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Arbitrarily tunable orbital angular 
momentum of photons
Yue Pan1, Xu-Zhen Gao1, Zhi-Cheng Ren1, Xi-Lin Wang1, Chenghou Tu1, Yongnan Li1 &  
Hui-Tian Wang1,2,3

Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited 
a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM 
has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the 
realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the 
concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by 
the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same 
characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, 
and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly 
tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of 
great significance to the benefit of surprising applications of the arbitrary OAM.

Besides spin angular momentum (SAM) associated with circular polarization, with two possible quantized values 
of ± ħ, a scalar (homogeneously polarized) vortex light field with a helical phase of exp(jmφ) could also carry an 
intrinsic and eigen orbital angular momentum (OAM) of mħ per photon1. The photon OAM, as a new funda-
mental controlling degree of freedom and infinite quantum states of photons, has intrigued a broad interest2,3, 
due to its important applications in a variety of realms4–14. The concept of the photon OAM has been extended to 
other waves such as electron beams15, x ray16, radio wave17, and matter wave18. The photon OAM is undoubtedly 
an extensively interesting topic and brings surprisingly the recent exploitations.

The fractional OAM has been given evermore increasing attention19–25, due to its theoretical significance and 
its novel applications. Differently from a scalar vortex light field carrying the integer OAM, the light field carrying 
the fractional OAM will in general undergo an evolution during its propagation in free space, resulting in that 
its local OAM and its intensity pattern exhibit both the azimuthal nonuniformity and even its propagation is 
unstable. Such a kind of fractional OAM is a combination of a series of weighted integer OAMs. Regardless of 
its evolving intensity pattern and vortex structure, the OAM integrated over the whole light field cross section is 
still invariant during its propagation, which reflects the topologically invariant nature of the fractional OAM. It is 
always expected that the arbitrarily tunable OAM, like the integer OAM, not only is continuously tunable, but also 
has the uniformity in both the local OAM and the intensity ring, due to its important applications such as quan-
tum entanglement and optical micro-manipulation (for instance, the motion speed of the trapped microparticles 
is required to be continuously changeable). However, creating and tailoring the arbitrarily tunable OAM meets 
still a tremendous challenge.

The attempts at creating the photon OAM almost focuses only on the scalar light fields so far. The integer OAM 
states can be used to define an infinitely dimensional discrete Hilbert space. Since the photons have two orthogo-
nally polarized modes, one can also define another orthogonally polarized infinitely dimensional discrete Hilbert 
space. To get the substantial progress on the photon OAM, the most possible solution may be to break through the 
limit of scalar light fields, by employing the vector light fields26–28. Here we report the realization of well-controlled 
arbitrarily tunable OAM, based on the vector fields. We present the concept of general OAM, which extends the 
OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. By 
using the optical tweezers, we demonstrate the existence of arbitrarily tunable OAM. The arbitrarily tunable OAM 
we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM 
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and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be 
flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM.

Results
Theory. We have predicted that a vector field with the vector potential of α β ω= + −α βA jkz j tA v v( )exp( ) 
is able to carry the two parts of OAM flux associated with the azimuthal gradient29
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where A is the complex amplitude of A, as A =  uexp(jψ) by its module u and its phase ψ. α β+α βv v  is a unit 
vector describing the distribution of polarization state of A, with α β+ ≡ 12 2 . The unit vectors vα and vβ indi-
cate a pair of orthogonal polarization states and can be represented by a pair of antipodal points on the Poincaré 
sphere28,30. If α and β are the functions of the transverse coordinates (r, φ), A is a vector field; otherwise A degen-
erates into a scalar field. For the light field A, the OAM per photon can be identified as
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In fact, ′L z is the well-defined OAM carried by the scalar vortex field with the helical phase of exp(jmφ), with 
an intrinsic and eigen OAM of mħ per photon1. We call ′L z as the photon OAM of the first kind. ″L z is associated 
with the vector field. We have demonstrated the OAM from the curl of polarization, called as the photon OAM of 
the second kind, which can be carried by the radially varying hybridly polarized vector fields only29. Since ″L z is 
always zero for a scalar field because α and β are independent of φ, the vector field should be a unique opportu-
nity for tailoring of ″L z. With Eq. (2), the nonzero ″L z requires the polarization states to be azimuthally varying. 
Although the local linearly polarized vector fields27 and the hybridly polarized vector fields28 exhibit both the 
azimuthally varying polarization states, ″L z is still null (Supplementary S1).

