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for gene regulatory network inference from
single-cell transcriptomics

Yuchen Wang,1 Xingjian Chen,1,2 Zetian Zheng,1 Lei Huang,1 Weidun Xie,1 Fuzhou Wang,1 Zhaolei Zhang,4,5,6

and Ka-Chun Wong1,3,7,*
SUMMARY

Gene regulatory networks (GRNs) involve complex and multi-layer regulatory interactions between reg-
ulators and their target genes. Precise knowledge of GRNs is important in understanding cellular pro-
cesses and molecular functions. Recent breakthroughs in single-cell sequencing technology made it
possible to infer GRNs at single-cell level. Existing methods, however, are limited by expensive computa-
tions, and sometimes simplistic assumptions. To overcome these obstacles, we propose scGREAT, a
framework to infer GRN using gene embeddings and transformer from single-cell transcriptomics.
scGREAT starts by constructing gene expression and gene biotext dictionaries from scRNA-seq data
and gene text information. The representation of TF gene pairs is learned through optimizing embedding
space by transformer-based engine. Results illustrated scGREAT outperformed other contemporary
methods on benchmarks. Besides, gene representations from scGREAT provide valuable gene regulation
insights, and external validation on spatial transcriptomics illuminated the mechanism behind scGREAT
annotation. Moreover, scGREAT identified several TF target regulations corroborated in studies.

INTRODUCTION

The rapid development of single-cell RNA sequencing (scRNA-seq), along with the exponential increase in genomic data, has expanded the

frontiers of single-cell research and accentuated the need for the development of computational methods to interpret gene-gene interac-

tions and relationships.1 Gene regulatory network (GRN) illustrates the intricate interactions among genes, consisting of regulatory relation-

ships among a variety of molecular entities.2 Accurate reconstruction of GRN is essential for understanding the behavior of different genes,3,4

such as gene expression mechanisms within cells, and advancing research in disease pathology.5 Single-cell technology has brought oppor-

tunities for GRN inference but also unprecedented challenges, especially complexity and inherent noise in scRNA-seq data post unique chal-

lenges.1 Fortunately, deep learning-based methods offer robust solutions for handling noisy data, integrating diverse knowledge sources,

and learning complex relationships by its capabilities of feature extraction and optimization as exemplified in.6–13

Recently, numerous methods have been proposed to infer GRN. For instance, SCODE,14 using ordinary differential equations (ODE),

treats pseudotime as time information to reconstruct GRN during cell differentiation. GENIE315 and GRNBoost216 are both tree-based ma-

chine learning algorithms for inferring GRN, which was incorporated into the program of SCENIC.17,18 Tree rules are utilized to learn regu-

latory relationships by leaving one gene out at a time to find its relationships with other genes. Boosting method is an approach to enhance

the performance of trees.16 Despite its success, the primary limitation of SCODE is its dependency on accurate pseudotimedata andpotential

oversimplification of complex pathological processes using linear ordinary differential equations. Besides, the tree-based methods require

segmenting input data for iteratively establishing multiple models, which is computationally expensive and less scalable for large datasets.

Various deep learning methods have been described to overcome these limitations.7 Shu et al. proposed DeepSEM,6 a structural equation

model (SEM) with a beta-variational autoencoder and neural network to predict regulatory relationships. However, the prior domain knowl-

edge required and SEM assumptions about the underlying causal structuremay not always hold in practice.7 GNE8 is a deep learningmethod

based on multilayer perceptron (MLP) for GRN inference applied to microarray data. It utilized one-hot gene ID vectors from the gene topol-

ogy to capture topological information, which is always inefficient due to the highly sparse nature of the resulting one-hot feature vector.19 In
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Figure 1. Overview of scGREAT framework

(A) Feature initialization.

(B) Gene dictionary construction.

(C) Inference engine.

(D) GRN construction. * RI, Regulatory Inference; CI, Causality Inference.
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addition, graph models have gained attention in capturing the topology of gene networks. Chen and Liu introduced GENELink,20 a deep

learning framework with graph attention networks (GATs). However, the method relies on node feature quality and emphasizes local network

information over global perspectives, which could lead to suboptimal or inadequate node feature representations, especially given the spar-

sity of known ground truth networks. Besides, convolutional neural network (CNN) has had great achievement inmany computer vision tasks21

and their applications in bioinformatics have also been quite successful.22,23 Yuan and Bar-Joseph proposed convolutional neural network for

coexpression (CNNC),24 a deep learning method converting gene expression co-occurrence values into pixel values in images through

normalized empirical probability distribution function and using CNN to extract the relationship. However, the method requires substantial

computation to transform the transcriptomic data into images for every TF-gene pair, which can be computationally expensive for larger data-

sets and lacks the advantages of end-to-end deep learning models.25 To address the above problems, we propose scGREAT, a transformer-

based supervised deep learning model for GRN inference from single-cell transcriptomics data. Inspired by the application of computer

vision techniques in CNNC,24 we leverage state-of-the-art (SOTA) transformer model in natural language processing (NLP) to efficiently pro-

cess and interpret complex scRNA-seq data and capture dependencies between genes. Besides, we utilized languagemodels to construct a

gene biotext dictionary and an expression dictionary for unraveling the complex regulatory relationships between Transcription Factors (TF)

and genes. Our contributions can be summarized as follows.

(1) Drawing an analogy between genes and cells to words and sentences, taking advantage of the SOTAmodel backbone, transformer, in

NLP field.

(2) Applying the biomedical language representation model abstracts contextual biotext vectors for gene symbols.

(3) Significantly outperforms other SOTAmodels, achieving up to 91.30% averageAUROCon seven benchmark datasets across four kinds

of gene network platforms.

(4) Employing spatial transcriptomics data as external validation to visualization and illuminate the mechanism behind model annotation

for gene regulation.

