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ABSTRACT
Background. Big data and data analysis methods and models are important tools in
food security (FS) studies for gap analysis and preparation of appropriate analytical
frameworks. These innovations necessitate the development of novel methods for col-
lecting, storing, processing, and extracting data.
Methodology. The primary goal of this study was to conduct a critical review of
agricultural big data and methods and models used for FS studies published in
peer-reviewed journals since 2010. Approximately 130 articles were selected for full
content review after the pre-screening process.
Results. There are different sources of data collection, including but not limited to
online databases, the internet, omics, Internet of Things, social media, survey rounds,
remote sensing, and the Food and Agriculture Organization Corporate Statistical
Database. The collected data require analysis (i.e., mining, neural networks, Bayesian
networks, and other ML algorithms) before data visualization using Python, R,
Circos, Gephi, Tableau, or Cytoscape. Approximately 122 models, all of which were
used in FS studies worldwide, were selected from 130 articles. However, most of these
models addressed only one or two dimensions of FS (i.e., availability and access) and
ignored the other dimensions (i.e., stability and utilization), creating a gap in the
global context.
Conclusions. There are certain FS gaps both worldwide and in the United Arab Emi-
rates that need to be addressed by scientists and policymakers. Following the identifi-
cation of the drivers, policies, and indicators, the findings of this review could be used
to develop an appropriate analytical framework for FS and nutrition.

Subjects Agricultural Science, Data Mining and Machine Learning, Data Science
Keywords United Arab Emirates, Data extraction, Data infrastructure, Gaps, Challenges,
Multi-model approach, Analysis, Visualization

INTRODUCTION
Global hunger due to climate change (Schmidhuber & Tubiello Francesco, 2007), pandemics
(Kuehn, 2020), rapid population growth, dietary changes, as well as limited natural
resources (Dutilleul, 2012; Janssens et al., 2020) has increased, which will make accessing
nutritious and affordable food difficult in the future (Janssens et al., 2020). Cleaner
production is essential for sustaining this expanding need for food production, but all
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the natural resources are under threat (Wunderlich & Martinez, 2018). Big data is required
to investigate food and nutrition security due to population growth, global hunger, and
widespread food demand (Jin et al., 2020). Big data is a term that can be defined in various
ways but always refers to a large amount of data. Data is frequently produced in large
quantities from various sources, necessitating the development of new tools and methods,
such as powerful processors, algorithms, and software, to handle it (Marvin et al., 2017).
Big data applications can be found throughout the food supply chain (FSC), from farm
to fork, and can maximize production and ensure all food security (FS) dimensions
and measurements are included. Online databases, omics profiling, the internet, sensors
(Bouzembrak et al., 2019), mobile phones, social media (SM), video monitoring (Subudhi,
Rout & Ghosh, 2019), portable devices, and sensors using Internet of Things (IoT) tools (Pal
& Kant, 2019), geographic information system (GIS), remote sensing (RS) (Strawn et al.),
survey (Delphi rounds), and blockchain method (George et al., 2019; Shaikh et al., 2019)
are just some examples of the global data sources. The source type varies by region based on
availability, type of required data, relative experts, and scientific background. Furthermore,
rapid population growth and rising food demand necessitate the use of quick, digital, and
reliable data sources to ensure all FS dimensions and measurements are included (Fritz
et al., 2019). However, these sources still require global attention to promote and enable
their use in various environments and cultures. Consequently, stakeholders have identified
five key challenges impeding the effectiveness of agri-food system collaborations (OECD,
2021): (1) a lack of political visibility and prioritization, (2) a lack of long-term investment
in statistics and data, (3) challenges in political economy, (4) limited skills and experience
in using such technologies, and (5) access gaps to new data sources.

Apart from this, the collected dataset should consider all FS dimensions and
measurements (i.e., availability, access, stability, and utilization) (Jones et al., 2013)
(Fig. S1). The data should include, but not be limited to, agricultural production, food
loss and waste, food supply sufficiency, agricultural infrastructure, population growth
and Democratic Domestic Product (DDP), agricultural food costs, household income,
water availability and quality, soil properties and biodiversity, human health and diet,
consumer behavior, climate change scenarios, demographic changes and stress, market
access, imports, and common crops in the specific area. The data should cover FS based on
the food system analytical framework of the Food and Agriculture Organization (FAO),
which is dependent on food and nutrition security (FNS) economic, environmental, and
social factors (Food and Agriculture Organization, 2018). However, most studies on FS
have focused solely on availability and affordability, resulting in gaps in data collection and
limitations in FS quantification (Nkunzimana et al., 2018). Various countries, including the
Gulf Cooperation Council (GCC) and poor and low-income countries, suffer from a lack
of agricultural and FS statistics, even though sound decisions are based on accurate data
and information. Despite their efforts, such countries continue to face several limitations,
including a lack of household and farm survey data, large and long-term data, and data
analysis and processing (Food and Agriculture Organization, 2021). Current data collection
is primarily focused on national sources with varying degrees of coverage and accuracy,
using surveys and operational records such as trade data. That information is frequently
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disseminated as statistical output, with little or no interpretation or analysis. As previously
stated, one significant gap in food and nutrition security data is the lack of indicators
relating to the quantities of various foods consumed to determine the adequacy of nutrient
intake at both household and individual levels.