Let us refocus on the two azimuthally variant polarized vector fields27,28 again, where a pair of orthogonally 
polarized components with the completely opposite helical phases of φ±jmexp( ) have the equal intensity. This 
brings us an inspiration that the most possible solution for the nonzero ″L z may be break through the balance in 
intensity between the two orthogonal components. In such a situation, the unit vector representing the distribu-
tion of polarization states should be rewritten as

α β φ φ+ =
+

+ −α β α βT
exp jm T exp jmv v v v1

1
[ ( ) ( ) ],

(3)

where T is the relative intensity fraction between the two orthogonal components within a range of ∈T [0, 1]. 
With Eq. (2), we easily have ″ = − +L m T T(1 )/(1 )z  , where we define = − +m m T T(1 )/(1 )eff  and the 
OAM per photon is meffħ. Clearly, T as a degree of freedom can be used to continuously tailor the OAM within a 
range of [0, mħ], although m can only take an integer (Fig. 1). It is very interesting and surprising that for a 
desired OAM or meff, it can be achieved by a variety of combinations of m and T, as a series of intersections of the 
color curves with the thin horizontal line (Fig. 1). In the extreme case of T =  1, it has been confirmed ″L z =  0 
(Supplementary S1). In the extreme case of T =  0, the vector field described in Eq. (3) degenerates into a scalar 
vortex field with the helical phase of exp(jmφ), carrying the OAM of mħ per photon1. Obviously, ′L z  should 
belong to a special case of ″L z when T =  0. In particular, the phase exp(jψ) can be in fact incorporated into α and 

Figure 1. Fractional OAM carried by the azimuthally varying polarized vector fields. Dependence of the 
OAM on the topological charge m and the relative intensity fraction T. The black thin horizontal line indicates 
a certain given OAM (or meff) and has a series of intersections with the color curves, in which each intersection 
represents a combination of m and T for achieving of that given OAM.
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β, and α β+ ≡ 12 2  is still held. Therefore, ″L z should be a general form of the OAM associated with the azi-
muthal gradient, and can be called as the general  OAM of the first kind and is written as 

α α φ β β φ= ∂ ∂ + ∂ ∂⁎ ⁎L Im( / / )z
(1)  .

Experiment. To confirm the feasibility of the arbitrarily tunable OAM we presented, the focused vector field 
as the optical tweezers is a useful tool (Fig. 2a). The generation unit of the vector fields is very similar to that used 
in refs 24 and 25, but has a unique difference that the ± 1st orders carrying the completely opposite helical phases 
of exp(± jmφ) can have the different intensity (Methods). Thus the demanded vector field can be written as

φ φ= ′ + ″ =
+

+ − .α βu r
T

jm T jmA A A v v( ) 1
1

[exp( ) exp( ) ]
(4)

where u(r) has the top-hat profile with u(r) =  U0circ(r/R0) (Fig. 2b). U0 is constant amplitude, and circ(r/R0) is a 
well-known circular function defined as circ(r/R0) =  1 within r <  R0 but circ(r/R0) =  0 within r >  R0, where R0 is 
the field radius (Methods).

As examples, Fig. 2b shows the schematic sketches of the polarization states of the azimuthally variant polar-
ized vector fields with m =  1 and 3 as well as T =  1 and 1/3. For the vector fields created by a pair of orthogonal 
circularly polarized (CP) spinors [ →α βv v v v{ , } { , }r l  in Eq. (4)], shown in the first column with m =  1 (second 
column with m =  3) of Fig. 2b, its polarization state exhibits the azimuthally variant local linear polarizations 
when T =  1, which traverse once (thrice) all points located at the equator on the Poincaré sphere Π  (ref. 30, 
Supplementary S2 and Fig. S1) with the Stocks parameter of S3 =  0 shown by the thick red curve in Fig. 2c; 
whereas the polarization states exhibit the azimuthally variant orientation of elliptical polarizations with the same 
ellipticity when T =  1/3, which traverse once (thrice) all points located at the north-latitude 30° circle (S3 =  1/2) 
on Π , shown by the thin red curve in Fig. 2c. In contrast, for the vector fields created by a pair of orthogonal line-
arly polarized (LP) bases [ →α βv v v v{ , } { , }x y  in Eq. (4)] in the third (fourth) column of Fig. 2b, the polarization 
states undergo the azimuthal variation from the linear, through elliptic to circular polarizations when T =  1, 
which traverse once (thrice) all points located at the great circle (S1 =  0) on Π  for m =  1 (m =  3), shown by the 
thick blue curve in Fig. 2c; while the polarization states undergo the azimuthal variation from the linear to elliptic 
polarizations but does not occur the circular polarization when T =  1/3, which traverse once (thrice) all points 
located at the S1 =  1/2 circle on Π  for m =  1 (m =  3), shown by the thin blue curve in Fig. 2c. For a more general 
case (Supplementary S2 and Fig. S2), a pair of orthogonally polarized bases α βv v{ , } in Eq. (4) correspond to any 
pair of antipodal points on Π . Thus the polarization states of the created vector field are described by all points 
located at a circle σ on Π . The circle σ is the intersection of Π  with the plane σ normal to the connecting line 
between the antipodal points. The plane σ has a distance of = − +d T T(1 )/(1 ) from the center of Π . We fur-
ther define a great circle ∑ , which is the intersection of Π  with a plane passing the center of Π  and being parallel 
to the plane σ. In fact, the Poincaré sphere can also be used to characterize the arbitrarily tunable OAM, which is 
equal to the distance d of the plane σ from the center of Π , in units of mħ. Of course, the OAM can also be char-
acterized as πΩm ( /2 ) , by a solid angle Ω subtended by the spherical zone sandwiched between the two circles σ 
and ∑  on Π , with πΩ = − +T T2 (1 )/(1 ) (Supplementary S2). In particular, we should emphasize that the 
arbitrarily tunable OAM is independent of the choice of spinors.

