expression prediction accuracy in underpowered 90 
ancestries or undersampled tissues by optimally combining eQTL summary statistics from 91 
ancestrally and functionally diverse datasets. We evaluate the robustness of our method in 92 
various simulated genetic architectures and compare the predictive performance of MAGEPRO 93 
to alternative methods of gene expression prediction, including an adaptation of a multi-ancestry 94 
complex trait PRS method called PRS-CSx30, using 8 different eQTL cohorts representing 3 95 
ancestries. We additionally applied MAGEPRO gene models to perform TWAS with 15 blood-96 
cell traits and 7 immune-mediated diseases, each represented by GWAS cohorts of individuals of 97 
African, European, and Hispanic ancestries, to identify novel disease-gene associations and 98 
interrogate the population-specificity of these putative disease genes.  99 
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Results  100 
 101 
Overview of MAGEPRO  102 
 103 
MAGEPRO maximizes our ability to infer gene regulatory effects in small sample size eQTL 104 
datasets and constructs robust cis-genetic models of gene expression that are specific to an 105 
ancestry. Given individual-level genotype and gene expression data of the target cohort and 106 
external eQTL data from diverse ancestries and tissues, MAGEPRO first estimates effect sizes 107 
for single nucleotide polymorphism (SNP)-gene pairs in cis that are specific to the target 108 
population via a LASSO (L1 norm)-regularized linear regression (Figure 1, green box). This 109 
step constitutes the conventional TWAS gene expression prediction model. Next, MAGEPRO 110 
applies the Sum of Single Effects (SuSiE)36,37 regression model to each set of external eQTL 111 
summary statistics to identify putative causal variants and estimate posterior effect size estimates 112 
for all cis-variants (Figure 1, blue box). Assuming most causal variants are shared, this step is 113 
critical to maximizing the cross-population transferability of information from external datasets 114 
to the target cohort. Causal variants are more likely to possess predictive power in the target 115 
population compared to variants that merely tag the causal variant; specifically, the causal variant 116 
may not be sufficiently tagged in the target population if there are differences in linkage 117 
disequilibrium and allele frequency between training and target populations. Finally, our 118 
approach finds an optimal ridge (L2 norm)-regularized linear combination of posterior effect size 119 
estimates from SuSiE and the target population SNP-gene weights to produce the final gene 120 
expression prediction model (Figure 1, white box). By utilizing existing fine-mapping 121 
frameworks and regularizing the combination of SNP-gene weights across datasets, MAGEPRO 122 
is designed to include only information that is potentially relevant to the target population, as 123 
opposed to other strategies such as METRO (see above) or a meta-analysis approaches where 124 
inferred effect sizes are driven by the largest (European) datasets in the analysis.  125 
 126 
Throughout this study, we compare MAGEPRO to several methods for gene expression 127 
prediction. These include single-ancestry methods commonly used in TWAS, such as LASSO 128 
regression12,14,38,39, and multi-ancestry approaches, such as a cross-population meta-analysis of 129 
eQTL summary statistics. We also utilized methods that are conventionally applied to gene 130 
expression or GWAS data, like SuSiE36,37 and pruning and threshold (P+T)17,40,41. Notably, we 131 
benchmarked our tool against a variation of MAGEPRO that we refer to as Multipop, which does 132 
not use SuSiE, but rather fits a ridge (L2 norm)-regularized linear combination of raw eQTL 133 
summary statistics. Lastly, we benchmarked MAGEPRO against PRS-CSx30, a state-of-the-art 134 
multi-ancestry PRS method for genome-wide complex trait/disease data. PRS-CSx is a Bayesian 135 
framework that models LD heterogeneity across datasets and infers a shared shrinkage parameter 136 
to enforce sparsity, which assumes that causal effects are shared, a common assumption of most 137 
multi-ancestry fine-mapping models32,42. While PRS-CSx is a popular choice for PRS using 138 
ancestrally diverse GWAS data43–49, this method has not yet been applied to integrate cross-139 
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population eQTL summary statistics to create more predictive models of gene expression. In our 140 

study, we compare gene expression prediction accuracy (#!"
#

$%$%#
) between methods, which is defined 141 

as the fraction of gene expression variance explained by the model in cross-validation (𝑅&'( ), 142 
normalized by the upper limit of the prediction: the cis-heritability estimated by GCTA50 (ℎ/)*( ). 143 

Each competing method is described in further detail in Methods. 144 
 145 
Simulations 146 
 147 
We performed extensive simulations to compare the performance of MAGEPRO to the most 148 
popular approaches, LASSO for single-ancestry and PRS-CSx for multi-ancestry, under various 149 
genetic architectures, using code adapted from the Mancuso Lab TWAS simulator (Code 150 
Availability)51,52. We used real genotypes from the 1000 Genomes Project18 as LD reference 151 
panels to simulate genotypes and cis-regulated gene expression data across African, European, 152 
and American ancestries (Methods). We compared the 5-fold cross-validation accuracy of each 153 
model in predicting cis-regulated gene expression in African individuals (target), using simulated 154 
European and American summary statistics (external) for both PRS-CSx and MAGEPRO. In our 155 
primary analysis, we simulated genes with four causal cis-eQTLs shared across populations with 156 
correlated true effect sizes (r = 0.8); we varied target population sample sizes, the heritability of 157 
gene expression, and the number of causal cis-eQTLs. In secondary analyses, we varied whether 158 
or not eQTL effects were correlated across ancestries, changed whether or not there were 159 
ancestry-specific causal cis-eQTLs in high LD with the causal variant of the target ancestry, and 160 
lastly, evaluated if MAGEPRO can still improve the accuracy of gene models when SuSiE fails 161 
to identify a likely causal variant. More details on our simulation framework are described in 162 
Methods and the Supplementary Note. 163 
  164 
Within our primary analyses, we first compared the prediction accuracy of the three methods, 165 

calculated as #!"
#

$%$%#
 (see above) across target population sample sizes ranging from 80 to 500 166 

individuals and gene expression heritability ranging from 5% to 40%. Across 1,000 167 
independently simulated genes, MAGEPRO outperformed both LASSO and PRS-CSx in each of 168 
20 different sample size and cis-heritability settings with an average improvement of 5.7% and 169 
4.5% in accuracy, respectively (Figure 2A, Supplementary Tables 1-2). Generally, larger 170 
sample sizes of the target population resulted in more accurate predictions for a given 171 
heritability; and, accuracy notably increased and began to approach 100% for each method 172 
within the most heritable genes (40%), thanks to the larger and more easily identifiable eQTL 173 
effects. The utility of MAGEPRO is most clearly demonstrated at smaller sample sizes and 174 
higher gene expression heritability (Supplementary Figures 1-2), enhancing accuracy by > 9% 175 
compared to LASSO (𝑝 < 1.4 × 10!+,) and by > 7% compared to PRS-CSx (𝑝 < 2.3 × 10!"-) 176 
when the sample size of the target cohort is 80 individuals and the heritability of the gene is ≥ 177 
20%. For lowly heritable genes, MAGEPRO demonstrates an increasing margin of advantage 178 
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over the other two methods as sample sizes grow (Supplementary Figures 1-2), suggesting that 179 
MAGEPRO may be especially useful for modeling the genetic architecture of disease-critical 180 
genes whose regulatory effects are flattened by natural selection and thus have lower cis-181 
heritability53,54.  182 
 183 
We further hypothesized that MAGEPRO would achieve superior prediction accuracy by 184 
estimating more accurate eQTL effect sizes. Indeed, when we compare the squared difference 185 
between simulated (true) and estimated causal eQTL effect sizes, MAGEPRO produces smaller 186 
errors compared to both competing methods across the five different sample sizes at 10% gene 187 
expression heritability (all 𝑝 < 3.98 × 10!", Figure 2B, Supplementary Tables 3-4). Although 188 
the accuracy of causal eQTL effect sizes is not a requirement for prediction methods (e.g., 189 
prediction can be achieved with strong tagging variants), we believe this characteristic of 190 
MAGEPRO may lead to more accurate results from downstream gene-based association analysis 191 
like TWAS.  192 
 193 
We also evaluated each method across genetic architectures with varying numbers of causal cis-194 
eQTLs while maintaining a constant 10% cis-heritability and target sample size of 240, which is 195 