(5) Ability to uncover novel relationships between genes. scGREAT discovered various unreported TF-target regulatory relationships

corroborated in other published studies.
RESULTS

Design principles of scGREAT framework

We designed scGREAT as an end-to-end deep learning model based on gene embedding and transformer backbone26 for inferring gene

regulatory relationships. In detail, the scGREAT consists of four major components: feature initialization, gene dictionary construction, infer-

ence engine that is scGREAT network backbone, and GRN construction (see Figure 1). For feature initialization, after the train-test split to
2 iScience 27, 109352, April 19, 2024



Figure 2. Dictionary Construction and Application

The n in enm represents the n-th gene symbol andm is them-th dimension of embedding. The purple arrow on the left refers to the search process and the two

embedding vectors on the right are the results of searching in the two dictionaries. The position embedding vector is the generated vector by position module.
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avoid data leakage, we preprocessed the gene expression data and subsequently extracted gene pairs from the ground truth network along

with generating negative samples. In the second component, gene expression dictionaries and gene biotext dictionaries are learned from the

original gene expression data, gene symbols. We first adopted a neural network encoder to construct gene expression data into a gene

expression dictionary (detailed in the STAR methods section). In parallel, we also extracted textual information of gene symbols from

BioBERT27 and combine the regulatory position order of TF and target to construct the principal feature representation (see Figure 2). In

the scGREAT network backbone part, the transformer architecture was designed as the backbone framework and heavily modified to ensure

meaningful feature representations for predicting regulatory relationships. By employing the backbone of the network, scGREAT analyzes

single-cell data to uncover potential regulatory relationships among genes, predict associations between gene pairs, assess the loss between

these predictions and actual observations, and iteratively adjust network parameters until convergence is achieved. For the final part, GRNs

are constructed according to predicted regulatory relationships of candidate gene pairs and further validated through spatial transcriptomics

information.

Performance on benchmark datasets

We evaluated the effectiveness and generalization ability of scGREAT on seven benchmark datasets (detailed in the STARMethods section),

including hESC, hHEP, mDC,mESC, mHSC-E, mHSC-GM, andmHSC-L across all four kinds of ground truth networks from STRING, non-spe-

cific ChIP-seq, LOF/GOF, and Cell-type-specific ChIP-seq (see Tables 1 and S1). In detail, the performance of scGREAT is compared with

several state-of-the-art methods, including GENELink, GNE, CNNC, DeepSEM, PCC, MI, SCODE, GRNBoost2, and GENIE36,8,14–18,20,24 as

well as two popular methods for gene–gene coexpression analysis Pearson correlation coefficient (PCC) and Mutual Information (MI).24

Among these methods, GENIE3, GRNBoost2, SCODE, MI, PCC, and DeepSEM utilize unsupervised or self-supervised methods, whereas

CNNC, GNE, GENELink, and scGREAT are based on supervised methods. In supervised learning, models are trained with labeled data,

whereas unsupervised learning operates without. In order to guarantee fairness in evaluations, we maintained training and independent

testing data consistency for all the supervised methods by following the data processing rules of BEELINE,28 as well as the HNS selection

method and train test data splitting method according to.20

The results showed that, on theCell-type-specific ChIP-seq network type, scGREATultimately achieved the best performance on all (14/14)

scRNA-seq datasets in terms of both the AUROC (see Figure 3 bottom) and the AUPRC (see Figure S1) evaluation metric, achieving average

AUROC score of 90.5% (81.4%–95.0%) as increased by 6.3%, 15.5%, and 23.9% compared to the latest and famousmethods: GENELink, GNE,

and CNNC, respectively.

scGREAT also outperformed across the STRING, non-specific ChIP-seq, and LOF/GOF network types, which with extremely sparse

connection density. The CNNC method necessitates the transformation of scRNA-seq data into image data, demanding significant
iScience 27, 109352, April 19, 2024 3



Table 1. The size of training sets about each ground-truth network with TFs and most-varying 500 (1000) genes

Datasets Specific STRING Non-specific LOF/GOF

hESC 20677 (32065) 208614 (331058) 172153 (275435) –

hHEP 19002 (30026) 259147 (401011) 204039 (321581) –

mDC 10969 (18556) 144820 (241221) 137156 (224444) –

mESC 65895 (96460) 370740 (540893) 386511 (565848) 25459 (36848)

mHSC-E 13632 (26565) 73346 (129635) 67712 (118364) –

mHSC-GM 9280 (17406) 38827 (75698) 34615 (66621) –

mHSC-L 5976 (7392) 14573 (18487) 13081 (17096) –

Specific represents Cell-type-specific.
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computational resources on the extensive training data size in these three ground truth networks. Besides, it is based on the deep CNN

network framework VGGnet, which, given the substantial processing power requirements, faced limitations in training on these three

ground truth networks with one GPU. For the STRING network, scGREAT achieved an average AUROC score of 94.3% (85.2%–97.4%),

for the non-specific ChIP-seq network, the average AUROC performance of scGREAT is 89.4% (81.1%–93.0%) and for LOF/GOF network,

the average AUROC is 91.0% (see Figure 3 top We performed a detailed comparison with two-tailed paired t-tests and Mann-Whitney U

test on the AUROC performance of scGREAT and the second-best method GENELink to clearly illustrate that the performance of scGREAT

significantly outperforms and becomes the state-of-the-art method, with the t-tests p values of 0.0206, 0.0087, and 0.0023 and U tests p

values of 0.001, 0.0023 and 0.0045 on seven datasets based on STRING, non-Specific and cell-type-specific ChIP-seq network (see Figures 4

and S2), respectively.

Furthermore, we evaluate the AUROC performance of these representative algorithm backbones in gene regulation prediction tasks.

These backbones are commonly used in statistics and computer science research. The results are presented in Table 2. In general, supervised

methods have significantly improved performance compared to unsupervised methods. Among supervised methods, scGREAT with trans-

former in the NLP field performs best, achieving an average AUROC value of 91.3% in seven datasets, and GENELink using graph performed

second, reaching an average AUROC value of 86.7%. However, the result is not intended to judge the merits of methods in different fields.

Rather, it provides some implications for model selection when solving gene regulation prediction problems. The performance of these al-

gorithms is also affected by the setting of model parameters, feature extraction strategies, and supervision methods. Figure 5 displays the

average AUROC with line chart accompanied by error bars. This visualization effectively illustrates the distinctions among various models,

highlighting scGREAT’s competitive performance.

Additionally, considering the sparsity and low density of gene regulatory relationships, we emphasized maintaining the predictive capa-

bility of scGREAT within the actual data distribution instead of strictly balancing positive and negative sample data. Interestingly, the results

reflect that scGREAT also achieved outstanding performance in AUPRC (see Figures 6 and S1), which is the crucial indicator for imbalanced

data. Take the Specific network as an example, scGREAT achieved an averageAUPRC score of 76.65%with an average improvement of 34.1%

(9.6%–42.0%) across seven datasets, compared to the other methods.