Understanding the long-term drivers of FS and how they interact is necessary for
policymakers to make informed decisions about today’s policies for tomorrow’s FS (Van
Meijl et al., 2020). Model-based scenario analysis is widely regarded as the appropriate
tool given the complexity and uncertainty of multi-dimensional FS (Godfray & Robinson,
2015). This article stated that more than 91 household models classified as statistical,
optimization, Computational General Equilibrium (CGE), simulation integrated, and
simulation biophysical models were used for FS and considered only the first dimension
(availability) and did not cover the other dimensions (i.e., affordability, stability and
utilization) (Nicholson et al., 2021a). Such lack of inclusion is primarily due to various
factors, including dataset availability, the power and type of model used (dynamic,
statistical, etc.), and the purpose of the study. A multi-model ensemble can solve this
problem and may capture all FS dimensions (Kheir et al., 2021a; Kheir et al., 2021b;Martre
et al., 2015), but this approach has received less attention thus far, resulting in a global gap
in the use of modeling to address FS issues. System dynamics (SD) refers to a scientific
framework for dealing with complex, nonlinear feedback systems. The book entitled
‘Limits to Growth’, published in 1972 (Meadows et al., 1972) modeled for the first time
the long-term risk of FS that would arise from the complex relationship between capital
and population growth within the planet’s limits, using the World3 System Dynamics
model (Nicholson et al., 2021b). Furthermore, machine learning (ML) models can work
well with large datasets and have many advantages not found in other models (Abiodun
et al., 2018; D’Amore et al., 2022), but they have received little attention thus far and
require much attention in global FS studies (Chamara et al., 2020). The ML techniques
can be used to automatically collect data using statistical or computational models,
which can aid in accurately identifying factors and improving performance (Okori &
Obua, 2011). In various languages, ML has a significant impact on sentiment analysis
and text classification (Marie-Sainte et al., 2019). Opinion mining and sentiment analysis
are techniques for analyzing people’s opinions, evaluations, sentiments, attitudes, and
emotions from textual datasets (Onan, 2020c). There are numerous methods for text
classification, opinion mining, and sentiment evaluation available in the literature (Onan,
2020a; Onan, 2020b; Onan, Korukoğlu & Bulut, 2016; Onan & Toçoğlu, 2021). However,
the most widely used text classification techniques are lexicon-based, ML-based, and
rule-based methods (Onan, 2021), with deep learning approaches not being used for
feature selection or sentiment analysis, which necessitates much attention in FS studies.
Consequently, while the integration of statistic, dynamic, ML, and deep learning models is
very important in big data assessment and global FS studies, it has received less attention
thus far, creating a gap that needs to be filled.

Regarding the position in the United Arab Emirates (UAE), unfortunately, there is
a significant gap in large data sources, collection, and analysis. Furthermore, long-term
investment in data statistics, digital skills, and sufficient data in science, technology,
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engineering, and mathematics (STEM) has been lacking. In addition, UAE lacks FS access,
stability, and utilization of big data and methods and models based on FS dimensions.
Therefore, a review study is required to identify the detailed background of big data
and data analysis methods and models for FS on a global and regional scale to quantify
the related gap and provide policy recommendations to fill it. Thus, this review screens
the global and local big data and methods and models for FS analysis, highlights related
challenges in the UAE, and suggests potential solutions.