It is of great importance to explore the propagation stability of the vector fields carrying the arbitrarily  
tunable OAM. The measured intensity pattern of the scalar vortex top-hat field with the helical phases of  
exp(+ j20φ) undergoes an evolution from the top-hat profile at z =  0 to the multi-ring structure at z =  1.2 m (top 
row in Fig. 2e). For the vector field created by a pair of orthogonal polarized bases with the opposite helical 
phases of exp(± j20φ) when T =  0.32, its propagation behavior has no difference from the scalar vortex top-hat 
field, implying that the vector field is propagation stable (bottom row in Fig. 2e) and the arbitrarily tunable OAM 
we presented is always remained at any plane during the propagation. For the vector field created by a pair of 
orthogonal polarized bases with the helical phases of exp(+ j20φ) and exp(− j5φ) when T =  0.32, this vector field 
is unstable during its propagation (Supplementary S3 and Fig. S3), resulting in the spatial separation of different 
OAM states. Therefore, the fractional OAM cannot be remained at any plane during the propagation.

The created azimuthally variant polarized vector field is introduced into the optical tweezers system (Method), 
which is a very useful tool to explore the photon OAM by observing and recording the orbital motion of the trapped 
particles (Video). We intercept the time-lapse photos of the orbital motion of the trapped particles (Fig. 3a). For the 
vector field with m =  16 and T =  0 (the vector field degenerates into a scalar vortex field with m =  16), the trapped 
particles move around the principal ring focus with an orbital period of τ ~ 2.47 s (in first row).  
When T is changed to T =  0.1, the orbital period of the trapped particles increases to τ ~ 2.94 s (in second row). 
When T is further increased to T =  0.3, the orbital period further increases to τ ~ 4.75 s (in third row). When m is 
switched from m =  16 to m =  − 16 when keeping T =  0.3, the motion direction of the trapped particles is synchro-
nously reversed with an orbital period of τ ~ 4.99 s (in fourth row) (Video). The slight difference of the periods is 
due to the slight difference of the intensity and shape of the two bases, of course, the activity of the particle and 
water has also the influence. However, for the vector fields with T =  1 (the hybridly polarized vector fields reported 
in ref. 28), no orbital motion of the trapped particles is observed, implying that such a kind of vector fields carry 
no OAM. The dependences of the orbital period τ of the trapped particles, on T for different m (Fig. 3b) and on m 
for different effective topological charge meff (Fig. 3c), indicate that the measured orbital periods (symbols) are in 
good agreement with the fitted curves by the respective formulae τ ∝ + −m T T(1 )/(1 )2  and τ ∝ m m/ eff