In general, scGREAT achieved the best AUROC performance on all (44/44) benchmark scRNA-seq datasets and the best AUPRC perfor-

mance on 93% (42/44) benchmark datasets. The two exceptional cases can primarily be attributed to the extreme sparsity of the data, as the

network density is merely 0.048 (0.045) with only 137 (154) positive samples in the case of an overall sample size of 14573 (18487), so for the

AUPRC metric, scGREAT performance did not meet expectations. In a comparison against the second-best model GENELink, scGREAT

demonstrated superior performance across all benchmark datasets in terms of both the AUROC and the AUPRC evaluation metric.

To illustrate the performance of finding true positives and avoiding true negatives, in Figure 7, we compared the positive sample predic-

tion results of scGREAT and the second-best model GENELink on seven datasets with Cell-type-specific ChIP-seq network. The Venn dia-

grams reflect the superiority of scGREAT in predicting positive samples. To ensure fairness in comparison, we classify positive and negative

samples according to the threshold under the optimal AUROC indicator for eachmodel. On this basis, we obtained the final prediction labels

of the comparedmodels and labels of scGREAT. By drawing the Venn diagrams of the positive regulatory relationship predicted by scGREAT

and GENELink, and the ground truth, we visually demonstrated the overlaps between the predicted and actual labels of the two models.

Taking the mESC dataset with 500 most-varying genes as an example (see Figure 7 middle of the first line), 5181 (75.6%) regulations were

found by bothmethods. scGREAT failed to detect 1051 (15.3%) positive regulations whileGENELink overlooked 1298 (18.9%) instances, which

shows that scGREAT had a lower missed detection number of positive samples by 247 (3.6%) compared to the second-best model. For false

positives samples, there were 2090 spotted by scGREAT while 2981 from GENELink, indicating that scGREAT reduced 891 (30.0%) false pos-

itives samples in comparison toGENELink. Unfortunately, on themDCdataset, scGREATdid not demonstrate strong performance in terms of

low false positives, which may be attributed to the characteristics of the dataset that various models showed suboptimal performance on this

dataset, indicating significant noise and confounding information in the networks of specific cell types. However, despite this, scGREAT

detectedmore positive samples compared toGENELink. Generally, scGREAToutperformed the second-bestmethodby improving the iden-

tification rate of potential regulatory relationships by 2.3%–38.35% on 93% (13/14) of the datasets. It shows that scGREAT can effectively
4 iScience 27, 109352, April 19, 2024



Figure 3. AUROC Heatmap

AUROC of scGREAT and other state-of-the-art methods on benchmark datasets across four types of networks.
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identify potential regulatory relationships with high sensitivities. For false positives performance, scGREAT outperformed GENELink by

reducing the rate of false positives by 3.7%–29.5% on 10/14 of the datasets.

We also evaluated the causality inference20,24,29 ability of scGREAT on hESC and mESC datasets with cell-type-specific networks (see

Figure 8). Comparing the results with the second-best model GENELink, for the causality inference task, scGREAT achieves an average of

9% and 2.9% improvements in AUROC, and 11.0% and 5.5% improvements in AUPRC.
Embedding clustering

To gain an in-depth understanding of gene regulatory information within scGREAT, we utilized the t-distributed Stochastic Neighbor Embed-

ding (t-SNE) technique30 to visualize both the original paired gene data and the embeddings after penultimate layer of scGREAT (see Figure 9

Left column). Original data, organized in a three-dimensional array with dimensions representing samples, gene pairs, and cells, respectively

(see Figure S6), is constructed from gene expression data and network. The penultimate layer embeddings, derived from the original paired

gene data through the optimization process of scGREAT, are structured similarly in terms of gene pairs but with a different third dimension

256, where 256 is the dimension of features out from the layer. These embeddings project comprehensive feature representation of the gene

regulatory and expression information. In contrast to the original data, embeddings out frompenultimate layer effectively replicated the class

patterns that are highly discriminative for classification. This visualization demonstrated the capacity of scGREAT to capture and illustrate the

distinct variations amongst classes.

Additionally, we generated projections of gene embeddings extracted from the scGREAT framework, which include the embeddings of

TF, Target Genes (TGs), and Non-Target Genes (Non-TGs) (see Figure 9 Right two columns). These projections effectively portray the distinct

regulatory statuses and relationships amongst these gene types. For each TF, multiple embeddings are generated as it involves various gene

regulatory pairs.We computed the arithmeticmean of all generated TF embeddings to obtain a representative one, and picked its respective

target and non-target gene embeddings for t-SNE clustering. The results show that the TF was centrally positioned amongst its target genes,

with SIN3A TF serving as a representative example.We observed that these exhibited close associations with the TF, while the Non-TGs were

located more distantly. The spatial arrangement observed suggests a correlation with the presence or absence of regulation, indicating that

scGREAT may offer valuable perspectives on the dynamics of gene regulation. As an extension, we also performed gene embedding
iScience 27, 109352, April 19, 2024 5
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Figure 4. AUROC Violin

Violin plots on the AUROC performance of scGREAT and state-of-the-art methods across the Cell-type-specific ChIP-seq network, with p values of 2.38e-03 and

4.21e-05 compared with GENELink and GNE, respectively, from two-tailed paired t-tests and with p values of 2.38e-03 and 2.55e-05 from Mann-Whitney U test.
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clustering for other TFs to validate the consistency of these spatial patterns and relationships (see Figure 9 Right two columns and Figure S5).

The same tendency was observed across different TFs, further strengthening the reliability of scGREAT in deciphering gene regulatory

patterns.
External validation on spatial transcriptomics data

According to31 and,32 spatial similarities in gene expression can effectively reflect gene regulatory relationships. Leveraging spatial transcrip-

tomics data, we next attempted to find corroborative evidence on the TF-gene pairs in the hHEP testing dataset that were predicted by

scGREAT but were not reported by other methods. This confirmation was achieved through external validation using spatial scRNA-seq

of the human liver, with a focus on identifying and clustering hepatic stellate cells33 (see Figures 10 and S3).