SURVEY METHODOLOGY
Many authors have emphasized the importance of conducting a literature review because
they consider it a valuable and qualified source of information that summarizes and adds
to the body of knowledge in a particular field of study (Denyer & Tranfield, 2009; Knopf,
2006; Tranfield, Denyer & Smart, 2003). The best literature review should reveal, assess,
and structure the relevant literature on the intended topic, as well as combine it with
a critical analysis of various arguments in the literature (Denyer, Tranfield & Van Aken,
2008; Tranfield, Denyer & Smart, 2003). The goal of this study was to conduct a literature
review to identify the global big data, methods, and models for FS and investigate how
they can be used to improve FS levels globally, as well as in UAE (Denyer, Tranfield &
Van Aken, 2008; Tranfield, Denyer & Smart, 2003). The least level of bias was ensured via a
comprehensive literature inspection of the available published studies to provide an audit
pathway from the decisions of the reviewers to the actions and conclusions (Munn et al.,
2018; Tranfield, Denyer & Smart, 2003). Furthermore, selecting the research methodology
required identifying, analyzing, and synthesizing the selected secondary data sources
related to FS big data, methods, and models across a wide range of contexts and disciplines
to provide a comprehensive understanding based on the fit to the review’s specified
questions. According to (Denyer & Tranfield, 2009; Munn et al., 2018; Tranfield, Denyer &
Smart, 2003), producing good and comprehensive systematic reviews is crucial for driving
research, developing new research baselines, and opening multiple pathways for future
research. As a result, a systematic literature review research method was selected to achieve
the research objectives. Based on the approaches described by Denyer & Tranfield (2009),
Munn et al. (2018), Tranfield, Denyer & Smart (2003), we conducted the review through
five steps to ensure replicability and transparency, as detailed in Fig. 1. The research began
with the formulation of a research questions with specific characteristics, such as being
purposeful and specific. The scope and focus of the review were then defined. The goal of
this study was to conduct a systematic literature review to identify the big data, methods,
and models of FS in the global and UAE contexts. To answer the main research questions,
this article provides a critical review of the existing literature published in Scopus and Web
of Science databases (Martín-Martín et al., 2018). The following topics have been explored
in this review of literature: (1) data extraction tools, (2) data format and infrastructure,
(3) potential and limitations of agricultural big data (AgBD), and (4) FS methods and
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Figure 1 Methodology and protocol of the systematic literature review.
Full-size DOI: 10.7717/peerj.13674/fig-1

models. Thus, this article provides a reference for policymakers and practitioners, as well as
a roadmap for future research, by highlighting the concerns in the areas mentioned above.

The second step involved creating a specific research criterion to ensure that the research
sources chosen were sufficient and comprehensive enough to capture all the major points
that adequately answer the research questions (Denyer & Tranfield, 2009). The necessity
of understanding big data for FS in both the global and UAE contexts, with a strong
emphasis on avoiding any source of bias during the selection process, was the key research
gap that drove this study. As a result, the databases Scopus and Web of Science were
used (Martín-Martín et al., 2018). Big data, methods, models, FS availability, FS access,
FS stability, FS stability, and food infrastructure were among the keywords used. The
keywords were chosen after a thorough examination of the most relevant concepts in the
literature that affect each of the four FS dimensions. In July 2021, the research sources were
chosen, and the title, abstract, and full-text searches for keywords were enabled. To find
the available literature, several keywords were identified (Cooper et al., 2018). Primary and
secondary keywords were used in the search strings. The purpose of using multiple strings
was to cover as many articles as possible that dealt with the topic of FS or any of its four
dimensions. The review was then subjected to specific exclusion and inclusion criteria to
produce high-quality evidence (Tranfield, Denyer & Smart, 2003). To ensure that the review
has a high quality, a reasonable number of articles were selected for in-depth analysis based
on a set of exclusion and inclusion criteria (Fig. 1). Within the time frame (2010–2021),
only peer-reviewed journal articles written in English were included in the review. Strict
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selection criteria were applied to the first search pool to maintain research transparency
and ensure the selection of relevant material that answers the research questions (Kelly,
Sadeghieh & Adeli, 2014; Xiao & Watson, 2017). After removing duplicated articles from
both databases, a total of 130 articles were chosen for the review.

The fourth step entailed analyzing the selected 130 articles individually, summarizing
and listing all big data, methods, andmodels for FS analysis, then synthesizing the extracted
information from all sources to create new knowledge (framework), listing the similarities
between all resources, and extracting the major insights globally and within the UAE
context (Denyer & Tranfield, 2009; Tranfield, Denyer & Smart, 2003). The models and
methods for FS analysis in each of the 130 articles were summarized using Microsoft Excel.
The aggregative approach was then used for synthesis. The findings section includes a
detailed report of answers to the following research questions: (1) data extraction tools,
(2) data format and infrastructure, (3) potential and limitations of AgBD, and (4) FS
methods and models. After that, the synthesis process was used to create a comprehensive
framework that models big data and FS methods and models.