synonymous with decreasing the per-SNP heritability ( $$%#

.	012314	*5673
). Overall, as the per-SNP 196 

heritability decreases, the prediction accuracy of all methods decreases due to the difficulty of 197 
capturing larger quantities of smaller effects (Figure 2C, Supplementary Tables 5-6), 198 
exemplifying the challenge of modeling the genetic regulation of disease-critical genes, which 199 
are more likely to have lower cis-heritability (see above). Despite this challenge, MAGEPRO 200 
outperformed both LASSO and PRS-CSx in each per-SNP heritability setting (all 𝑝 <201 
	1.5	 × 10!+), while PRS-CSx notably surpassed the accuracy of LASSO for the two lower per-202 
SNP heritability settings. This indicates that at current eQTL study sample sizes, leveraging 203 
multi-ancestry data is a useful tool for accurately modeling the genetic regulation of potentially 204 
disease-relevant genes and may help more confidently identify which diseases they influence via 205 
gene-based association tests.  206 
 207 
In secondary analyses, we tested the performance of MAGEPRO when the effect sizes of shared 208 
causal cis-eQTLs are drawn independently across ancestries and are thus uncorrelated. Although 209 
MAGEPRO achieves larger improvements relative to LASSO and PRS-CSx when effect sizes 210 
are correlated across ancestries, our tool robustly improves prediction accuracy even when effect 211 
sizes are independent (Supplementary Figure 3) and trends across sample sizes and 212 
heritabilities are largely shared with simulations with correlated eQTL effects. Recent work 213 
shows that effect size correlations across ancestries are lower for loss-of-function intolerant 214 
genes39 and variants with ancestry-specific disease effects may reside closer to genes interacting 215 
with the environment, such as immune responses55. This suggests that MAGEPRO will continue 216 
to improve gene model accuracy, even when causal eQTL effect sizes are independent, which 217 
could potentially lead to the discovery of novel gene-disease associations. In a related 218 
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framework, we simulated gene expression prediction models based on a single causal eQTL in 219 
the target African population. In this analysis, the single causal eQTL is not shared across any 220 
ancestries, but the two causal variants from the European and American populations are in high 221 
LD with the causal variant of the target population (Supplementary Figure 4). Overall, we 222 
observed highly similar trends with that of Figure 2; in fact, the accuracies across sample sizes 223 
and heritabilities were greater than in Figure 2 due to the fact that per-SNP heritability was 224 
proportionally higher thanks to simulating a single causal variant. 225 
 226 
Lastly, we explored whether the improvement in accuracy provided by MAGEPRO depends on 227 
the ability of SuSiE to identify causal cis-eQTLs in external datasets. The enhancement of 228 
prediction accuracy relative to LASSO is nominally larger when SuSiE identifies at least 1 229 
causal cis-eQTL (𝑃𝐼𝑃 ≥ 0.95) across the external datasets and this difference is only statistically 230 
significant at the largest target population sample size of 500 (𝑝 = 0.03) (Supplementary 231 
Figure 5). This implies that although isolating the causal regulatory variants contributes to 232 
improved prediction, MAGEPRO does not rely on fine-mapped SNPs with high PIPs, but rather 233 
on posterior effect size estimates. 234 
 235 
Benchmarking MAGEPRO against alternative gene expression prediction methods  236 
 237 
In real data analysis, we employed MAGEPRO to create cis-genetic models of gene expression 238 
for 8 eQTL cohorts across 3 different ancestries (average n = 355) using up to 5 external 239 
summary statistic datasets as features in the MAGEPRO model (Table 1)15,16,24,25,27. For each 240 
gene, we performed variable selection, e.g., eQTL fine-mapping, applying SuSiE to each 241 
summary statistic dataset (Methods). We explored the possibility of leveraging IMPACT, a tool 242 
we have previously developed to estimate the probability that a variant participates in cell-type-243 
specific gene regulation56, as Bayesian SNP-selection priors in SuSiE have been shown to 244 
improve fine-mapping power57. Although this increased the number of genes with at least 1 245 
putatively causal eQTL (posterior inclusion probability (PIP) ≥ 0.95), increased average PIPs in 246 
credible sets, and decreased average credible set size, it did not substantially affect the accuracy 247 
of MAGEPRO gene models (Supplementary Figures 6-7). Even random priors seemed to 248 
improve fine-mapping metrics, likely by randomly pruning high PIP variants in high LD; but, 249 
ultimately the predictive capacity of posterior effect size estimates do not strictly depend on 250 
reduced credible set size and high PIP SNPs, thus the gene model accuracy is not necessarily 251 
affected (Supplementary Figure 6). These results are consistent with our simulations that 252 
indicated MAGEPRO need not find a putatively causal eQTL to enhance prediction accuracy 253 
relative to LASSO. Therefore, we elected to not use IMPACT priors in the default 254 
implementation of MAGEPRO.  255 
 256 
Next, we applied GCTA to each target eQTL cohort to estimate the cis-heritability (ℎ)*( ) of each 257 

gene. For genes with larger cis-heritability estimates, SuSiE detected a larger number of 258 
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putatively causal eQTLs on average (𝑃𝐼𝑃 ≥ 0.95) (Supplementary Figure 8). We also observed 259 
that the estimated cis-heritabilities of gene expression were highly correlated across ancestries, 260 
consistent with previous work22 (Pearson correlation (r) ranging from 0.32 to 0.83 in 261 
comparisons between European, Hispanic/Latino, and African American populations) 262 
(Supplementary Figure 9). However, we observed similar heterogeneity of heritability 263 
estimates even across cohorts within the same ancestry (r = 0.34, 95% CI [0.311, 0.367]) 264 
between European individuals in GEUVADIS and GENOA cohorts), suggesting that cross-265 
cohort variation may limit out-of-cohort prediction accuracy.  266 
 267 
We next compared the performance of various methods in predicting expression levels of 268 
significantly cis-heritable genes in each target cohort (GCTA ℎ/)*( > 0; 𝑝 < 0.01). These 269 

methods, introduced above and in more detail in Methods, comprise a cross-population meta-270 
analysis, pruning and thresholding (P+T) of target marginal cis-eQTL, LASSO of the target 271 
population, SuSiE applied to the target population, a ridge (L2 norm) regression of full external 272 
cis-eQTL summary statistics (which we refer to as “Multipop”), PRS-CSx, and MAGEPRO. We 273 
note that not all external summary statistics contain associations for all genes, and thus 274 
MAGEPRO utilizes only relevant external datasets available to each gene.  275 
 276 
First, we applied each method to predict lymphoblastoid cell line (LCL) gene expression in the 277 
Genetic Epidemiology Network of Arteriopathy (GENOA) African American (AA) cohort (n = 278 
346). MAGEPRO outperformed all competing methods (all paired one sided t-test 𝑝 <279 
3 × 10!89) and improved prediction accuracy by 10.4% relative to LASSO averaged across 280 
4,141 cis-heritable genes (Figure 3A, Supplementary Table 7). MAGEPRO’s accuracy 281 
exceeded that of Multipop (𝑝 = 8 × 10!:(), suggesting that the posterior effect sizes estimated 282 
by SuSiE are prioritizing variants that are critical in predicting gene expression. Notably, our 283 
model increased prediction accuracy relative to LASSO by over 20% for 1,177 genes and 284 
introduced 204 new genes with an 𝑅0;(  significantly greater than 0 (𝑝 < 0.05). We then down-285 
sampled the GENOA AA cohort (𝑛 = 100) to challenge MAGEPRO in a small sample size 286 
setting (one that is similar to the number of African American individuals in GTEx). We found 287 
that MAGEPRO maintains improved accuracy compared to all methods when target population 288 
genotype and gene expression data is extremely limited (𝑝 < 0.01 across all comparisons, 289 
Figure 3B, Supplementary Table 8). At this sample size, we achieved a 4.4% improvement in 290 
accuracy relative to PRS-CSx (𝑝 = 4 × 10!89), suggesting that the layers of regularization in 291 
our framework minimize overfitting even with small training cohorts.  292 
 293 
We observed similar trends across all 8 target eQTL cohorts (10 including down-sampled 294 
cohorts). In predicting monocyte gene expression in the Multi-Ethnic Study of Atherosclerosis 295 
(MESA) Hispanic/Latino (HIS) cohort, MAGEPRO again outperformed all competing methods 296 
(all 𝑝 < 	6 × 10!(8), improving prediction accuracy relative to LASSO by over 20% for 942 297 
genes and creating 191 new gene models with significantly positive 𝑅0;(  (Supplementary Figure 298 
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10). MAGEPRO improved prediction accuracy relative to LASSO by 14.7% in the GTEx AA 299 
cohort (𝑛 = 80, Whole Blood) and by 13.5% in the down-sampled GEUVADIS European (EUR) 300 
cohort (𝑛 = 100, LCL), suggesting that our method provides the largest relative improvement 301 
when the target cohort sample size is limited (Figure 3C, Supplementary Table 9).  302 
 303 
Next, we aimed to characterize the genes for which MAGEPRO is most useful for capturing the 304 
cis-genetic component of expression. We observed that the change in accuracy between 305 

MAGEPRO and LASSO (MAGEPRO #&'
#

$%$%#
 – LASSO #&'