Specifically, ATF3 was analyzed as a representative TF, the spatial scRNA-seq data of ATF3 depicts a close alignment between the expres-

sion levels of ATF3 and its target genes.We calculated the Pearson correlation coefficient between the TF-gene pairs. The result show that the

pcc between ATF3 and its target gene GTF2H3 is 0.30, while the it between ATF3 and the non-target gene IFITM3 is 0.09. Moreover, upon

scrutinizing the cell-type clustering umap, a noticeable co-expression pattern was also discovered (see Figure 10 row), which suggested that

ATF3 and its target genes are largely co-expressed within the same cluster of cell types. This observation reinforces scGREAT’s dependability

and effectiveness in identifying genuine TF-gene pairs. Contrastingly, this co-expression pattern is conspicuously missing when analyzing the

expressionmap of ATF3’s non-target genes. These non-target genes, also correctly identified by scGREAT but incorrectly predicted by other

methods, exhibit a different expression level and pattern, which further emphasizes to scGREAT’s robustness and precision in pinpointing

valid TF-gene pairs. we (see Figure S4) also showed some regulations that are missed by scGREAT but pointed out by other methods. Taking
Table 2. Average AUROC results for the state-of-the-art models under various backbones on four ground truth networks

Method Field Backbone AUROC

GENIE3 Machine Learning Tree 0.610

GRNBoost2 Machine Learning Boost-Tree 0.604

SCODE Calculus ODE 0.547

MI Information Theory Probability 0.612

PCC Statistics Correlation 0.581

DeepSEM Data Analysis SEM 0.605

CNNC Computer Vision CNN 0.666

GNE Deep Learning MLP 0.735

GENELink Graph GAT 0.867

scGREAT NLP Transformer 0.913

NLP represents Natural language processing.

6 iScience 27, 109352, April 19, 2024



Figure 5. Average AUROC bars chart

Improvement with p value of 0.014 and 0.004 compared with GENELink and GNE, respectively.
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HDAC2 as an example, a distinct difference can be observed between the distributions of missed and accurately identified samples, poten-

tially attributed to various regulatorymodes like promotion and inhibition;moreover, the direct inhibition or indirect inhibition could also lead

to different expression of TG. For example, the expression status of the TF-gene pair HDAC2-MEP1A is the same as the status of the ATF3-

APOC2 pair, where the two TFs were moderately expressed and TGs were densely and highly expressed, but the two pair were with

completely opposite labels. This kind of situation may have had a negative impact on scGREAT.

Ablation experiments

We carried out two ablation experiments, the first involved contrasting scGREAT structure with aMultilayer Perceptron(MLP)model, while the

second focused on evaluating the impact of gene biotext dictionary and gene expression dictionary on the performance of scGREAT.

Validate the role of the transformer backbone

In order to state the effectiveness of Transformer structure, we evaluated the AUROC and AUPRC performance of scGREAT with and without

the Transformer architecture with the same parameter settings across the seven datasets with the Cell-type-specific ChIP-seq network types

of ground truth.

In general, the average AUROC value for the scGREAT method is 90.2% (range from 81.2% to 94.4%), and the average AUPRC value is

76.7% (range from 19.5% to 95.2%). In contrast, the average AUROC value for the model without the Transformer architecture is 82.9% (range

from 76.8% to 87.7%), and the average AUPRC value is 64.0% (range from 12.3% to 87.0%). The average AUROC difference in performance

due to the Transformer architecture shows an improvement with 7.2%, which is varied from 4.4% to 11.4%. Similarly, the average AUPRC dif-

ference is 12.6%, with a range from 7.2% to 23.0%. Overall, the result indicates that the Transformer architecture consistently improves the

performance in terms of both AUROC and AUPRC across all datasets, with notable improvements observed in both metrics. These discrep-

ancies in performance justify the structural and computational characteristics and rationale behind scGREAT (see Table 3).

Validate the role of the biotext vectors

To assess the impact of incorporating a gene biotext dictionary, we compared the AUROCandAUPRCmetrics with and without these vectors

across seven datasets. As shown in Table 4, the average AUROC for the scGREAT with biotext vectors is 90.2%, and the average AUPRC is

76.7%. In contrast, without biotext vectors, these values drop to 89.4% and 75.0%, respectively. The differences in average AUROC and

AUPRC are 0.75% and 1.68%, differs among the various datasets, ranging from 0% to 1.49% for AUROC and 0.24%–3.79% for AUPRC, respec-

tively. Experiments confirm that biotext dictionary is of limitation to the model in some cases. Besides, without the use of biotext vectors,

scGREAT still consistently outperforms other methods, indicating its effectiveness in identifying regulatory relationships between TFs and

genes. In conclusion, the biotext dictionary, aggregating biological information of gene symbols, offers some support for gene regulation

tasks.

Running time

We investigate the running time of eachmethod on different sizes of hESCdatasets with cell type-specific networks (see Table 5). Ourmethod

demonstrates competitive runtimes on the TFs+500 genes and TFs+1000 genes with around 101 minutes while achieving the best
iScience 27, 109352, April 19, 2024 7



Figure 6. AUPRC Bar

Average AUPRC with error bars (mean G s.d) and data points for scGREAT and the state-of-the-art methods across different platforms.
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performance in AUROC and AUPRC. Regarding runtime, scGREAT might incur a slight sacrifice compared to the GENELink and DeepSEM

models. However, it significantly excels in performance metrics that, compared to GENELink, scGREAT shows a 7% enhancement in AUROC

and a 13% improvement in AUPRC. Further, in comparison toDeepSEM, scGREATexhibits a 31% increase in AUROCand a 45%enhancement

in AUPRC. The results were obtained using an Ubuntu 20.04 computer equipped with an 8-core 2.9 GHz processor, and an NVIDIA GeForce

RTX 3080 with 10 GB of memory.
Unveiling unannotated regulatory relationships

To demonstrate the ability of the scGREAT in identifying potential gene regulatory relationships, in addition to statistical models for AUROC

and AUPRC indicators,72 we also performed a comprehensive literature search and external validation from spatial transcriptomics data to

verify predicted relationships by scGREAT using the optimal threshold screening on the testing set of benchmark datasets for confirming

the authenticity. We found that various potential positive regulatory relationships predicted by scGREAT, which were not reflected in the

ground truth, have rich literature support (see Table S2 and Figure 11).