DATA EXTRACTION TOOLS
Data extraction tools (global context)
The literature review showed different sources of data extraction, including online
databases, smartphones, the internet, sensors, omics, social media (SM), Internet of
Things (IoT), geographic information system (GIS), satellite images, web mining, the Food
and Agriculture Organization Corporate Statistical Database (FAOSTAT), governmental
dataset, statistical yearbooks as well as blockchain technology (Bouzembrak et al., 2019;
George et al., 2019; Marvin et al., 2017; Pal & Kant, 2019; Strawn et al.; Subudhi, Rout &
Ghosh, 2019). Online databases used widely in food safety (Jin et al., 2021; Marvin et al.,
2017) covered only one dimension of FS (utilization) and neglected the other dimensions.

Smartphones are widely used in agriculture due to their ability to collect data, ease of
mobility, which corresponds to the nature of farming, and low cost (Mendes et al., 2020;
Pongnumkul, Chaovalit & Surasvadi, 2015; Thar et al., 2021). Nowadays, more than two
billion people worldwide use smartphones, and this number is rapidly increasing, allowing
the use of smartphones as important data sources in agriculture and FS (eMarketer, 2014).
The numerous built-in sensors are among the factors that improve the smartphone’s
ability to assist users with various tasks. Cheap smartphones may be a viable option for
farmers who lack access to current agricultural information (e.g., market, weather, and crop
disease news) and assistance from agricultural experts and government extension workers
(Wolfert et al., 2017). Smartphones have recently been used in agriculture for various
purposes, including food safety (Alfian, Syafrudin & Rhee, 2017; Shan et al., 2020; Ye et al.,
2020), protein content determination (Silva & Rocha, 2020), food contaminant detection
(Liu et al., 2017), weather and climate change reporting (Caine et al., 2015), as well as for
agricultural and rural development (Donovan, 2017). Smartphones are the most important
tools for receiving and recording terminal data (Guo et al., 2019). However, based on the
literature, we observed that very little attention had been paid to understanding the various
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types of information communicated via smartphones, how farmers access this information,
and the possible factors influencing the use of smartphones. Furthermore, smartphone
applications did not cover all dimensions of FS (i.e., availability, access, utilization, and
stability), necessitating a great deal of attention on the global, national, and individual
levels.

SM sites are websites that allow users to create profiles (Hether, Murphy & Valente,
2014), share content, and engage in discussions to facilitate communication and community
engagement (Bertrand et al., 2021). SM has been widely used to collect food safety data
(Wang et al., 2016). Making intelligent decisions based on social big data refers to the
techniques, technologies, systems, and platforms that help organizations better understand
their data and make better decisions (Wang et al., 2016). FS-related discussions, opinions,
and online questionnaires can be collected using SM platforms such as Facebook, Twitter,
and YouTube (Soon, 2020). Web mining is a popular method for collecting and analyzing
SM data. By analyzing customer sentiments and opinions, SM data could be used to
improve client behaviors, raise public awareness, and understand public perceptions of FS
(Yuan et al., 2020).

RS data can be used in agriculture for monitoring crop growth, development, and
harvesting, and improving the existing monitoring systems, all of which contribute to
improved agricultural product quality (Friedl, 2018; Singh et al., 2020). Data of RS images in
the European Union (EU) could be accessed by Sentinel-2 satellites for various applications
in agriculture and FS (Kussul et al., 2020; Phiri et al., 2020). The FAO GeoNetwork and RS
database include grids and layers for classifying soil, water, and climate for monitoring food
safety and security (Jin et al., 2020). Hattenrath-Lehmann et al. (2018) used RS as an early
warning system for shellfish safety, while the US Department of Agriculture used them to
detect food contamination (https://cris.nifa.usda.gov/). However, using the RS approach in
big data for other FS dimensions such as availability, access, and stability has received less
attention thus far, necessitating a great deal of attention on a large scale from stakeholders.

