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KRAS is themost frequentlymutated oncogene in human
cancer and plays a central, although poorly understood,
role in colorectal cancer (CRC) progression. In this issue
of Genes & Development, Boutin and colleagues (pp.
370–382) present a new mouse model of CRC in which
the expression of oncogenic K-RAS is regulated by doxy-
cycline. Using this model, they demonstrate that contin-
ued expression of oncogenic K-RAS is required for the
survival of primary and metastatic colon cancers and
that oncogenic K-RAS activates TGF-β signaling to pro-
mote tumor invasion and metastasis.

In 1990, Fearon and Vogelstein (1990) presented their
paradigmatic model for the somatic genetics of colorectal
cancer (CRC) in which mutations in tumor suppressor
genes (APC and P53) and oncogenes (KRAS) cooperate
to produce defined histological states during disease pro-
gression. This initial model was based on targeted se-
quencing studies from the 1980s but has been validated
and refined by genome-wide sequencing efforts of the ear-
ly 2000s. What the model does not provide is mechanistic
insight into the role that each of the genetic events plays
in CRC. While subsequent cellular and biochemical
studies have provided some clarity (for example, APC
loss activates canonical WNT signaling), details related
to progression of CRC at the molecular level are still
somewhat vague. This is especially true for KRAS, the
most frequently mutated oncogene in cancer. More than
40% of CRCs harbor an activating missense KRAS muta-
tion, but howmutant K-RAS contributes to CRC progres-
sion and whether aberrant K-RAS activity is required for
tumor maintenance remain unclear. The study by Boutin
et al. (2017) provides new insights into these important
questions.
Genetically engineered mouse models (GEMMs) have

been used extensively to model human disease. For exam-
ple, GEMMswere used to demonstrate that K-RAS activa-
tion in the context of APC mutant colonic epithelium is
sufficient to induce dysplastic adenocarcinomas, as pre-

dicted by the Fearon and Vogelstein model (Haigis et al.
2008). In their new study, Boutin et al. (2017) have created
aCRCmousemodel inwhichmutations inAPC, P53, and
KRAS are spatially and temporally regulated. This model
improves on prior models in that expression of mutation-
ally activated K-RASG12D is independently controlled,
mosaic, and reversible, allowing the investigators to study
the function of K-RAS inCRCmaintenance. In the Boutin
et al. (2017)model, loss of oncogenic K-RAS expression in-
duces apoptosis in both primary and metastatic adenocar-
cinomas. Primary tumors do not regress completely,
however, since adenomatous tissues that failed to express
mutant K-RAS in the first place are spared from apoptosis
(Fig. 1). Still, in essence, tumors revert from adenocarcino-
mas to adenomas.
Doxycycline-regulated gene expression has been used

to evaluate the requirement for multiple oncogenes in
mouse tumor maintenance. Unlike these prior studies,
which investigated initiating oncogenes, K-RAS activa-
tion in CRC is a progression event (Haigis et al. 2008). In
this vein, the Boutin et al. (2017) study is more similar
to a 2010 study in which Feldser et al. (2010) re-expressed
P53 in K-RAS mutant, P53-null lung adenocarcinomas,
selectively causing senescence in adenocarcinomas while
sparing adenomas. While the Boutin et al. (2017) and
Feldser et al. (2010) experiments have similar outcomes
(reversion of adenocarcinomas to adenomas), the mecha-
nisms are quite distinct. In CRC, adenocarcinoma regres-
sion is a genotype-specific phenomenon (apoptotic loss of
K-RASMUT cells or retention of K-RASWT cells), while, in
the lung, adenocarcinoma regression is dependent on tu-
mor state (clearance of senescent adenocarcinoma or re-
tention of adenoma) (Fig. 1). The most important aspect
of the study by Boutin et al. (2017) is that it demonstrates
for the first time that mutant K-RAS is required for tumor
maintenance even in situations where K-RAS activation
is not an initiating event.
Although the study by Boutin et al. (2017) firmly vali-

dates K-RAS as a therapeutic target for CRC, the fact
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remains that it is not presently possible to target K-RAS
directly. Instead, current efforts to develop targeted thera-
pies for K-RASmutant cancers focus on downstreampath-
ways. The study by Boutin et al. (2017) revealed that
metastases arose only from tumors expressing mutant
K-RAS and that the TGFB1/CMS4 transcriptional signa-
ture identified in human CRCs is strongly enhanced in
K-RAS mutant adenocarcinomas relative to K-RAS wild-
type adenomas. The investigators then demonstrated
that TGF-β treatment enhanced invasion of mouse CRC
cells in the absence ofmutant K-RAS, while TGF-β inhibi-
tion decreased invasion of K-RAS mutant cells. Together,
these data suggest that TGF-β activation by mutant
K-RAS is an important step in CRC invasion andmetasta-
sis in this mouse model.

TGF-β signaling is initiated upon ligand binding to type
I and type II serine/threonine kinase receptors (TGFBRI
and TGFBRII), which then feed into the SMAD family of
intracellular proteins that regulate contextual transcrip-

tional responses. TGF-β signaling can have tumor-sup-
pressive activity, including induction of cell cycle arrest
and apoptosis. Paradoxically, TGF-β signaling also induc-
es protumorigenic effects, such as epithelial-to-mesen-
chymal transition (EMT) and invasion, consistent with
its potential role downstream from K-RAS in the Boutin
et al. (2017) model. Nevertheless, the TGF-β pathway is
frequently inactivated in CRC through mutation of
TGFBRII or SMADs, suggesting that it is most commonly
functioning as a tumor suppressor pathway in this tumor
context. In mice, combined TGFBRII loss and K-RAS acti-
vation leads to intestinal tumorigenesis in the absence of
an APC mutation, and these tumors metastasize to the
lung (Trobridge et al. 2009). However, when TGF-β signal-
ing remains intact, as in the Boutin et al. (2017) model,
cells can take advantage of the EMT- and invasion-pro-
moting effects. Indeed, oncogenic RAS and RAF are
known to promote a TGF-β autocrine loop to stimulate
EMT and tumor invasion (Oft et al. 1996; Lehmann
et al. 2000; Fujimoto et al. 2001). This autocrine loop is
likely functioning in the Boutin et al. (2017) model, as
TGF-β1 is up-regulated by mutant K-RAS. Of note, TGF-
β1 is overexpressed in a subset of human CRCs and is as-
sociated with increased metastasis and poor prognosis
(Zhu et al. 2015). Nevertheless, K-RAS mutation and
TGF-β1 overexpression are mutually exclusive in human
CRCs (The Cancer Genome Atlas Network 2012), so the
molecular mechanisms linking activated K-RAS to TGF-
β signaling may be distinct in mice and humans. Regard-
less, the study by Boutin et al. (2017) provides an excellent
example of how next-generation mouse models can be
used to validate therapeutic targets and decipher molecu-
lar mechanisms of tumor progression.
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Figure 1. Schematic of tumor responses to reversal of progres-
sion events. In mice with CRC, expression of mutant K-RAS pro-
motes histologic progression, invasion, and metastasis. Loss of
expression of oncogenic K-RAS leads to selective apoptosis of ad-
enocarcinoma tissue. After withdrawal of mutant K-RAS, adeno-
matous (KRASWT) tissues remain. In mice with non-small cell
lung cancer (NSCLC), adenomas that are mutant for K-RAS and
P53 spontaneously progress to adenocarcinoma. Restoration of
P53 leads to senescence specifically in adenocarcinoma tissue.
Adenoma tissue, although likely genotypically identical, is
retained.
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