#

$%$%#
) is negatively correlated with cis-306 

heritability estimates (𝑟 = −0.14, 𝑝 = 	3.7 × 10!(9 and 𝑟 = −0.17, 𝑝 = 	4.7 × 10!(: for 307 
GENOA AA and MESA HIS respectively; Figure 3D, Supplementary Table 10, 308 
Supplementary Figure 11). This indicates that MAGEPRO offers the greatest modeling 309 
improvements to low heritability genes, which are more likely to be disease-critical, as natural 310 
selection restricts the magnitude of cis-genetic effects (and thus heritability) on disease-critical 311 
genes. For example, we found that loss-of-function intolerant genes (pLI > 0.9)58 indeed have the 312 
lowest gene expression heritability estimates (Supplementary Figure 12, 𝑝 < 7.0 × 10!"). 313 
Additionally, we found that MAGEPRO offers the greatest advantage over PRS-CSx when the 314 

per-SNP heritability of the gene ( $%$%#

#	=>?3	@AB$	?C?D9.-+
), which is proportional to the power to detect 315 

cis-genetic effects31, is low (Supplementary Figure 13).  316 
 317 
We also evaluated the generalizability of each model to individuals from a different study cohort 318 
in the same target ancestry. To this end, we compared out-of-cohort prediction accuracy. We 319 
trained gene expression prediction models in GENOA AA and GEUVADIS EUR cohorts, each at 320 
two different sample sizes, and then applied these models to predict LCL gene expression in 321 
GEUVADIS Yoruba (YRI) and GENOA EUR cohorts, respectively. MAGEPRO and SuSiE 322 
consistently outperformed the other methods (LASSO, Multipop, PRS-CSx) in out-of-cohort 323 
prediction, suggesting that frameworks which prioritize putative causal eQTL may result in more 324 
generalizable predictive models (Supplementary Figure 14). We note that we did not assess 325 
cross-population meta-analysis or P+T in this analysis, as they performed much more poorly in 326 
within-cohort cross-validation tasks. However, the performance of MAGEPRO relative to SuSiE 327 
(applied directly to the training population) was highly variable. For example, the SuSiE model 328 
trained in the down-sampled GENOA AA cohort (𝑛 = 100) achieved a higher out-of-cohort 𝑅( 329 
than MAGEPRO (𝑝 = 0.006, Supplementary Figure 14), possibly due to the different extent of 330 
admixture between African American (training) and Yoruba individuals (testing) 331 
(Supplementary Figure 15) or due to the inherent cross-cohort variation in the genetic 332 
architecture of gene expression that we previously observed (Supplementary Figure 9). In 333 
contrast, the MAGEPRO model trained in the down-sampled GEUVADIS EUR cohort (𝑛 =334 
100) exceeded SuSiE in out-of-cohort prediction by 6% (𝑝 = 8.6 × 10!-, Supplementary 335 
Figure 14). MAGEPRO generally excels in out-of-cohort prediction when the genetic ancestry 336 
of the training and testing cohorts are closely related (Supplementary Figures 14-15), 337 
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highlighting the population-specific nature of MAGEPRO models. In other words, SuSiE applied 338 
to the target training population is effective at assaying causal variants that are likely to be shared 339 
across populations, but more population-specific effects may be identified by MAGEPRO, which 340 
is tailored to the training population. 341 
 342 
We found that MAGEPRO is consistently most useful when the target population genotype and 343 
gene expression data is limited. We hypothesized that this may include situations where the 344 
target tissue is less accessible and/or data is scarce. Therefore, we explored if genetic models of 345 
gene expression in tissues that are seemingly unrelated to blood can be improved by integrating 346 
widely available blood-derived eQTL summary statistics. To this end, we applied MAGEPRO to 347 
create Lung gene models in GTEx using blood-related external cis-eQTL summary statistics 348 
(Table 1). MAGEPRO produced impressively accurate gene models (59% on average) while 349 
outperforming all competing methods (all 𝑝 < 	1 × 10!",), likely owing to the correlation of cis-350 
genetic regulation of gene expression across tissues15 (Supplementary Figure 16), not unlike the 351 
cross-population sharing of causal effects. Moreover, this suggests that MAGEPRO successfully 352 
identifies regulatory effects from blood tissue that are transferable to lung tissue, notably 353 
resulting in an 8.4% average improvement over the lung-specific LASSO model (𝑝 =354 
9 × 10!:9F).  355 
 356 
We implemented MAGEPRO as a publicly available pipeline on GitHub (Code Availability), 357 
leveraging multiple threads on both high-performance computing (HPC) clusters59 and personal 358 
devices to enhance computational efficiency (Supplementary Figure 17). 359 
 360 
Transcriptome-wide association studies are sensitive to cis-genetic models of gene expression 361 
 362 
We hypothesized that one of the most compelling applications of MAGEPRO would be to make 363 
the inference of disease-critical genes more powerful for underrepresented populations. To this 364 
end, we applied LASSO, SuSiE, PRS-CSx, and MAGEPRO models trained in 7 blood-related 365 
eQTL cohorts (MESA AA Monocyte, GENOA AA LCL, GTEx AA Whole Blood, MESA EUR 366 
Monocyte, GEUVADIS EUR LCL, GTEx EUR Whole Blood, MESA HIS Monocyte) to perform 367 
TWAS for 15 blood cell traits and 7 immune-mediated diseases using ancestry matched GWAS 368 
summary statistics from Chen and colleagues60 (AFR N = 13,391, EUR N = 516,979, HIS N = 369 
6,849) and the Global Biobank Meta-analysis Initiative (GBMI)61 (AFR N = 26,052, EUR N = 370 
1,024,298, Native American ancestry (AMR) N = 15,490), respectively (Supplementary Table 371 
11). We note that we did not have access to AMR eQTL data and, therefore, we used HIS gene 372 
expression prediction models as proxies to perform TWAS in the AMR population. To avoid 373 
complicated notation, we refer to subsequent TWAS analysis involving HIS eQTL data and 374 
AMR GWAS as HIS. Generally, we observed two main phenomena. In one case, MAGEPRO 375 
models led to more accurate cis-genetic models of gene expression (relative to LASSO), and this 376 
subsequently eliminated the statistically significant TWAS association observed for LASSO. In 377 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.25.24314410doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=9635829&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16964723&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9586829&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13755803&pre=&suf=&sa=0&dbf=0
https://doi.org/10.1101/2024.09.25.24314410
http://creativecommons.org/licenses/by-nc-nd/4.0/


the other case, MAGEPRO generated predictive gene expression models (significantly positive 378 
R2) even though LASSO failed to do so; this resulted in many new gene-trait/disease 379 
associations, exemplifying the utility of MAGEPRO to enhance disease inference in 380 
underpowered cohorts and underrepresented populations. Ultimately, both of these scenarios 381 
allowed us to explore the sensitivity of TWAS to slight variations in cis-genetic gene models. 382 
We explore examples of both cases below in more depth.  383 
 384 
First, we observed that the average change in gene expression prediction 𝑅( (MAGEPRO 𝑅( – 385 
LASSO 𝑅() does not correlate with the average change in TWAS chi-square statistic (χ() 386 
(MAGEPRO TWAS χ( - LASSO TWAS χ() across significantly cis-heritable genes 387 
(Supplementary Figure 18). This result is not surprising as few genes play critical roles for any 388 
one disease, and MAGEPRO is able to improve the mapping of cis-genetic effects for both 389 
disease-critical and non-critical genes. However, this observation led us to understand that 390 
sometimes an improved gene expression prediction model may actually produce a weaker TWAS 391 
association, implying that less accurate gene models were only spuriously correlated with 392 
disease. In other words, MAGEPRO provides an additional utility of enhancing the confidence in 393 
TWAS association results by increasing the gene expression prediction accuracy. While TWAS is 394 
most well-powered to identify genes with large cis-genetic effects that colocalize with disease, 395 
our observation here does not invalidate the compelling nature of our previous finding that 396 
MAGEPRO produces the largest improvements in model accuracy for low heritability genes, 397 
which due to natural selection may be more disease-critical. Therefore, by learning more 398 
accurate cis-genetic models of gene expression, MAGEPRO may be additionally poised to help 399 
derive disease-critical effects on gene expression in frameworks beyond TWAS. 400 
 401 
There were several genes for which the conventional single population TWAS model produced a 402 
significant TWAS association that was ablated when the gene model was improved with 403 
MAGEPRO. For example, the association between ZNF213-AS1 and red blood cell count in the 404 
African American population diminished as MAGEPRO improved the accuracy of gene 405 
expression prediction (Figure 4A, Supplementary Table 12). Investigating how the cis-genetic 406 
model of gene expression colocalizes with GWAS summary statistics reveals that the 407 
MAGEPRO model captured a new eQTL signal (“MAGEPRO-specific” in teal), improving gene 408 
expression prediction accuracy (from 24% with SuSiE or 33% with LASSO to 45% with 409 
MAGEPRO) but providing conflicting evidence against the negative association with the GWAS 410 
phenotype (Figure 4A). ZNF213-AS1 is a noncoding antisense RNA gene which controls breast 411 
cancer progression by modulating estrogen receptor signaling62,63, but links to blood-related 412 
phenotypes have not been reported in the literature. Additionally, this association was not found 413 
in the European TWAS (z = -2.8, not significant [n.s.]), although the gene model achieved near 414 
perfect accuracy. To summarize, while TWAS does not account for the uncertainty of gene 415 
expression models, our findings suggest that considering association statistics across different 416 
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models for the same gene can reveal unstable gene-disease associations and potentially false 417 
positives.  418 
 419 
Second, we observed that modest changes to cis-genetic models of gene expression can also give 420 
rise to biologically plausible new disease-gene associations. For instance, RGS14 was not 421 
analyzed in the European TWAS using LASSO because the model produced an 𝑅( that was not 422 
significantly greater than 0 (Figure 4B, Supplementary Table 13). The MAGEPRO model 423 
introduced a new eQTL signal (teal dotted line), which helped the model achieve a significantly 424 
positive 𝑅( (𝑝 < 0.05) and provided additional evidence to the negative association with asthma 425 
(Figure 4B). The estimated heritability (ℎ/)*( ) of RGS14 was only 0.03 (se = 0.015), reflecting the 426 