IoT is the interconnection of devices, sensors, machines, and computing devices through
internet mediums (e.g., Wi-Fi, Bluetooth and Radio Frequency Identification (RFID)). This
technology has the potential to make the food chain more efficient, safer, and sustainable
in the near future. Kaur (2021) modeled sustainable FS based on IoT technology and
determined how to design a long-term FS system in India, where the government ensures
FS for all through a public distribution system (PDS). The study also made a novel attempt
to incorporate IoT into the design of the PDS to ensure FS, with IoT factors being modeled
using Total Interpretive Structural Modeling (Fuzzy-TISM). FS can be ensured using
IoT as it provides traceability, transparency and accountability, decreasing food waste
and ensuring food quality from harvest to consumption (Nukala et al., 2015). For more
accurate results, IoT could be combined with technological enablers such as artificial
intelligence, robotics, blockchain, and RFID. The use of these technologies will help reduce
food waste and enable better planning of distribution networks, lowering the overall
supply chain carbon emissions (Irani & Sharif, 2016). Various studies have investigated
the importance of IoT in FS, but they have focused only on some dimensions, implying
that all FS dimensions require much attention. Ding et al. (2014) proposed a conceptual
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model to investigate the interdependencies between different functions and information
shared in FSC. Fan et al. (2015) proposed a big data analytics-based algorithm to improve
crop yield prediction accuracy.Masiero (2015) emphasized the importance of digitizing the
food distribution function and the role of e-governance in preventing food fraud in Kerala.
The role of information sharing in fresh FSC was examined by Nakandala et al. (2017),
who identified the information needs of various supply chain entities. Table 1 summarizes
various enabling factors for an IOT-driven sustainable FS system culled from the literature.
However, understanding the relationships and their effect among different technologies
is critical for designing an IoT-driven FS system that is also sustainable. The FS system is
a multi-level, multi-stakeholder problem. The integration of various enabling factors is
difficult to establish. Furthermore, the impact of one relationship may differ from that of
another. As a result, the magnitude of the impact is also a crucial factor to consider. From
the standpoint of policymaking and implementation, such factors must be structured in
a conceptual model to ensure long-term FS. Moreover, such technologies with attributed
enablers should cover all dimensions of FS, rather than just one; thus, a gap needs to be
filled from both the global and stakeholder perspectives.

Data extraction tools (The UAE context)
Despite the lack of data for measuring FS at the household or individual levels, several data
sources are available to analyze and monitor the UAE’s FS progress at the national level.
For example, data on most of the Suite of FS Index indicators for the UAE are available
at FAOSTAT (http://www.fao.org/faostat/en/#data/FS). These statistics are mostly available
as three-year averages. The Economist Intelligence Unit (EIU) publishes the Global
Food Security Index (GFSI) score for the UAE every year as part of its multi-country FS
monitoring. The available data from EIU and FAO on the FS dimension indicators used to
construct the GFSI and Suite of FS Index can be used as inputs for deriving other simple
and multi-dimensional measures of FS.

Data on the UAE’s Food Balance Sheet can also be obtained from the FAOSTAT
(http://www.fao.org/faostat/en/#data/FBS). The dataset contains information, among others,
on food supply (kcal/capita/day), protein supply quantity (g/capita/day), domestic
production, import and export, feed and other non-food uses, food stock variation,
tourist consumption, and food losses. Furthermore, data on food price indices and food
inflation can also be retrieved from the FAOSTAT (http://www.fao.org/faostat/en/#data/CP).

Similar datasets at disaggregated levels can also be obtained from national offices (e.g.,
for Dubai, it can be obtained from the Dubai Municipality). The various organizations
within the UAE, such as the Ministry of Food Security, Ministry of Health and Prevention,
Dubai Municipality, Abu Dhabi Agriculture and Food Safety Authority, and the Federal
Competitiveness and Statistics Centre, could be consulted for obtaining a variety of data
that can be used as inputs for estimating some of the FS indicators.

Delphi survey rounds could be considered an effective data source (Allen et al., 2019;
Markou et al., 2020) for collecting the required data to validate the analytical framework
and quantify sustainable FS in the UAE.
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Table 1 Enabling factors of IoT-driven sustainable food security (modified after (Kaur, 2021)).

Parameter Reference Role in sustainable food security

Yield prediction based big data Engen et al. (2021), Fan et al. (2015) and Ka-
math et al. (2021)

Assist in the procurement process and the distri-
bution of food resources across different regions.

Delphi survey Allen et al. (2019),Markou et al. (2020) and
Vogel et al. (2019)

It can aid in the procurement and distribution of
goods in a decentralized and distributed manner.