3  
(Supplementary S4). The observed results clarify the following facts. (i) The azimuthally varying polarized vector 
fields could indeed carry the arbitrary OAM and (ii) the choice of orthogonally polarized bases has no influence 
on the arbitrary OAM.
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Figure 2. Experimental configuration to validate the fractional OAM we predicted. (a) Optical tweezers 
system, the dashed-line parallelogram shows the generation unit of azimuthally varying vector fields.  
(b) Diagrammatic drawings of the distribution of the polarization state for the azimuthally varying vector fields, 
the 1st and 2nd (3rd and 4th) columns show the vector fields created by a pair of right- and left-handed CP (x and 
y LP) bases, the 1st and 2nd rows are the cases of the relative intensity fraction, T =  1 and T =  1/3, respectively. 
(c) Geometric presentation of the Poincaré sphere for the polarization states of the azimuthally varying vector 
fields shown in (b). (d) Simulated multi-ring structures of the focusing fields of the azimuthally varying top-hat 
vector fields with m =  10, 14 and 18 when T =  1/3. (e) Propagation evolutions of the azimuthally varying vector 
fields with the top-hat profile in free space, shown by the experimentally measured intensity profiles at a series 
of distances from the output plane. The measured intensity pattern of the scalar vortex top-hat field with the 
helical phases of exp(+ j20φ) undergoes an evolution from the top-hat profile at z =  0 to the multi-ring structure 
at z =  1.2 m (top row). For the vector field created by a pair of orthogonal polarized base fields with the helical 
phases of exp(± j20φ) when T =  0.32, its propagation behavior (bottom row) has no difference from the scalar 
vortex field (top row), implying that the vector field is propagation stable.
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Discussion
Damping model. Although the above theoretical and experimental results have unveiled and demonstrated 
the realization of fractional OAM by using the vector fields, we now provide a very simple and intuitive physical 
model—damping model—for understanding the fractional OAM (Fig. 4). For the orbital motion of a classical 
particle, if the damping is introduced, its motion speed will become slow and then its OAM will also become 
small synchronously. This classical damping model enlightens us “Whether introducing the suitable damping is 
able to flexibly realize the control of photon OAM?” A scalar vortex field ′A  with the helical phase of exp(+ jmφ) 
and the polarization state vα is able to drive the orbital motion of the trapped particle due to the presence of 
angular momentum flux. Of course, another scalar vortex field ″A  with the opposite helical phase of exp(− jmφ) 
will provide the opposite-sense angular momentum flux, as a damping for ′A . If ″A  has the same polarization state 
as ′A , thus the total field = ′ + ″A A A  is still a scalar field with the polarization state vα. The angular momentum 
flux provided by ′A  can be completely or partially canceled by the damping field ″A , which is able to realize the 
continuously tunable net angular momentum flux and then the arbitrary OAM (Fig. 4a). However, this is not 
what we ideally expected, because the interference between ′A  and ″A  gives rise to the nonuniformity in both the 

Figure 3. Observed orbital motion of trapped particles around the ring focus produced by azimuthally 
varying vector fields. (a) Snapshots of orbital motion of the trapped particles around the ring focus generated 
by the azimuthally varying vector fields (Movie). (b) Dependence of the period τ of the orbital motion of the 
trapped particles on T for five different m. The symbols are the measured periods and the corresponding curves 
are the fitting results obtained by τ ∝ = + −m T T1/ (1 )/(1 )eff  (Supplementary S4). (c) Dependence of the 
period τ of the orbital motion of the trapped particles on m for five different meff. The symbols are the measured 
periods and the corresponding curves are the fitting results obtained by τ ∝ ∝R m3 3 because R is 
approximately in direct proportion to m (Supplementary S4).
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ring intensity and the local OAM (Fig. 4a). Fortunately, the vector nature of photons may be provide a solution. If 
the polarization state of ″A , described by the unit vector vβ, is orthogonal to vα of ′A , the total field Α= ′ + ″A A  
becomes into a vector field26–28. Its net OAM should also be continuously tunable (Fig. 4b). Moreover, it is of 
extreme importance that the intensity ring and the local OAM are both uniform in the azimuthal dimension 
(Fig. 4b). There is still a question why the topological charges of ′A  and ″A  are selected to be completely opposite 
in the above. Based on the damping model, it seems to be in principle allowed that ″A  has a helical phase of  
exp(− jm′ φ) with ′ ≠m m. However, such a choice is in fact unsuitable because the total field A is unstable during 
its propagation (Fig. 4c), because two fields carrying the helical phases with the different topological charges can 
never always overlap in space.

Quantum understanding. We always attempt to understand the fractional OAM from the quantum point 
view. As is well known, the Hamiltonian = ∂ ∂Ĥ jh t/  and the z component of OAM φ= − ∂ ∂L̂ j /z   are two com-
muting operators, i.e. =ˆ ˆH L[ , ] 0z , so both have the common eigen wave function. The light field described by 
Eq. (4) is composed of two orthogonally polarized components, which can be rewritten as = ′ + ″A A A . We 
can easily confirm that ω′ = ′Ĥ A A  and ω″ = ″Ĥ A A , and ′ = ′L̂ mA Az   and ″ = − ″L̂ mA Az  . 
Clearly, ′A  ( ″A ) is indeed the common wave function of Ĥ and L̂z, with the respective eigen values of ω  and 
m ( ω  and −m). Thus the photon states described by ′A  and ″A  are a pair of orthogonal polarized eigen wave 
functions of OAMs and have the eigen OAMs of m  and −m per photon, respectively. Equation (4) in the man-
uscript also describes in fact a mixing wave function composed of two eigen OAM states (with the eigen OAMs 
of m and −m per photon). In other words, the photon is in a mixing OAM state composed of two eigen OAM 