Specifically, in the mESC500 dataset (see Figure 11 Left), the predicted relationship between E2F1 and TOP2A was proved by34 that after

the induction of E2F-1, the expression of TOP2A increased, which contributed to the assembly and function of the DNA replication mecha-

nism in the process of the cell cycle. There is also pathway evidence fromWikipath (https://www.wikipathways.org/instance/WP3206) to sup-

port the illustration. Furthermore, the regulatory between SOX2 andCCND1 predictedwas proved by.35 Specifically, SOX2 facilitates the G1/

S transition in the cell cycle and regulates the transcription of the CCND1 gene, which encodes cyclin D1.35 And the NANOG - CCND1 pre-

dicted regulatory relationship has also been reported. The study36 demonstrates that when the expression of NANOGwas silenced in MCF-7

breast cancer cells, the expression of cyclin D1 (encoded by the CCND1 gene) and c-myc were significantly downregulated, and cell cycle

progression was blocked in G0/G1 phase. Additionally, chromatin immunoprecipitation experiments revealed that NANOG protein could

bind directly to the promoter region of the CCND1 gene, thereby regulating its expression and influencing cell cycle progression.36
Figure 7. Venn

Venn diagram of the positive regulatory relationship predicted by scGREAT, GENELink, and the Ground Truth of Cell-type-specific ChIP-seq network.

8 iScience 27, 109352, April 19, 2024
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Figure 8. Causality Inference

Comparison of scGREAT and GENELink ROC curves for task of causality inference in mESC500 dataset (left) and hESC500 dataset (right) on the cell-type-specific

ChIP-seq network.
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In addition, in the hESC500 dataset (see Figure 11 Right), the predicted potential regulatory relationship (TRIM28(aka KAP1)-ID1) has been

verified by.37 They explored the regulatory interactions between KAP1 and ID1, which are influenced by MAGE I proteins (MAGE-A3 and

MAGE-C2) and a KZNF family member, ZNF382.37 Typically, ZNF382 directs KAP1 to repress the ID1 gene by causing localized heterochro-

matin changes, evident through histone 3 lysine 9 trimethylations (H3me3K9).37 When MAGE I proteins are expressed, they bind to KAP1,

reducing its repression of ID1, leading to increased ID1 mRNA expression and chromatin relaxation. Simultaneously, these proteins cause
Figure 9. Embedding

t-SNE projection of all input pairs of TFs-gene vectors and the penultimate layer embedding (Left column). TF, TGs, and Non-TGs embedding t-SNE projections

in mESC testing dataset with most-varying 500 genes on the Cell-type-specific ChIP-seq network (right two columns).
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Figure 10. Spatial validation

External validation on spatial single-cell RNA sequencing of the human liver with emphasis on hepatic stellate cell identification and clustering. The figures with

black boxes are the expression level and distribution of ATF3 TF in the tissue. The left panels illustrate target gene expressions and spatial distribution, and the

right displays non-target gene expressions and spatial distribution of the respective TF. The color of the point in figures represents the expression level of the

gene in the slice and the position of the point represents the expression of the gene in one of the seven categories of cells.
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ZNF382 degradation, further reducing KAP1’s binding to ID1.37 In addition, the predicted relationship between TFAP2A and CRX can be

confirmed in the study of38 and.39 Similarly, the inferred STAT3-HIFIA interaction has been proved by several studies. According to,40 trans-

ducer and activator of transcription 3 (STAT3) have been found to upregulate the expression of EPO induced by hypoxia-inducible factor 1

alpha (HIF-1alpha). This process involves the transcription activation function of STAT3, enabling HIF-1alpha to induce the expression of the

EPO gene more effectively. The correlation between the expression of STAT3 and HIF-1alpha was also found in breast cancer samples (cor-

relation coefficient r = 0.4012, p value<0.0001), which reflects functional dependencies among STAT3, HIF-1alpha, EPO, and EPOR in cellular

signal conduction.41 also discovered the novel regulatory mechanism between signal transducer and STAT3 and HIF-1 under both hypoxia

and growth signaling conditions. STAT3 is found to be necessary for HIF-1alpha RNA expression in both cancer cells and myeloid cells within

the tumor microenvironment. Tumor-derived myeloid cells express elevated levels of HIF-1alpha mRNA in a STAT3-dependent manner.

These findings suggest that HIF-1alpha regulation occurs not only in cancer cells but also in tumor-associated inflammatory cells, indicating

STAT3 as a significant molecular target for inhibiting the oncogenic potential of HIF-1alpha induced by both hypoxia and overactive growth

signaling pathways in cancer. The other study also revealed that hypoxia-induced STAT3 phosphorylation and HIF-1alpha are functionally

interconnected in the context of a tumor microenvironment.42 These findings indicate a cooperative relationship between STAT3 and HIF-

1alpha in modulating the immune response within the tumor microenvironment, which could be exploited for immunotherapeutic

interventions.
Table 3. Performance of scGREAT with and without the Transformer architecture on benchmark datasets with specific ChIP-seq network in both

AUROC and AUPRC evaluation metric

Datasets

w Transformer w/o Transformer Difference

AUROC AUPRC AUROC AUPRC AUROC AUPRC

hESC 0.893 0.635 0.830 0.440 6.3% 19.5%

hHEP 0.912 0.860 0.798 0.630 11.4% 23.0%

mDC 0.812 0.195 0.768 0.123 4.4% 7.2%

mESC 0.944 0.895 0.877 0.760 6.7% 13.5%

mHSC-E 0.933 0.952 0.854 0.870 7.9% 8.2%

mHSC-GM 0.934 0.947 0.859 0.850 7.5% 9.7%

mHSC-L 0.882 0.882 0.82 0.810 6.2% 7.2%
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Table 4. Performance of scGREATwith and without biotext vectors on benchmark datasets with specific ChIP-seq network in both AUROC and AUPRC

evaluation metric

Datasets

w/BioVec w/o BioVec Difference

AUROC AUPRC AUROC AUPRC AUROC AUPRC

hESC 0.893 0.635 0.879 0.619 1.45% 1.65%

hHEP 0.912 0.860 0.903 0.841 0.91% 1.92%

mDC 0.812 0.195 0.803 0.157 0.91% 3.79%

mESC 0.944 0.895 0.930 0.863 1.49% 3.16%

mHSC-E 0.933 0.952 0.932 0.949 0.12% 0.34%

mHSC-GM 0.934 0.947 0.934 0.944 0.00% 0.24%

mHSC-L 0.882 0.882 0.878 0.876 0.39% 0.65%

BioVec represents biotext vectors.
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In summary, these new findings illustrate the capacity of scGREAT to discover unannotated gene regulatory relationships, many of which

are supported by existing literature. This highlights the value of the scGREAT tool in uncovering potential regulatory relationships.