Traceability based Blockchain Lin et al. (2017), Xiong et al. (2020) and Yadav
et al. (2021)

Avoid food losses, shrinkages, and fraud in FSS

Mobile application for crop de-
tails

Ahmed & Reddy (2021),Meeradevi & Salpekar
(2019) and Yang & Xu (2021)

Crop yield, diseases prediction, horticulture re-
search and policy designing

Robotics technology Asseng & Asche (2019) and Asseng et al. (2020) Food production and quality without farmers
Sensors and image processing Eerens et al. (2014), Lew et al. (2020) and Rasti

et al. (2021)
Ensure better quality control, and higher yield

Sharing information-based
channels

Singla, Nishu & Deepika (2020) andWolfert et
al. (2017)

Better supply chain coordination is aided by in-
formation sharing. It also helps supply chain
partners build trust.

Refrigeration IoT interface Talavera et al. (2017) The temperature can be adjusted depending on
the type and quantity of stock in the refrigerator.

Food AI package before date Mavani et al. (2021) Decreasing food waste and ensuring food safety
Policy improvement using tech-
nology

Jeevanandam et al. (2022) andMasiero (2015) FSS monitoring and quality control

e-farm marketing Masiero (2015) Avoid losses, maintain food and exclude the in-
termediate retailers

Consumption pattern simula-
tions

Christensen et al. (2018) and Yang et al. (2020) Assist policy-makers in designing a FS system that
is appropriate for population consumption be-
havior. Modeling the pattern of power consump-
tion using a single sensor

Encoded digital data Golan, Jernegan & Linkov (2020) Tracking the goods movement throughout the
supply chain.

Cloud computing optimization
(Google Collaboratory, Azur,
IBM, AWS)

Castelvecchi (2017), Christensen et al. (2018),
Langmead & Nellore (2018), Satyanarayanan
(2019) and Vanderroost et al. (2017)

Saving time, reducing food losses, and keeping
high quality

DATA FORMAT AND INFRASTRUCTURE
FS data can be unstructured or structured and stored in various formats, including TXT,
JSON, and CSV. For instance, Singh, Shukla & Mishra (2018) collected SM data from
Twitter in JSON and TXT formats, and then implemented the parsing method to covert
JASON data to CSV data. There are also various formats for big data, such as raster and
vector formats (SHP, TIF, CN, and NetcDF) (Ghiringhelli et al., 2017; Limbachiya & Gupta,
2015). On the other hand, Song et al. (2020) stored the data in relational databases with
different attributes as a list of rows. Alfian, Syafrudin & Rhee (2017) used NoSQL and
SQL databases to store IoT-generated sensor data with a large unstructured format and
continuous data-generation characteristics. They also developed a real-time food quality
monitoring system that employs sensor data from a smartphone and stores it in the
MongoDB database.

Supercomputing and cloud computing are twomajor components of data infrastructure
(Yang et al., 2017b). To address the challenges associated with big data, supercomputing
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must be considered. The United States has long been committed to supercomputing to
facilitate knowledge exchange between the Exascale Computing Project and the industrial
user community (Witze, 2014). The development of supercomputing infrastructures is
also a priority for the EU. So far, the EU has built eight supercomputing centers to
enhance bioengineering applications (Butler, 1999). Tianjin, Jinan, Changsha, Shenzhen,
Guangzhou, Wuxi, and Zhengzhou are China’s seven national supercomputing centers.
The Chinese government has created a food safety traceability platform (Berti &
Semprebon, 2018) that collects 31 provincial food traceability data and connects national
supercomputing centers. Its goal is to achieve food traceability from farm to fork while also
providing services to food producers, such as food traceability, security, and oversight.

To enable big data research, several cloud computing infrastructures need to
be developed (Yang et al., 2017a). In 2019, the EU Food Nutrition Security Cloud
project (https://cordis.europa.eu/project/id/863059) aimed to integrate European research
infrastructure by bringing together FNS data to address diet, health, and consumer
behavior, as well as sustainable agriculture and bioeconomy. The Guizhou Food and
Drug Administration in China released the food safety cloud system in 2014. It has
now been transformed into an intelligent food safety supervision system, an internet
plus inspection system, a traceability certification system, and a big data platform for
government enterprises, testing institutions, and other social age organizations (Tao et al.,
2018). Despite the importance of supercomputing and cloud computing infrastructures
as distinct big data environments, the Middle East and North Africa (MENA) and GCC
regions remain uninterested, necessitating significant attention to assist them in addressing
food insecurity.