inherent difficulty in modeling genetic effects on genes with low heritability and the utility of 427 
MAGEPRO for detecting putative disease-critical genes that could not previously be reliably 428 
analyzed. RGS14 belongs to a family of proteins that regulate G protein signaling, which plays a 429 
significant role in asthma64,65. Current asthma therapies include G protein signaling agonists and 430 
antagonists, which relax airway smooth muscles and reduce airway inflammation, respectively66. 431 
Our finding suggests that regulatory variants modulating G protein signaling may carry genetic 432 
risk for asthma.  433 
 434 
MAGEPRO recapitulates gene-disease associations across diverse ancestries and reveals 435 
ancestry-specific findings   436 
 437 
Now that we understand the dominant mechanisms by which MAGEPRO can inform gene-438 
disease association studies (e.g., by ablating the significant association producd by less accurate 439 
models, or by producing significant associations for genes that previously lacked predictive 440 
models), we sought to apply our models across diverse ancestries to characterize population-441 
specific or population-shared gene-level effects on complex traits and diseases. We organized our 442 
analysis into two disjoint sets of genes: those with fairly accurate predictive models (𝑅( > 0, 443 
𝑝 < 0.05) across all methods (LASSO, SuSiE, PRS-CSx, MAGEPRO) and those that lacked a 444 
predictive LASSO model. 445 
 446 
We first analyzed all genes with a gene expression prediction 𝑅( significantly greater than 0 in 447 
all methods. Aggregating results across 7 blood-related eQTL cohorts and 66 GWAS summary 448 
statistics (accounting for 22 unique diseases/traits and 3 ancestries), MAGEPRO identified 2,521 449 

gene-trait associations (𝑝 < 	 9.9+
#	)*G*3	B*3B*H	AG	H1B13*B

) that were not found by LASSO 450 

(Supplementary Table 14). Considering all four methods, we found that MAGEPRO identified 451 
1,350 significant gene-trait associations that are not identified by any other model 452 
(Supplementary Table 15), showcasing the benefit of MAGEPRO in augmenting current gene 453 
expression prediction models in the TWAS framework. However, MAGEPRO gene models do 454 
not necessarily generate more significant gene-trait associations than other methods 455 
(Supplementary Figure 19). This is because improving genetic models of gene expression 456 
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yields TWAS results that are more reliable, but not necessarily stronger in association as we 457 
discussed previously (Figure 4A, Supplementary Figure 18). When we applied Monocyte gene 458 
models trained in MESA African American individuals to TWAS, MAGEPRO found 8 459 
significant associations not identified by LASSO (6 of them as a result of larger gene model 𝑅() 460 
(Figure 5A, Supplementary Table 16) and 20 significant associations not found by PRS-CSx 461 
(10 of them as a result of larger gene model 𝑅() (Figure 5B, Supplementary Table 17). In 462 
contrast, when we applied our LCL gene models trained in GENOA African American 463 
individuals, PRS-CSx identified 16 associations not found by MAGEPRO (Supplementary 464 
Figure 19). However, MAGEPRO produced a more accurate genetic model of gene expression 465 
for 9 of these 16 genes, suggesting that a majority of the gene-trait associations undetected by 466 
MAGEPRO may be false positives, or at the least, unreliable associations. We found similar 467 
patterns when comparing TWAS associations across MAGEPRO, LASSO, and PRS-CSx in 468 
Hispanic/Latino individuals (Supplementary Figure 20), although the limited GWAS sample 469 
size for this population greatly reduced our power to assess patterns of gene-trait associations 470 
across methods. Reflecting on our results, our suggested best practice is to use the most accurate 471 
cis-genetic model of gene expression for each gene, as similarly implemented in FUSION. 472 
Although it does not always lead to more statistically significant gene-trait associations 473 
(Supplementary Figure 19), TWAS results will be more credible when the gene expression 474 
prediction models are more accurate.  475 
 476 
Second, we explored how improving genetic models of gene expression in underpowered 477 
ancestries can help us challenge or recapitulate results from European TWAS studies. To this 478 
end, we investigated TWAS results for white blood cell (WBC) count using Monocyte gene 479 
models developed for European, African American, and Hispanic populations; we focus on 4 480 
associations that were consistent across at least two populations: PHTF1, LAMTOR2, PTPN22, 481 
and LMNA (Figure 5C, Supplementary Table 18). PHTF1 was not evaluated in African-482 
ancestry TWAS with LASSO because the gene model 𝑅( was not significantly greater than 0. 483 
However, MAGEPRO improved this gene expression prediction model and identified a positive 484 
association with WBC count, recapitulating findings from the European population (Figure 5C, 485 
Supplementary Figure 21). PHTF1 has been associated with other immune-mediated diseases, 486 
such as type 1 diabetes in early genetic studies67. Additionally, differential expression analysis 487 
has shown that this gene is overexpressed in patients with acute lymphoblastic leukemia68, a 488 
condition characterized by the overproduction of immature white blood cells. This indicates that 489 
PHTF1 is a plausible candidate for regulating white blood cell count and extreme dysregulation 490 
of this gene may be linked to forms of leukemia. Furthermore, leveraging MAGEPRO to 491 
improve the genetic model of gene expression for LAMTOR2 by 54% resulted in a new 492 
association for individuals of African ancestry, which is consistent with findings from European 493 
TWAS (Figure 5C, Supplementary Figure 21). Previous work shows that experimental 494 
knockout of LAMTOR2 results in an expansion of conventional dentritic cells in mice69 and the 495 
deficiency of this gene causes immunodeficiency syndromes in humans70,71. The replication 496 
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across ancestries and the layers of evidence in the literature suggest that LAMTOR2 is another 497 
candidate regulator of white blood cell count in humans. PTPN22, a well-known regulator of 498 
immune signaling72–76, and LMNA, a major component of the mammalian lamina with important 499 
functions in immune cells77, was also identified by TWAS for both African and European 500 
ancestries using either LASSO or MAGEPRO models. Our findings demonstrate that applying 501 
MAGEPRO to improve genetic models of gene expression in understudied populations can help 502 
identify potentially causal disease/trait-associated genes that replicate across different ancestries. 503 
 504 
Third, we evaluated MAGEPRO's capacity to identify ancestry-specific gene-trait associations. 505 
To achieve this, we analyzed genes with a gene expression prediction 𝑅( significantly greater 506 
than 0 in both LASSO and MAGEPRO and used the better-performing model for TWAS. We 507 
identified 137 associations in African or Hispanic populations which were not found in European 508 
TWAS (Supplementary Table 19). Among these, 13 genes were exclusively identified by 509 
MAGEPRO, 5 by LASSO, and 119 by both methods. Notably, MAGEPRO improved the 510 
predictive performance of the UBAP2L Monocyte gene model in the African American 511 
population, modestly raising the 𝑅( from 0.10 (LASSO) to 0.11. As a result, MAGEPRO 512 
detected an association between UBAP2L and neutrophil count (NEU) (z = -6.02), which was not 513 
found by any European model across monocyte, LCL and whole blood tissues. Previous 514 
experimental studies have demonstrated that UBAP2L plays a crucial role in the regulation of 515 
long-term hematopoietic stem cells78, supporting its potential as a candidate regulator of 516 
neutrophil counts.  517 
 518 
Lastly, we sought to use MAGEPRO to identify disease-critical roles specifically for genes that 519 
lacked a predictive LASSO model (𝑅( not significantly positive), and thus could not be 520 
previously analyzed by TWAS. In this category, MAGEPRO offered 3,195 new gene models 521 
across 7 eQTL cohorts. The cis-genetic effects of these genes were inherently difficult to model 522 
due to the low heritability of gene expression (average ℎ/)*( = 0.095, lowest quantile in Figure 523 