DISCUSSION

Single-cell technology has brought opportunities for GRN inference but also challenges. In order to address the sparsity and platform noises

as well as to enrich the contextual information of genes, we proposed scGREAT, a transformer-based supervised deep language model, tak-

ing advantage of end-to-end deep learning and large languagemodels for GRN inference from single-cell transcriptomic data. By establish-

ing an analogy between the relationships of genes and cells and those of words and sentences, we effectively adapted state-of-the-art natural

language processing methods to genomics. In addition, we employed a biomedical language representation model to generate tokenized

biotext vectors for each gene symbol, which encapsulates valuable gene information derived from biomedical corpora.

The results have reflected that scGREAT can significantly achieve competitive performance with an average AUROC of 91.30% and an

average AUPRC of 55.97% across seven benchmark datasets encompassing four types of networks. These findings indicate that the integra-

tion of transcriptomic data and language embeddings substantially improves the actual performance in GRN inference tasks. Notably, the

scGREAT model identified unannotated regulatory relationships in the benchmark datasets. These relationships were subsequently

confirmed and verified by various related studies and papers, demonstrating the model’s ability to uncover gene relationships.

Conclusion

In our research, we introduced scGREAT, a innovative transformer-based supervised deep language model tailored for GRN inference from

single-cell transcriptomic data. Drawing inspiration from NLP, we likened the relationships between genes and cells to those of words and

sentences, combining with the application of a biomedical language model, allowed us to abstract meaningful biotext vectors. Our findings

highlight that scGREAT not only surpasses the performance of other SOTA methods, but also excels in uncovering unannotated regulatory

relationships that were not previously identified. These newly discovered gene relationships received validation from published studies, un-

derscore scGREAT’s capacity in unveiling novel gene dynamics. Our research offers a promising avenue for leveraging the power of NLP in

genomics, with the potential to revolutionize our understanding of GRNs.

Limitations of the study

The drawback of supervised learning in biological network inference is that reliable ground truth and sufficient negative samples are assumed.

In this condition, we adopted the uniformly negative sampling strategy to select negative targets for TFs from massive genes. In addition,

ablation experiments implied that the improvement provided by BioBERT in performance is limited. This limitation arises because the nature

of gene regulatory inference tasks is intrinsically tied to specific datasets; it is important to clarify that, although BioBERT aggregates infor-

mation from a wide array of text sources, its training on a vast text database primarily equips itself with the ability to assimilate general

information instead of specifics pertinent to GRN inference tasks, ensuring that there is no information leakage regarding the intricacies

of individual GRNs. While, in other words, without biotext vectors, the results of scGREAT still outperformed other methods. For future
Table 5. Running time of methods

Running time scGREAT GENELink GNE CNNC DeepSEM SCODE GRNBoost2 GENIE3 PCC MI

TF+500 genes 5m 2m30s 6m20s 2h15m 1m 5m 20m 2h15m 20s 20s

TF+1000 genes 12m 6m 30m 20h40m 2m 5m 50m 3h50m 32s 32s
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Figure 11. GRN

Potential regulatory relationships in mESC500 dataset (Left) and hESC500 dataset (Right) on the cell-type-specific ChIP-seq network. The central circle represents

the dataset, the intermediate circles indicate TFs, and the outer nodes are target genes. The red nodes are the predicted Target genes that have been proven to

be regulated by certain TFs.
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research, we aim to introduce semi-supervised learning approaches to mitigate the reliance on reliable prior knowledge of regulatory rela-

tionships. Additionally, we plan to integrate the varied representation of gene symbols in literature, such as different symbols, names, and

numbers, to increase the contribution of biotext to the model.
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table.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This paper analyzes existing, publicly available data. The study does not use experimental models typical in life sciences.

METHOD DETAILS

Benchmark scRNA-seq datasets and preprocessing

We evaluate the performance of scGREAT on seven cell types of scRNA-seq datasets in BEELINE28: (i) human embryonic stem cells (hESC);

(ii) human mature hepatocytes (hHEP); (iii) mouse dendritic cells (mDC); (iv) mouse embryonic stem cells (mESC); (v) mouse hematopoietic

stem cells with erythroid-lineage (mHSC-E); (vi) mouse hematopoietic stem cells with granulocyte-monocyte-lineage (mHSC-GM); (vii)

mouse hematopoietic stem cells with lymphoid-lineage (mHSC-L). Those datasets are all with three ground-truth networks from functional

interaction networks documented in STRING database,43 non-specific ChIP-seq38,44,45 and cell-type-specific ChIP-seq.46–48 Harnessing

cell-type-specific ChIP-seq enables the analysis of regulatory information focused on a single specific cell type, while non-specific ChIP-

seq is performed on a mixed population of cells and thus reflects average and comprehensive regulatory events across all the cell types

present. The mESC dataset is also with the ground truth from loss-/gain-of-function (LOF/GOF).48 The seven scRNA-seq datasets can be

downloaded from Gene Expression Omnibus with the accession numbers: GSE81252 (hHEP), GSE75748 (hESC), GSE98664 (mESC),

GSE48968 (mDC) and GSE81682 (mHSC).