AGRICULTURAL BIG DATA (POTENTIAL, CURRENT
STATUS, AND LIMITATIONS)
To meet the demands of the rapidly growing population, which is expected to reach nine
billion people by 2050 (World Population Prospects, 2015), agricultural production andFSCs
must be optimized by producing and delivering efficient food, feed, fiber, and fuel (Abe,
2017; Asseng et al., 2018; Asseng et al., 2019). This goal has become more difficult to achieve
due to urbanization, climate change (Ali et al., 2022; Ali et al., 2020; Ding et al., 2021; Kheir
et al., 2019), and water scarcity (Kheir et al., 2021b). AgBD will be a key component of
the second green revolution, which will be required to meet the demands of the growing
population. Furthermore, the crop growth simulation modeling approach has been proven
to be a useful tool for determining the impact of climate uncertainty on crop yields (Asseng
et al., 2013; Ejaz et al., 2022; Shoaib et al., 2021). Many countries and commodity markets
are already using AgBD to detect supply chain disruptions in commodity crops like wheat,
rice, corn, and soybean (Bock & Kirkendall, 2017; George Hanuschak, 1993; Rosenzweig et
al., 2013). Precision agriculture has progressed as a result of advancements in RS data
collection, such as improved spatial and temporal resolution, spectral resolution, and a
variety of sensor platforms (e.g., satellite, aerial, and ground-based) (Mulla, 2013). Precision
agriculture recently demonstrated a significant increase in crop yield production (Loures
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Table 2 Examples of public agricultural big data with related references.

Type Source References

Meteorology and RS data Cloud computing-based earth AWS (2017)
Cloud computing-based Google earth engine Google Earth Engine (2017)
Cloud computing-based NASA, NOAA NASA (2017) and National Oceanic and Atmospheric

Administration (2017)
Cloud computing-based labor statistics United States Bureau of Labor Statistics (2017a)

Survey National Agricultural Statistics Services (NASS) United States Department of Agriculture (2017b)
Financial National Water Economy Database (NWED) Rushforth & Ruddell (2017)
Scientific data Scientific Research Centers in Agriculture United States Department of Agriculture (2018b)
Geospatial, water and soil Natural Resources Conservation Service (NRCS) United States Department of Agriculture (2018c)
Sales and prices Agricultural Marketing Services United States Department of Agriculture (2018a)
Marketing World Agricultural Outlook Board United States Department of Agriculture (2018d)
Generic Global Open Data for Agriculture and Nutrition United States Department of Agriculture (2022)

Notes.
Modified after U.S. Department of Agriculture (USDA).

et al., 2020; Singh et al., 2020). Spatial data mining techniques (e.g., hotspot detection)
can be used with AgBD to identify crops produced in small geographic areas or a set of
regions that are vulnerable to climate change and natural disasters (Jiang & Shekhar, 2017;
Shekhar, Feiner & Aref, 2015;Vatsavai et al., 2012;Xie et al., 2017). Furthermore, consumer
datasets and market manner can be used to improve food access and nutritional outcomes,
and geo-social media can be used to detect and control food-borne illness outbreaks
in real-time. AgBD could help agricultural decision-makers in four ways: descriptive,
prescriptive, predictive, and proactive (Shekhar et al., 2017). The goal of the descriptive
axis is to use AgBD data to characterize spatial and temporal variability in soil, land cover,
crop, and weather characteristics, as well as to identify stressors, traits, and infectious
disease risk factors that need to be better managed. The prescriptive way is to look for the
required innovations for farm management. The predictive axis is a predictive analysis that
uses historical datasets and integrated soil, crop, weather, and market models to forecast
outcomes like crop yields and food insecurity. Predictive analytics can also be used to
improve decision-making to forecast the spread of infectious agents and limit their impact
on crops and livestock. Finally, the proactive axis includes crop development and stress
observations from multiple farms across large regions and time scales.

The current state of AgBD can be divided into two categories: public and private
data. Some examples of public AgBD are summarized in Table 2. Big data differs from
one region to another based on various factors, including but not limited to the data
availability, capacity building, and target of the study. Exploring sustainable FS necessitates
detailed data covering all aspects of FS, putting pressure on decision-makers and scientists
to initiate and prepare the necessary big data. To assist in filling this void, the big data
paradigm should employ techniques, paradigms, and decision-making technologies, as
illustrated in Fig. 2.
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Figure 2 Processing of big data paradigm.
Full-size DOI: 10.7717/peerj.13674/fig-2