3D). Nevertheless, MAGEPRO enhanced the average 𝑅(	of these models from 0.0047 with 524 
LASSO to 0.031 (a 560% increase). Applying these newly modeled genes to TWAS across all 525 
66 traits yielded 981 associations at Bonferroni significance, where a different threshold was 526 
determined for each of 7 eQTL cohorts (Figure 6, Supplementary Table 20). Several of these 527 
associations recaptiulate existings results from colocalization analysis using European GWAS. 528 
For example, European MAGEPRO models identified an association of IRF879 to monocyte 529 
count (MON) and RCCD180,81 to red blood cell distribution width (RDW), which are consistent 530 
with European colocalization analyses82,83 (Figure 6). Additionally, some of these associations 531 
replicate previously reported European TWAS results in an understudied ancestry. For instance, 532 
the relationship between FAM234 and mean corpuscular hemoglobin concentration (MCHC) has 533 
been established in European TWAS84–86, but to our knowledge has not been reported using 534 
genetic associations from individuals of African ancestry until now (Figure 6).  535 
 536 
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The new MAGEPRO gene models also resulted in biologically plausible novel findings. For 537 
example, African American MAGEPRO models for whole blood identified an association 538 
between SH2D1B and SLAMF8 to both neutrophil count (NEU) and white blood cell (WBC) 539 
count (Figure 6). Multiple lines of evidence support that the proteins encoded by these two 540 
genes interact to control immune response87,88,89, and some studies have promoted SLAM 541 
receptors as potential therapeutic targets for immune-mediated diseases90. Improved European 542 
genetic models of gene expression for whole blood also revealed an association between PIGB 543 
and heart failure, as well as NOC3L and asthma (Figure 6). Genetic variation in PIGB causes 544 
defects in glycosylphosphatidylinositol (GPI) biosynthesis91, which has been linked to 545 
cardiomyopathy from clinical outcome data92. The mammalian homolog of NOC3L, called 546 
FAD24, regulates the development of adipocytes93, which release adiponectin, a hormone that 547 
controls inflammation and is linked to asthma94.  548 
 549 
Overall, our study has demonstrated several compelling applications and utilities of MAGEPRO. 550 
First, applying MAGEPRO gene expression prediction models to TWAS flags unstable 551 
disease/trait-associated genes by sometimes ablating significant associations generated by less 552 
accurate gene models. Second, MAGEPRO can help replicate European TWAS results in 553 
understudied ancestries, confirming population-shared gene-level effects on disease which has 554 
the potential to inform which European findings may be most clinically relevant to other 555 
populations. Third, utilizing MAGEPRO to perform TWAS in non-European populations can 556 
reveal population-specific gene-level disease effects. Fourth, MAGEPRO identifies biologically 557 
plausible novel connections between disease and putative gene-level risk factors, which 558 
previously could not be identified due to the lack of an available predictive cis-genetic gene 559 
model.  560 
 561 
Discussion  562 
 563 
We developed a new method, MAGEPRO, that enhances population-specific gene expression 564 
prediction models by leveraging eQTL summary statistics from diverse ancestries and cell types. 565 
Briefly, MAGEPRO utilizes SuSiE to prioritize putative causal variants in external eQTL 566 
datasets, which are likely more informative than tagging variants when applied to the target 567 
population. We applied MAGEPRO to 8 eQTL cohorts representing 3 different ancestries, 568 
improving prediction accuracy by an average of 11% relative to LASSO and consistently 569 
outperforming all competing methods, including the state-of-the-art tool for genome-wide 570 
complex trait PRS using multi-ancestry data, PRS-CSx. The advantages offered by MAGEPRO 571 
were exemplied in small training cohorts (maximized improvement over conventional LASSO 572 
models), in low cis-heritable genes – which are more likely to be disease-critical, and in out-of-573 
cohort prediction tasks for genetically similar populations. 574 
 575 
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When we applied MAGEPRO models to the TWAS framework, we identified 2,331 novel 576 
disease/trait-associated genes, including 1,350 as a result of improving (or adjusting) existing 577 
gene-trait associations and 981 that could not be identified by LASSO due to the lack of a 578 
predictive cis-genetic gene model. MAGEPRO identified several genes associated with white 579 
blood cell count that replicate across multiple ancestries, such as PHTF1, which is differentially 580 
expressed in leukemia patients. MAGEPRO also identified biologically plausible new 581 
associations, such as PIGB linked to heart failure, which has been evidenced by clinical outcome 582 
data. 583 
 584 
We note several limitations to our work. First, MAGEPRO relies on the availability of target 585 
population genotype and gene expression data, which may be scarce for some ancestries (such as 586 
South Asians, South Americans, and others) and less accessible tissues. Second, MAGEPRO 587 
applies SuSiE to each external dataset independently, which may not be as powerful as modeling 588 
cross-ancestry or cross-tissue effect size correlations while fine-mapping. Third, MAGEPRO 589 
models are population-specific by design, which may complicate downstream analysis and limit 590 
generalizability when there are slight mismatches between the population structure of the 591 
training eQTL cohort and the target population (i.e., if the GWAS cohort has higher degrees of 592 
admixture). Fourth, while MAGEPRO definitively improves the accuracy of cis-genetic models 593 
of gene expression, limited availability of large ancestrally diverse GWAS continues to restrict 594 
the power of gene-disease association studies like TWAS. Despite these limitations, MAGEPRO 595 
is a powerful and robust method for creating population-specific cis-genetic models of gene 596 
expression and has provided clarifying and new insights related to the underlying risk factors of 597 
blood cell complex traits and immune-mediated diseases.   598 
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Methods  820 
 821 
Baseline genetic model of gene expression: LASSO 822 
 823 
We used the FUSION tool to build the standard gene expression prediction model, which uses 824 
individual-level genotype and gene expression data from a single target population (Figure 1, 825 
green box). In this baseline model, a single gene’s expression is modeled with standardized 826 
genotypes of cis-variants (within 1 Mb of the gene’s transcription start site (TSS)) in a 827 
multivariate linear regression: 828 

𝑦A =>𝑋AI𝛽I
I

+ 𝜖A 829 

where for each individual i, 𝑦A is the gene expression of one gene, j indexes cis-variants, 𝑋AI is 830 

the standardized genotype of individual i at SNP j, 𝛽I is the true unobserved eQTL effect size, 831 

and 𝜖A is the residual of gene expression not explained by modeled cis-genetic effects. We used 832 
LASSO (L1 norm) regularized linear regression from PLINK95 to estimate 𝛽CI for each cis-variant 833 

such that we minimize the penalized sum of squares:  834 

min
J%(
(	>(𝑦A −>𝑋AI𝛽CI

I

)(
A

+ 𝜆>G𝛽CIG
I

	) 835 

where 𝜆	is the sparsity parameter which is tuned via cross-validation. L1 regularization avoids 836 
overfitting by shrinking coefficients of less informative features (e.g., SNPs) to 0 and assigns 837 
nonzero coefficients to potentially predictive SNPs. When LASSO regression fails to find any 838 
meaningful predictors and pushes all coefficients to zero (potentially due to the limited sample 839 
size of the target population), we employ the “top 1” model as is done in the FUSION 840 
framework. The “top 1” model uses a single predictor SNP, specifically the SNP with the largest 841 
squared effect size from marginal cis-eQTL analysis. This approach systematically enables us to 842 
build a standard gene model for every gene in the analysis, to which we can compare 843 
MAGEPRO models informed by multiple ancestries.  844 
 845 
MAGEPRO (Multi-Ancestry Gene Expression Prediction Regularized Optimization) 846 
 847 
MAGEPRO takes a three-step approach. First, it learns noisy estimates of SNP-gene effect sizes 848 
in the target population with a LASSO-regularized linear regression, identical to the baseline 849 
model described above (Figure 1, green box). Second, we apply the Sum of Single Effects 850 
(SuSiE) linear regression to each set of external eQTL summary statistics and we retain the 851 
posterior effect size estimates (Figure 1, blue box). SuSiE serves as a variable selection step, 852 
prioritizing potentially causal eQTLs which are more likely to be informative to the target 853 
population (see “Sum of Single Effects to prioritize variants from external summary statistics” 854 
section for more details regarding SuSiE). Finally, MAGEPRO models the gene expression of 855 
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the target population as a function of the baseline LASSO-regularized model and the SuSiE 856 
posterior eQTL effect size estimates for each external dataset (Figure 1, white box):  857 

𝑦A 	~ > (𝛼K
K	∈	B,H

>𝑋AI𝛽CIK	)
I

 858 

where for each individual i, 𝑦A is the gene expression of one gene, D indexes target (t) and 859 
external datasets (d), j indexes cis-variants, 𝑋AI is the standardized genotype of individual i at 860 

SNP j, 𝛽CH is a vector of posterior eQTL effect size estimates from external dataset d, and 𝛽CB is a 861 
vector of estimated effect sizes from applying the baseline model described above to the target 862 
dataset. We used ridge (L2 norm) regression to fit 𝛼JB and 𝛼JH; the dataset-specific mixing weights 863 
represent the relative contribution of each dataset to the prediction of gene expression, such that 864 
we minimize the loss function:  865 

min
NO)

>(𝑦A − ( > (𝛼JK
K	∈	B,H

>𝑋AI𝛽CIK
I

)))(
A

+ 𝜆 > 𝛼JK(
K	∈	B,H

 866 

where 𝜆 is the sparsity parameter, which is tuned by ten-fold cross-validation96. We applied ridge 867 
regression to constrain the coefficients when two or more vectors are collinear, which may be 868 
common given that causal eQTL architecture is at least partially shared across populations.  869 
 870 
Simulations 871 
  872 
We conducted simulations with various sample sizes and gene expression cis-heritability values 873 
to assess the robustness of MAGEPRO. We applied MAGEPRO, PRS-CSx, and LASSO to four 874 
predetermined levels of heritability (0.05, 0.1, 0.2, 0.4), which we confirmed using GCTA 875 
(Supplementary Figure 22). These heritability values were chosen based on the average 876 
estimated heritability values in quartiles of significantly heritable genes in LCL gene expression 877 
data from the GENOA African American (AA) population (0.088, 0.139, 0.202, 0.382). For each 878 
heritability value, we simulated 1,000 random genes and investigated the performance of each 879 
model across five target population (African) sample sizes (80, 160, 240, 400, 500). Simulated 880 
genotypes and gene expression levels for 500 EUR individuals (based on LD from the 1000 881 
Genomes European ancestry group) and 500 AMR individuals (based on LD from the 1000 882 
Genomes American ancestry group) were used to compute summary statistics, which we used as 883 
external datasets to apply MAGEPRO and PRS-CSx. Many of the functions that we used for our 884 
simulations are adopted from the Mancuso Lab TWAS simulator.  885 
 886 
We assessed the performance of MAGEPRO in various simulated genetic architectures of gene 887 
expression: (1) the causal cis-eQTLs are the same across populations (same genomic position but 888 
not necessarily correlated in effect size), (2) the causal cis-eQTLs are different variants across 889 
populations but in high LD (𝑟( > 0.8), (3) true effect sizes of all shared causal cis-eQTLs are 890 
drawn independently across populations, and (4) true effect sizes of all shared causal cis-eQTLs 891 
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are correlated across populations with effect size correlation set to 0.8, following recent work 892 
which estimated cis-molQTL (molecular quantitative trait loci) effect size correlations across 893 
ancestries39. The performances of LASSO, PRS-CSx, and MAGEPRO in simulations are 894 