We pre-processed each scRNA-seq dataset by following28 and specifically focused on inferring the interactions outgoing from TFs as pre-

viously outlined by Pratapa et al. onNatureMethods in 2020.28 The top 500 and 1000most differential expressed genes (DEGs) were selected

according to their sorted FDR adjusted p values for GRN inference.28 Subsequently, scRNA-seq data is normalized using the Z score method

outlined by Sun et al. to standardize gene expression features by removing the mean and scaling to unit variance.49 The formula as follows:

z =
x � m

s
(Equation 1)

where m ands are themean and standard deviation of the scRNA-seq data distribution, respectively. Besides, gene names are represented as

embedded vectors from pre-trained language models, which allows to link the scRNA-seq data and the gene contextual information.27
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Training, validation, and testing datasets

To construct positive and negative samples, we consider the regulatory relationships within ground truth networks as positive samples and all

remaining TF-gene pairs as candidate negative samples.50 These negative samples have a certain probability of incorporating true regulatory

relationships, as they are yet undiscovered.51 Given the fact that the total count of candidate regulatory relationships significantly surpasses

that of actual regulatory relationships between TFs and genes,52 resulting in a substantial imbalance in the sample distribution.53 It has been

suggested that regulatory networks between TFs and genes are sparsely populated in the real world,54 therefore an overwhelming number of

negative samples can significantly compromise the model’s ability to focus on learning positive regulation effectively.55 To alleviate this sit-

uation, we employ the hard negative samples (HNS)methodology, selecting negative samples that share a common TFwith the positive sam-

ples to serve as HNS.56 According to Zhu and Yang et al.,57,58 HNS contains more discriminative information because these samples demon-

strate a high degree of similarity but bear opposite labels to their positive counterparts. Comparing to other negative samples, it is particularly

challenging for a model to predict them correctly since they are referred to as ‘hard’ negative samples.59 We implemented HNS selection

approach following GENELink,20 in which for each positive TF-gene pair, a corresponding negative TF-gene pair involving the same TF is

uniformly-random sampled from the pool of negative samples. Then we select 2/3 relationships from positive and hard negative samples

for training and validation uniformly and randomly (the proportion of training and validation data is 9:1), and the remaining 1/3 for isolated

and independent testing.20 Table 1 tabulates the final training data statistical information used for training. In general, the proportion of pos-

itive samples is approximately equal to the network density based on the genes among the scRNA-seq datasets. The detailed statistics of

each scRNA-seq dataset with four ground-truth networks with TFs and 500 (1000) most-varying genes are shown in Supplementary

Table LABEL:NAR-TS1.
The scGREAT framework

GRN inference involves accurately predicting each regulatory relationship, with nodes representing genes (including TFs and their target

genes in a cyclic GRN) and edges signifying their connections. After that, GRN is then built based on those identified relationships.60 As

such, the scGREAT framework interprets the reconstruction of GRN as a classification task that determines if a regulatory relationship exists

between a TF and a target gene.61 scGREAT consists of four major components: feature initialization, gene dictionary construction, inference

engine, and GRN construction (see Figure 1).

Feature initialization

For Network data processing, according to ground-truth network and negative samples from HNS, we randomly constructed training, vali-

dation, and testing sampleswith paired gene symbols and labels according to proportionmentionedbefore. For scRNA-seqdata processing,

we standardized gene expression data after train test splitting.

Gene dictionary construction

The gene dictionary operates primarily as a lookup table. Each gene is associated with a distinct index, allowing to efficiently retrieve its cor-

responding embedding using this index. This section is comprised of three parts: Positional embedding part (see Figure 1B top), followed by

the construction of gene expression dictionary and the gene biotext dictionary (see Figure 1B middle & bottom).

For positional embedding part, the position vectors are used to determine the regulation of a gene from a TF. They are generated by

position embedding with input pos˛R2 number of 0 or 1. The formula is as follows, where v˛R2�embed size represents the parameters of

the positional encoding Embedding, and PEðposÞ ˛Rn�embed size. n is the number of input samples and embed size in this paper is 768.

PEðposÞ = Embeddingv

�
pos

�
(Equation 2)

Furthermore, the gene expression dictionary serves as an abstraction, capturing essential information from original data,62 which is con-

structed with embedding transformed from the original gene expression data through the encoder (see Figure 2 left). It is referred to as a

dictionary as it allows querying the encoded information of any gene according to the index. The TF or gene is encoded into embedding

vectors with the length of 768, which represents the gene status within the context of gene expression data. Given the gene expressionmatrix

X ˛Rgn�cn, gn and cn represent the number of genes and cells, the encoder of scGREAT is expected to learn the mapping function f that can

develop the gene representation as supported by a previously published study from our group,63 q˛Rcn�embed size is the set of parameters of

the neural decoder f and Dictexpression ˛Rgn�embed size.

Dictexpression = fqðXÞ (Equation 3)

The gene biotext dictionary is formed with embedding generated by gene symbols through the biomedical pre-trained model BioBERT

(see Figure 2 middle). Similarly, it also enables querying the encoded information of any gene using its index. The encoded information rep-

resents the broad meaning of the gene in biological texts. The gene biotext dictionary provides access to contextual text meaning about

genes for the model to look up, represented by biotext vector embedding sets, with the same length of gene expression dictionary for

each gene symbol. Given the gene symbols list S˛Rembed size, the BioBERT denoted as V. Mathematically, u˛Rgn is the set of parameters

of V, and Dictbiotext ˛Rgn�embed size.
16 iScience 27, 109352, April 19, 2024
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Dictbiotext = VuðSÞ (Equation 4)

Inference engine

The primary function of inference engine is to understand and capture the characteristics and contextual information of the input sequence

from the aggregated input (positional encoding, gene expression embedding, and gene biotext embedding) to extract multimodal feature

representations (see Figure 1C). In practice, given a gene pair as represented by genesymbola and genesymbolb, they are ordered by serial

numbers, which are the gene indices in the two dictionaries generated in the previous part. scGREAT searches the embedding vectors for

each gene from the dictionaries according to the serial numbers and adds them together with the positional vectors (see Figure 2 right).