METHODS AND MODELS USED FOR FS ANALYSIS
FS has four dimensions: access, availability, stability, and utilization; thus, incorporating
such dimensions into agricultural models necessitates careful consideration and deep
efforts. There have been few studies that have linked agriculturalmodels with FS dimensions
and indicators in order to understand evolving intertemporal dynamics and assess the effects
of agricultural system intensification (Laborte et al., 2009; Laborte, Van Ittersum & Van den
Berg, 2007; Marín-González et al., 2018; Morris, 2003; Nicholson et al., 2021a). However,
such studies have focused only on a few FS indicators, such as household outcome, and
ignored other dimensions and indicators. Therefore, we reviewed more than 1,200 related
articles on FS modeling at the household and regional levels to assess the frequency of use
of various FS indicators and make future recommendations to close this gap. Optimization
models were used in FS but only on a few indicators of food availability (Amede & Delve,
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2008). Crop simulation models are used to predict crop yield as an indicator of food
availability, either as regression models (Beyene & Engida, 2016; Bharwani et al., 2005) or
as complex biophysical models (Lázár et al., 2015). For food consumption expenditures,
other sophisticated models, such as Holden & Shiferaw (2004) and Louhichi & Gomezy
Paloma (2014) were used. Scopus database was screened for approximately 1,250 articles
related to household FS models, and 130 articles were reviewed for which FS indicators
were summarized (Table S1). We also looked for studies that looked at the determinants
of dietary diversity at the individual level (most commonly, among young children or
women) or at the household level. Dietary diversity, or the number of different foods or
food groups in one’s diet, has been linked to several measures of household socioeconomic
status that are frequently used as indicators of food insecurity (Jones et al., 2013). As a result,
dietary diversity is frequently used as a proxy and stand-alone indicator of household food
insecurity. We searched Google Scholar for relevant studies that provide empirical evidence
about the determinants of the Household Dietary Diversity Score (HDDS), Household
Food Insecurity Access Scale (HFIAS), and Food Insecurity Experience Scale (FIES). For this
purpose, we used the following items in search: diet diversity determinants (130 articles),
household FS determinants (870 articles), and experience scale of food insecurity (250
articles). From the 1,250 articles, 130 articles were reviewed. Figure 3 shows the network
and associations of different models used for FS. It was found that statistical models
were the most prevalent, and all models covered only two FS dimensions: availability and
access. The detailed descriptions of these models, including type, classifications, the related
references, and calculations of FS dimensions are presented in Table S1. Even though,
many models and methods are used to investigate global FS, there are insufficient related
studies in the GCC, particularly in the UAE, requiring much attention using the best tools
to achieve most FS dimensions.

CONCLUSIONS
Despite the importance of big data tools in FS, some challenges must be addressed first
(Wang et al., 2016). The most common challenges for FSC-related data, according to most
experts, are data quality, accessibility, findability, reusability, interoperability, and a lack
of standardization. Farmers, for example, use a variety of farm management systems,
making standardization of farm management data (such as variable names) a challenge.
Because of the lack of standardized communication protocols, the data produced by IoT
devices today can be difficult to interpret, communicate, and share, which may be one
of the reasons for the limited adoption of IoT technology in food safety (Bouzembrak
et al., 2019). Handling big data issues is difficult and time-consuming, requiring a large
computational infrastructure to ensure timely data processing and analysis. Even though
many organizations have adopted cloud computing as a solution, research on big data in
FS using cloud computing technology is still in its infancy. Scalability, availability, data
integrity, security, privacy, and legal issues are just a few of the research challenges that
have yet to be fully addressed globally and in the UAE.

Statistical, optimization, CGE, simulation integrated, and simulation biophysical models
and methods were used globally. However, it was discovered that such models only covered
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Figure 3 Network visualization of the model number and types used in food security from literature
over last 10 years.

Full-size DOI: 10.7717/peerj.13674/fig-3

a subset of FS dimensions, namely availability and access, while recording limitations
with other dimensions. In the future, this will necessitate the use of a multi-model
approach to investigate FS because it will cover most FS dimensions while achieving
higher accuracy. Thus, currently, there are some FS gaps in the global and UAE contexts
that require significant attention from scientists and decision-makers. The global gaps
could be summarized as follows: limited global dissemination of big data digital sources,
lack of political visibility and prioritization, lack of long-term investment in data and
statistics, lack of coordination and political economy challenges, limited access to new data
sources, utilization and stability dimensions were not covered well, model complexity and
uncertainty of multi-dimensional FS, limited studies on multi-model approach, and deep
learning approach not being used. In the UAE context, in addition to the gaps mentioned
in the global context, limited big data sources, lack of long-term investment in data and
statistics, insufficient investment in agricultural research, insufficient studies in STEM,
lack of modeling studies, and lack of ML and deep learning (DL) in data collection and
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analysis. Following the identification of the drivers, policies, and indicators, these findings
could be used to develop an appropriate analytical framework for FS and nutrition.
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