evaluated with the prediction accuracy defined as #!"
#

$%$%#
 . Please see the Supplementary Note 895 

section called “Simulation framework” for more details.  896 
 897 
Competing methods of gene expression prediction  898 
 899 
We compare the performance of MAGEPRO against six different methods, capturing 900 
conventional methods applied to genome-wide complex trait data and gene expression data: 901 
meta-analysis, P+T, LASSO, SuSiE, Multipop, and PRS-CSx (see “Baseline genetic model of 902 
gene expression: LASSO” for more information on the LASSO model). We note that we do not 903 
compare the performance of elastic net or BLUP as recent work has shown that neither 904 
significantly outperform LASSO39.  905 
 906 
The meta-analysis model refers to a sample-size weighted meta-analysis of all datasets, including 907 
the LASSO gene model which was developed using the training split of the target cohort. This 908 
strategy is commonly applied to GWAS data to maximize association power and identify shared 909 
effects.  910 
 911 
P+T (pruning and thresholding) is an LD-informed pruning and p-value thresholding method97, 912 
also referred to as clumping and thresholding. Briefly, we iterate through SNPs in order of 913 
increasing p-value below a chosen threshold; p-values are computed from a marginal cis-eQTL 914 
analysis with the target cohort data. All variants in LD with the current SNP are removed until 915 
the iteration finishes. We performed a small grid-search across several LD	𝑟( thresholds (0.2, 0.5, 916 
0.8) and p-value thresholds (0.001, 0.01, 0.1, 0.5) to identify the pair of parameters that result in 917 
the best prediction result in 5-fold cross-validation. We performed P+T using PLINK and we 918 
used the target popuatlion genotypes as the in-sample LD reference panel.  919 
 920 
SuSiE is the Sum of Single Effects regression model applied to the individual-level target 921 
population genotype and gene expression data. We used default parameters to run SuSiE 922 
(including a maximum number of allowed credible sets: L = 10, up to 100 iterative Bayesian 923 
stepwise selection (IBSS) iterations, and setting the estimated residual variance flag to TRUE if 924 
in-sample LD files were available and FALSE otherwise) and retained the resulting posterior 925 
effect size estimates to predict gene expression. 926 
 927 
Multipop refers to a variation of MAGEPRO without the variable selection step using SuSiE. In 928 
this model, the raw external marginal cis-eQTL summary statistics are combined with the target 929 
population LASSO model using ridge regression. Benchmarking against this method allows us to 930 
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evaluate if using SuSiE to prioritize potentially causal variants helps us create more accurate 931 
predictive models.  932 
 933 
PRS-CSx is a Bayesian framework that improves cross-population polygenic prediction by 934 
learning an optimal linear combination of GWAS summary statistics from multiple ancestry 935 
groups to produce the final PRS. PRS-CSx employs a shared continuous shrinkage prior to SNP 936 
effects across populations (which assumes shared effects across populations) and leverages LD 937 
diversity across samples to enhance accuracy in effect size estimates. Although this method was 938 
originally designed to improve PRS for genome-wide complex traits and polygenic diseases in 939 
ancestrally diverse populations, we applied their command line tool to gene expression 940 
prediction to benchmark MAGEPRO. We utilized the shared shrinkage prior from PRS-CSx on 941 
the same datasets employed in MAGEPRO. Then, we learned an optimal linear combination of 942 
the post-shrinkage external datasets. To ensure that PRS-CSx utilizes the same features as 943 
MAGEPRO, we also added the LASSO gene model for the target population as one of the 944 
features in the linear combination. The authors of PRS-CSx recommend that the global shrinkage 945 
parameter, Φ, is adjusted based on the polygenicity of the phenotype. Since we expected the cis-946 
genetic component of gene expression to be much less polygenic (involve fewer causal variants) 947 
than a genome-wide trait, we considered values of [10!+, 10!,, 10!F, 10!P, 10!-]. We applied 948 
PRS-CSx with these shrinkage parameters for 200 random genes with ℎ/)*( > 0	and 	ℎ/)*( 	𝑝 <949 

0.05. We observed that gene model accuracy was robust across all values of Φ, and thus we 950 
selected the intermediate value (10!F) for the remaining analyses, which assumes that the 951 
polygenicity of cis-genetic gene expression regulation was well-represented by these 200 952 
randomly selected genes (Supplementary Figure 23). 953 
 954 
We note that BridgePRS31 is a recently published multi-ancestry PRS method that we considered 955 
for our study. However, their study demonstrated that BridgePRS only nominally outperforms 956 
PRS-CSx under highly polygenic genetic architectures, such as genome-wide complex traits. 957 
Therefore, we benchmarked MAGEPRO against PRS-CSx because we believed it was the best 958 
candidate among multi-ancestry PRS frameworks that are applicable to gene expression 959 
prediction.  960 
 961 
Preparing external summary statistics for MAGEPRO 962 
 963 
We downloaded eQTL summary statistics from 5 publicly available datasets from 3 different 964 
ancestries including European, Latino/Hispanic and African American cohorts. For each dataset, 965 
we extracted full cis-eQTL summary statistics and filtered for 1,034,897 HapMap 3 SNPs 966 
included in GTEx. If the effect allele and alternate allele of the eQTLs were flipped in 967 
comparison to the target cohort SNPs, we multiplied the effect size of the eQTL from the 968 
external dataset by -1. We split each dataset into gene-specific files to facilitate downstream 969 
analysis with MAGEPRO. Dataset-specific preprocessing details are described in the 970 
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Supplementary Note. To avoid overfitting, we utilized different combinations of external 971 
summary statistics depending on the target population to build the predictive model (Table 1).  972 
 973 

Sum of Single Effects model to prioritize variants from external summary statistics 974 
 975 
We utilized the Sum of Single Effects regression model (SuSiE), specifically “SuSiE-RSS” 976 
(Regression with Summary Statistics), for variable selection from eQTL summary statistics data. 977 
SuSiE is a variable selection method that quantifies the uncertainty in which variables are 978 
selected by expressing the regression coefficients as a sum of single effects where only one of 979 
the variables has a nonzero coefficient. The model is fit with the IBSS procedure and produces 980 
posterior inclusion probabilities (PIPs) and posterior effect sizes for each SNP. The original 981 
SuSiE method requires individual-level phenotype and genotype data. In our MAGEPRO 982 
pipeline, external datasets only contain summary data, hence, we use SuSiE-RSS, which employs 983 
the “IBSS-ss” algorithm that relies only on sufficient statistics that can be approximated from the 984 
summary statistics. Within our pipeline, we conduct fine-mapping separately for each gene in 985 
each eQTL dataset. When available, we utilize in-sample correlation matrices (e.g., for MESA or 986 
GENOA datasets). In cases where in-sample matrices are not available, we employ out-of-cohort 987 
ancestry-matched alternatives (e.g., we used LD from the 1000 Genomes European population to 988 
fine-map the European eQTLGen dataset). 989 
 990 
We note that the incorporation of the recently developed multi-ancestry statistical fine-mapping 991 
method, Sum of Shared Single Effects (SuShiE), may enhance the MAGEPRO framework by 992 
leveraging LD heterogeneity and modeling cross-ancestry effect size correlations to improve 993 
variable selection and effect size estimates in external eQTL datasets39. However, a version of 994 
SuShiE that is compatible with summary statistics was not released at the time of this study. 995 
Additionally, fine-mapping methods that are most compatible with MAGEPRO may also benefit 996 
from modeling cross-cell-type correlations to enable the sharing of information across eQTL 997 
datasets from different ancestries and cell types.  998 
 999 
Processing individual-level genotype and gene expression data  1000 
 1001 
We used the same variant and relatedness filtering for all genotyping data, regardless of cohort. 1002 
All genotype data processing was done using PLINK v1.9 and bcftools98. For the GENOA and 1003 
MESA cohort, we imputed genotype data on the TOPMed server. Each ancestry/dataset assayed 1004 
on different genotype platforms were imputed separately. The imputation was run using 1005 
Minimac4 (1.8.0-beta4), using the TOPMed r3 reference panel and Eagle v2.4 phasing. We kept 1006 
biallelic SNPs with high imputation quality (𝑟( > 0.9) for each imputed dataset and removed 1007 
SNPs with MAF < 1%, Hardy Weinberg Equilbrium (HWE) 𝑝 < 1 × 10!,, and genotyping rate 1008 
< 1. We used plink (--rel-cutoff) to remove one individual of a pair that exhibited a relatedness 1009 
greater than 0.05. When fitting the gene expression prediction models, we subset to HapMap 3 1010 
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SNPs present in the dataset. Compared to keeping all SNPs in the genotype data, utilizing only 1011 
HapMap 3 SNPs produces heritability estimates with smaller standard errors (Supplementary 1012 
Figure 24).  1013 
 1014 
The gene expression data for each cohort was inverse-normal transformed across individuals 1015 
before fitting the gene expression prediction models15. We defined the cis-window of each gene 1016 
as [start – 500 kilobases (Kb), end + 500 Kb]. The start and end positions were defined by 1017 
gencode v26 gene annotations.  1018 
 1019 
Fitting gene expression prediction models 1020 
 1021 
To calculate gene expression weights from real data, we used genotypes and gene expression 1022 
data from whole blood and lung tissues of the GTEx cohort (EUR and AA populations), LCL 1023 
gene expression data from GEUVADIS (EUR) and GENOA (AA), and monocyte gene 1024 
expression data from MESA (EUR, AA, HIS) (Table 1). After extracting samples with both 1025 
genotype and gene expression data, we performed imputation, variant-based filtering, and 1026 
individual-level filtering steps described above. We regressed out the appropriate covariates from 1027 
the gene expression data before fitting the gene expression prediction models. These covariates 1028 
generally included 5 genotype PCs, genotype platform / site of data collection, sex, age, and gene 1029 
expression PCs (depending on the sample size of the cohort). Please see the Supplementary Note 1030 
for dataset-specific information.  1031 
 1032 
The performance of gene expression prediction models in this paper are evaluated with 𝑅0;( 	from 1033 
a 5-fold cross validation. In each iteration of the cross-validation, we use the training split (4 1034 
folds) to learn a noisy estimate of cis-variant weights in a model identical to the standard gene 1035 
expression prediction models described above. We include these weights from the training fold 1036 
in a regularized linear combination with the other external datasets (consisting of SuSiE posterior 1037 
effect sizes), and use the training split again to estimate the mixing weights (𝑎JK). Finally, we 1038 
extract the estimated coefficients and predict gene expression on the remaining testing split (5th 1039 
fold). 1040 
 1041 
MAGEPRO computes both the target population SNP-gene weights (𝛽CB1Q)*B) and the dataset 1042 