Then the added vector gv is transferred into the attentionmodule of the transformer backbone and represented by three informative vectors,

qg, kg, and vg acquired through the dot product with the learnable weight vectors wv , wk , and wv .

qg = gv,wq
kg = gv,wk
vg = gv,wv

In practice, the mutual attention weight is computed by the following formula:

attðQ;K ;VÞ = softmax

�
QKTffiffiffiffiffi
dk

p
�
V (Equation 5)

whereQ =

�
qga

qgb

�
, K =

�
kga

kgb

�
, V =

�
vga

vgb

�
. d represents the dimension of vector kg, which equals 768 in this study. qga and qgb

denote

the qg vectors generated by the two genes, genesymbola and genesymbolb respectively, in a pair of genes. The softmax function26 is used to

transform the similarity scores between queries and keys into a probability distribution. The vectors gv 0 with rich interactions information are

calculated in accordance with the formula:

gv 0 =
XN
i = 1

exp
�
qg,kT

gi

�
PN

j = 1 exp
�
qg,kT

gj

�vi (Equation 6)

Moreover, we employed the multi-head attention that learns comprehensive information from diverse representation subspaces at

different perspectives, which improves sensitivity to various patterns in the sequence.64 The specific calculation is shown in the following

formula:

MultiHeadðQ;K ;VÞ = Concat
�
att

�
QWQ

1 ;KWK
1 ;VW

V
1

�1
;.; att

�
QWQ

M ;KWK
M;VW

V
M

�h�
WO (Equation 7)

whereWQ ˛Rdm3dk ,WK ˛Rdm3dk ,WV ˛Rdm3dv , andWO ˛Rhdv3dm are trainable parameter matrices of attentionmodule, M is the number of

Heads.

gv 00 = LayerNormðgv 0 + Sublayerdðgv 0ÞÞ (Equation 8)

where SublayerðxÞ is the function of feedforward network (FFN) with RELU activation function implemented by the sub-layer itself. LayerNorm

is themethod used to normalizes the inputs across features in each layer.65 d is the parameter of FFN. The representation of theN-th layer is as

follows:

SublayerdNðgv 00Þ = max
�
0;SublayerdðN� 1Þðgv 00Þ ,WN + bN

�
(Equation 9)

Subsequently, the output of the transformer encoder is as follows:

Transf eðgv 00Þ = concatðLayerNormðgv 00Þ + SublayerdNðgv 00ÞÞ (Equation 10)

Following the transformer encoder backbone, we flatten the represented vector Transfeðgva00Þ and Transfeðgvb00Þ, which then serves as inputs

to the subsequent model structure. It comprises multi-layer perceptrons, constructed with N hidden layers for the transformation, with PReLU

activations in between and a random dropout probability of 0.2.

PReLUðxÞ =

	
x; if xR0
ax; otherwise

(Equation 11)

where a is a learnable parameter. Additionally, we utilize the residual connection, a type of shortcut or skip connection helping in mitigating

the vanishing gradient problem,66 around the sub-dense layers (see Equation 8). Since the output dimension of dense network decrease,
iScience 27, 109352, April 19, 2024 17
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average pooling operation67 is implemented to ensure that the input from the earlier stagemaintains the same dimension as the input for the

subsequent layer.68 The ultimate output of scGREAT is presented as follows:

scGREATQðgxÞ = SoftmaxðPoolingðgxÞ + DenseFðgx0ÞÞ (Equation 12)

where gx = flattenðTransfeðgva00Þ;Transfeðgvb00ÞÞ and gx0 is the output after several dense layer69 transformations and F involves the set of

parameters of dense layers. Inspired by CNNC,24 we further empower scGREAT with the capacity of causality inference in gene regulation.

We flipped the TFs and genes in the network and set the third-class label with ‘0’, ‘1’, ‘2’, where ‘0’ means there is no regulatory relationship; ‘1’

means gene1 regulate gene2; ‘2’means gene2 regulate gene1. Specifically the penultimate layer embedding is transformed into three output

nodes to encode the causality by dense layer. The object of scGREAT is to optimize the difference between the predicted labels and the

ground-truth by cross-entropy loss:

Loss =
XN
j = 1

�
�
yj log

�
scGREATQ

�
xj
��

+
�
1 � yj

�
log

�
1 � scGREATQ

�
xj
��

(Equation 13)

For causality inference:

Loss =
XN
j = 1

XK
j = 1

�
�
yj log

�
scGREATQ

�
xj
���

(Equation 14)

whereN denotes the number of samples,K is the number of classes, xj represents the jth TF-genepair, and yj and scGREATQðxjÞ are the jth true
label and the predicted probability of regulatory relationship for the jth TF-gene pair, respectively. And theQ represents all the parameters of

scGREAT.
GRN construction

After obtaining regulatory relationships of candidate gene pairs through scGREAT prediction, these relationships would be further validated

through visualization of spatial transcriptome data of the same cell type. Finally the GRN is constructed based on the principle that: a link is

established if positive regulation exists from a TF to its target gene; otherwise, no connection (see Figure 1D). The resultant GRN can serve as

an auxiliary relationship table, offering a reference for biological researchers to comprehend and evaluate regulatory relationships and down-

stream tasks such as bioengineering.70
Training setting

To optimize scGREAT, the goal is to minimize the loss function, which encompasses all trainable parameters, denoted as Q including the

parameters q for the decoder, v for positional embedding, matrices WQ , WK , WV , and WO for the attention module, d for the FFN layer,

and F for the Dense layer. We trained scGREAT with the Adam stochastic gradient descent method. Taking the cell-type-specific ChIP-

seq network ground truth as an example we employed default hyperparameters with a 0.00001 learning rate and a 0.999 weight decay

rate every 10 steps. Training continues until either convergence or after completing 80 epochs. We utilize a mini-batch approach with a batch

size of 32. The model training was conducted on an NVIDIA GeForce RTX 3080 GPU with 10 GB of memory.
QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics

For evaluation, to facilitate the comparisons with other SOTA predictors, we follow the same evaluation standard as Chen and Liu20 to

examine the effectiveness of our models. We calculated the AUROC and AUPRC as the primary metrics to account for in situations where

the data is imbalanced; AUROC alone might not provide a comprehensive performance assessment. AUPRC summarizes the trade-off be-

tween precision and recall, providing a more comprehensive reflection of the model’s performance, especially when positive samples are

few.71 AUROCandAUPRC are commonly usedmetrics to evaluate the performance of a classifier and able to reflect both sensitivity and spec-

ificity. Generally, a higher score signifies better performance. An AUROC score of 0.5 corresponds to performance no better than random

guessing, whereas a score of 1 indicates perfect classification. Similarly, for AUPRC, although the interpretation of a ‘‘superior’’ score depend

more heavily on the class distribution, especially in imbalanced datasets where positive cases are rare, higher values are generally indicative of

better performance.
18 iScience 27, 109352, April 19, 2024
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