mixture weights (𝑎JK) using the same training split. Therefore, we tested two potential training 1043 
approaches: (1) the MAGEPRO training approach described above and (2) a training approach 1044 
adopted from Márquez-Luna and colleagues29. In this second approach, we iteratively split the 1045 
training samples (4 folds in 5-fold cross validation) into a 90% set used to estimate 𝛽CB1Q)*B and 1046 

computed the predicted gene expression for the 10% set (for each of the 10 folds). We then 1047 
performed ridge regression across all training samples to estimate 𝑎JK and finally re-estimated 1048 
𝛽CB1Q)*B with the entire training split. We evaluated the two training approaches in predicting LCL 1049 

gene expression at two different sample sizes (𝑛 = 100 and 𝑛 = 346). We found that our 1050 
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MAGEPRO training approach outperformed the nested cross-validation approach in cross-1051 
validation prediction (𝑝 = 	2 × 10!-9 and 𝑝 < 1 × 10!(99 at 𝑛 = 100 and 𝑛 = 346, 1052 
respectively, Supplementary Figure 25). While this could result from overfitting by 1053 
MAGEPRO, we further compared the two approaches via an out-of-cohort prediction task in the 1054 
GEUVADIS Yoruba (YRI) cohort. The gene models trained using the MAGEPRO approach 1055 
exhibited higher accuracy (𝑝 = 	0.01 and 𝑝 = 4.9 × 10!8+ at 𝑛 = 100 and 𝑛 = 346, 1056 
respectively, Supplementary Figure 25). Therefore, we concluded that our training approach 1057 
that utilizes the same training split to estimate both 𝛽CB1Q)*B and 𝑎JK is valid.  1058 

 1059 
Validation of MAGEPRO models out-of-cohort 1060 
 1061 
We validate the improved MAGEPRO models by training our models in one cohort and applying 1062 
them to a different cohort of a similar ancestry and cell type. To facilitate the application of gene 1063 
expression prediction models across datasets, we subset to SNPs in common between the two 1064 
datasets within each ancestry. Without this additional SNP-based filtering step, we risk creating 1065 
predictive models that assign a non-zero effect size to SNPs that are not present in the out-of-1066 
cohort validation set.  1067 
 1068 
To validate the LCL gene models in the European population, we built predictive models in the 1069 
GEUVADIS population and validated them in the GENOA population. We worked with 718,414 1070 
HapMap 3 SNPs that are present among GEUVADIS European individuals and GENOA 1071 
European American individuals.  1072 
 1073 
For individuals of African American descent, we built predictive models in the GENOA 1074 
population and validated them in the GEUVADIS YRI (Yoruba) population. We worked with 1075 
718,838 HapMap 3 SNPs that are present among GENOA African American individuals and 1076 
GEUVADIS YRI individuals.  1077 
 1078 
TWAS using GWAS summary statistics 1079 
 1080 
We collected GWAS summary statistics for 15 blood cell traits from a previous study60 (AFR N 1081 
= 13,391, EUR N = 516,979, HIS N = 6,849) and 7 immune-mediated diseases from the Global 1082 
Biobank Meta-analysis Initiative (GBMI) (AFR N = 26,052, EUR N = 1,024,298, AMR N = 1083 
15,490). We updated the variant identifiers to dbSNP v151 and used the munge_sumstats.py 1084 
script from LD score regression99 to perform quality control and filtering. We evaluated the 1085 
TWAS results for the union of significantly heritable genes across populations (LCL: 6,872 1086 
genes, Monocyte: 5,920 genes, Lung: 8,807 genes) that have gene models that explain some 1087 
proportion of variance in gene expression (𝑅( > 0, 𝑝 < 	0.05). TWAS p-values were subjected 1088 
to a Bonferroni significance threshold to account for multiple hypothesis testing.  1089 
 1090 
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Statistics and Reproducibility 1091 
 1092 
First, as described above, we filtered each external eQTL dataset and target cohort genotypes to 1093 
HapMap 3 SNPs. Second, we evaluated the performance of MAGEPRO on significantly 1094 
heritable genes (ℎ/)*( > 0, 𝑝 < 0.01) with eQTL data from at least 1 external dataset. Third, as 1095 

described above, we performed random down-sampling of certain cohorts to test MAGEPRO at 1096 
smaller sample sizes. Fourth, as described above, we evaluated TWAS results from gene models 1097 
that explain some proportion of variance in gene expression (𝑅( > 0, 𝑝 < 0.05) to prevent 1098 
spurious associations from estimated eQTL effect sizes that poorly capture gene expression 1099 
regulation. Fifth, as described above, 1,000 random genes were simulated for each genetic 1100 
architecture to robustly evaluate MAGEPRO performance. Randomization and blinding were not 1101 
pertinent to our study.  1102 
 1103 
Data Availability 1104 
 1105 
Blood trait GWAS summary statistics are available at http://www.mhi-1106 
humangenetics.org/en/resources/. Immune-related disease GWAS summary statistics are 1107 
available at https://www.globalbiobankmeta.org/resources. GTEx gene expression and genotype 1108 
data were acquired from dbGaP accession phs000424.v9.p2. MESA genotype data was acquired 1109 
from dbGaP accession phs000209.v13.p3 (file names: 1110 
phg000071.v2.NHLBI_SHARE_MESA.genotype-calls-matrixfmt.c1 and 1111 
phg000071.v2.NHLBI_SHARE_MESA.genotype-calls-matrixfmt.c2), GENOA genotype data 1112 
was acquired from dbGaP accession phs001238.v2.p1, and GEUVADIS genotype data is 1113 
publicaly available at https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-GEUV-1. MESA 1114 
gene expression data was acquired from NCBI GEO accession GSE56045, GENOA gene 1115 
expression data was acquired from NCBI GEO accessions GSE138914 (African American 1116 
individuals) and GSE49531 (European individuals), and GEUVADIS gene expression data is 1117 
publicly available at https://uchicago.app.box.com/s/ewnrqs31ivobz2sn6462cq2eb423dvpr. 1000 1118 
Genomes LD reference files were acquired from https://www.bridgeprs.net/guide_input/.  1119 
 1120 
As described in https://github.com/kaiakamatsu/MAGEPRO/tree/main/PROCESS_DATASET, 1121 
all eQTL summary statistics were publicly available: eQTLGen 1122 
(https://molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl/SMR_formatted/cis-eQTL-1123 
SMR_20191212.tar.gz), GTEx (https://console.cloud.google.com/storage/browser/gtex-1124 
resources;tab=objects?prefix=&forceOnObjectsSortingFiltering=false), GENOA 1125 
(http://www.xzlab.org/data/AA_summary_statistics.txt.gz), and MESA 1126 
(https://www.dropbox.com/sh/f6un5evevyvvyl9/AAA3sfa1DgqY67tx4q36P341a?dl=0).  1127 
 1128 
Code Availability 1129 
 1130 
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MAGEPRO software including documentation and tutorial is publicly available at 1131 
https://github.com/kaiakamatsu/MAGEPRO [DOI 10.5281/zenodo.13765893]. The Mancuso 1132 
Lab TWAS Simulator is available at https://github.com/mancusolab/twas_sim. The FUSION 1133 
software is available at http://gusevlab.org/projects/fusion. PRS-CSx is available at 1134 
https://github.com/getian107/PRScsx. SuSiE is available as an R package and it is described at 1135 
https://stephenslab.github.io/susieR/index.html. The munge_sumstats.py script is available in the 1136 
LDSC github at https://github.com/bulik/ldsc/tree/master. To improve the runtime of 1137 
MAGEPRO, we utilized GNU Parallel available at https://zenodo.org/records/10901541.  1138 
 1139 
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Tables 1188 

 1189 

Table 1. External eQTL summary statistics used for each target cohort. Rows correspond to 1190 
each target cohort for which individual-level gene expression and genotype data were used to 1191 
create genetic models of gene expression. The last five columns correspond to external eQTL 1192 
summary statistics used as inputs to MAGEPRO. We avoided using external summary statistics 1193 
that contain the same individuals as the target cohort to prevent over-fitting and inflation of 1194 
cross-validation results. Sample sizes indicate the number of individuals in a target cohort after 1195 
relatedness-based filtering (Methods). AA, African American; HIS, Hispanic/Latino; EUR, 1196 
European; LCL: lymphoblastoid cell line.  1197 
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Figures  1198 

 1199 
Figure 1. Overview of the MAGEPRO model. Schema of the MAGEPRO model for one gene. 1200 
MAGEPRO takes limited individual-level target data (green) and external eQTL summary 1201 
statistics (blue) as input. Red arrows indicate the three main operations of MAGEPRO. First, 1202 
individual-level gene expression and standardized genotypes are used to estimate noisy effect 1203 
sizes for the target population (𝛽CA for SNP i) using an L1-regularized linear regression. Next, we 1204 
estimate the posterior effect size estimates for each set of external eQTL summary statistics 1205 
using SuSiE, designated by 𝛽CA*+ for SNP i and population k. Finally, we estimate optimal mixing 1206 

weights of effect sizes across all populations, including the target, using L2-regularized linear 1207 
regression (𝛼R for population k). The cis-heritability of the gene expression (ℎ/)*( ) is estimated 1208 

using the limited individual-level target data and is used to normalize the prediction accuracy 1209 

(#&'
#

$%$%#
) to allow comparisons across genes with different heritabilities.   1210 
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 1211 
Figure 2. MAGEPRO outperforms alternative gene expression prediction models in 1212 
various simulated architectures. (A) Predictive accuracy of LASSO, PRS-CSx, and 1213 
MAGEPRO across different gene expression heritability and sample size settings. Across all 1214 
settings, genes were simulated with four causal variants. Accuracy is calculated as the ratio of 1215 
the cross-validation 𝑅0;(  and the GCTA-estimated cis-heritability of gene expression (ℎ/)*( ). (B) 1216 

Squared difference between the simulated (actual) and estimated effect sizes of the four causal 1217 

variants per gene. Cis-heritability was set to 10%. (C) Predictive accuracy (#&'
#

$%$%#
 ) of methods 1218 

while varying the number of causal variants and maintaining the total cis-heritability (ℎ)*( ) at 1219 

10%. Sample size was set to 240. In all panels, data are presented as mean values across 1,000 1220 
independently simulated genes with confidence intervals representing ± 1 standard error. Yellow 1221 
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(resp. red) asterisks indicate that the difference between MAGEPRO and LASSO (resp. PRS-1222 
CSx) results is significant. Black asterisks highlight pairwise comparisons. All hypothesis tests 1223 
are two-sided paired t-tests. Numerical results are reported in Supplementary Tables 1-6.  1224 
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 1225 

Figure 3. MAGEPRO outperforms alternative methods in real data. (A,B) Comparison of 1226 
the accuracy of different models in predicting LCL gene expression in the GENOA AA 1227 
population at two different sample sizes (A: full cohort, B: random down-sampling to 100 1228 
individuals). P-values are derived from a one-sided paired t-test, testing the alternative 1229 
hypothesis that MAGEPRO produces larger accuracies. Comparisons between MAGEPRO and 1230 
meta-analysis or P+T not annotated due to low precision to estimate such small p-values. (C) 1231 
Performance of the top five gene expression prediction methods across the eight different target 1232 
cohorts from Table 1 plus two randomly down-sampled cohorts, indicated by (100). Values in 1233 
the heatmap are the percent change in predictive accuracy relative to LASSO regression. All 1234 
percent differences are significant according to one-sided paired t-tests (p < 0.05). (D) The 1235 
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heritability values were estimated for LCL gene expression in the GENOA AA population. In 1238 
panels A, B, and D, data are presented as mean values with confidence intervals representing ± 1 1239 
standard error. LCL, lymphoblastoid cell line; AA, African American. Numerical results are 1240 
reported in Supplementary Tables 7-10.  1241 
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 1242 

Figure 4. Gene-disease associations are sensitive to gene expression prediction models. (A) 1243 
An example of a TWAS association that becomes non-significant after MAGEPRO has 1244 
improved the accuracy of the gene model. MAGEPRO introduces three variants to the gene 1245 
model for ZNF213-AS1, trained on GENOA LCL data from African American individuals, that 1246 
do not colocalize well with a GWAS for red blood cell count (teal). (B) An example of a new 1247 
TWAS association introduced by MAGEPRO. RGS14 is newly associated with asthma based on 1248 
a European monocyte model from the MESA cohort. In both panels, the asterisk (*) indicates 1249 

significance using a Bonferroni threshold across cohort-specific cis-heritable genes ( 9.9+
,PF(

 for A, 1250 
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9.9+
+-(9

 for B). The dot plot shows the effect sizes inferred by the cis-genetic model of gene 1251 

expression created by each method. Black dotted vertical lines designate eQTL effects identified 1252 
by all/both models and teal dotted vertical lines designate effects captured specifically by 1253 
MAGEPRO. In the heatmap below, 𝑅7K(  values that are relevant to potential interactions between 1254 
variants are boxed in red. Distances between SNPs are not to scale; the x-axis indicates the 1255 
indices of the cis-SNPs ordered by increasing genomic coordinate. LCL, lymphoblastoid cell 1256 
line; GE, gene expression. Numerical results are reported in Supplementary Tables 12-13.  1257 
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 1258 

Figure 5. Applying MAGEPRO to improve Monocyte gene expression prediction across 1259 
three ancestries identifies novel genes associated with blood cell traits. (A,B)  Comparison of 1260 
TWAS z-scores between MAGEPRO and other gene expression prediction methods for the 1261 
African (AFR) ancestry. Colors correspond to groups of significance described in the legend. 1262 
“Other” refers to the model in comparison on the x-axis. Results are aggregated across 15 blood 1263 
cell traits. (C) Miami plot of TWAS associations with white blood cell counts across three 1264 
different ancestries. Green table display the gene expression prediction 𝑅( and TWAS z-score in 1265 
the AFR population (statistics for other population are presented in Supplementary Figure 22). 1266 
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Positions indicate the start of the cis window, nominal significance threshold is 𝑝 < 0.05 and 1267 

Bonferroni significance threshold is 𝑝 < 9.9+
+-(9

 for all panels. Numerical results are reported in 1268 

Supplementary Tables 16-18.  1269 
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 1270 

Figure 6. New gene models created by MAGEPRO recapitulate previous findings and 1271 
identify several biologically plausible new findings. Miami plot shows genome-wide signed 1272 
TWAS associations from analysis of 22 unique complex traits/diseases across three ancestries 1273 
(represented by seven independent cohorts). Only gene-trait associations resulting from new 1274 
gene models created by MAGEPRO (MAGEPRO 𝑅( > 0, 𝑝 < 0.05 while LASSO 𝑅( not 1275 
significantly greater than 0) and passing Bonferroni significance are plotted. Phenotypes and 1276 
datasets are labeled “NA” if there are no such associations. Examples highlighted in the text are 1277 
labeled with the gene symbol, associated phenotype, and enlarged point. Yellow dotted line 1278 
indicates nominal 𝑝 < 0.05 and red dotted line indicates Bonferroni threshold 1279 

(𝑝 < 	 9.9+
#	)*G*3	B*3B*H	AG	H1B13*B

). BAS, basophil count; EOS, eosinophil count; HCT, hematocrit; 1280 

HF, heart failure; HGB, hemoglobin concentration; IPF, idiopathic pulmonary fibrosis; LYM, 1281 
lymphocyte count; MCH, mean corpuscular hemoglobin; COPD, Chronic obstructive pulmonary 1282 
disease; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; 1283 
MON, monocyte count; MPV, mean platelet volume; NEU, neutrophil count; PLT, platelet 1284 
count; RBC, red blood cell count; RDW, red blood cell distribution width; VTE, venous 1285 
thromboembolism; WBC, total white blood cell count. Numerical results are reported in 1286 
Supplementary Table 20. 1287 
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