Figure 4. Damping model for intuitively understanding of the fractional OAM. (a) ′A  and ″A  have the same 
polarization and carry the opposite OAMs of ± mħ per photon, φ′ ∝ αˆjmA eexp( )  and φ″ ∝ − αˆjmA eexp( ) , the 
total field = ′ + ″A A A  has the nonuniform annular ring and may carry the local nonuniform OAM. (b) ′A  
and ″A  have the orthogonal polarizations to each other and carry the opposite OAMs of ± mħ per photon, 

φ′ ∝ + αˆjmA eexp( )  and φ″ ∝ − βˆjmA eexp( ) , the total field = ′ + ″A A A  has the uniform annular ring and 
may carry the arbitrary and local uniform OAM. (c) ′A  and ″A  carry the OAMs of + mħ and − m'ħ per photon, 

φ′ ∝ +jmA exp( ) and φ″ ∝ − ′jmA exp( ), the total field ′= + ″A A A  is unstable during its propagation 
because ′A  and ″A  will separate in the radial dimension, which is independent of polarization states of ′A  and 
″A . Green patterns are schematic diagrams of the intensity distribution, Gray patterns in center of any picture 

are schematic diagrams of the vortex phase, the circles with the arrow show the direction of OAM and the 
lengths of arrow show the magnitudes of OAM.
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states. We can easily obtain that the photon in this mixing state has an expectation value of OAM as 
= − +L̂ m T TA A A A/ (1 )/(1 )z   per photon.

We have presented a solution of the photon OAM for long-time challenge. The photon OAM we have proved 
has novel and unique natures: (i) it is continuously tunable within a range of [− mħ, mħ], (ii) it has the uniformity, 
and (iii) the light field carrying the arbitrarily tunable OAM has the uniform intensity ring and has the propa-
gation stability. We presented the general OAM of the first kind, associated with the azimuthal gradient, which 
extends the OAM carried by the scalar vortex fields to the OAM carried by the azimuthally varying polarized 
vector fields. We have also extended the Poincaré sphere to represent the arbitrarily tunable OAM. Our idea may 
spur further independent insights into the generation of natural waves carrying the arbitrarily tunable OAM. 
The current technology trend has been perceived to direct from fundamental investigations towards probing its 
viabilities for surprising applications. The fast-moving exploitation on such diverse areas has pushed for further 
development on OAM generation technology.

Methods
Creation of azimuthally varying polarized vector fields. We follow the method similar to those used 
in refs 27 and 28 for creating the demanded azimuthally varying polarized vector fields (the part enclosed by the 
dashed-line box in Fig. 2a). The used light source is a continuous-wave laser operating at a wavelength of 532 nm 
(Verdi-5, Coherent Inc.), which outputs a near fundamental Gaussian mode. The laser beam is expended and then 
the collimated beam illuminates the computer-generated holographic grating displayed at the spatial light mod-
ulator (SLM), located at the input plane of the 4f system composed of a pair of lenses (L1 and L2). The incoming 
beam is diffracted by the computer-generated holographic grating with the amplitude transmittance of  
t(x, y) =  [1 +  γcos(2πf0x +  δ)]/2 with the additional azimuthally varying phase δ =  mφ, where φ is the azimuthal 
angle and m is the topological charge. The diffracted ± 1st orders are selected by a spatial filter (SF) located at the 
spatial frequency plane of the 4f system. The ± 1st orders are transferred by a pair of 1/4 (or 1/2) wave plates into a 
pair of orthogonal circularly (or linearly) polarized bases. In particular, an intensity controller (IC) composed of 
a linear polarizer and a 1/2 wave plate is inserted into the − 1st order path to achieve the continuous change of the 
relative intensity fraction T between the two paths. Finally, the orthogonal circularly (or linearly) polarized ± 1st 
orders are recombined by a Ronchi grating (RG) placed at the output plane of the 4f system to create the 
demanded azimuthally varying polarized vector fields, as shown in Eq. (4). Thus we can select the different  
topological charge m, the different relative intensity fraction T and the different orthogonally polarized bases 
α βv v{ , }, to create various azimuthally variant polarized vector fields.

Optical tweezers and the indirect measurement of OAM. The direct method to measure the topolog-
ical charge is mainly associated with directly detecting the phase distribution of the light field, such as detecting 
the interference patterns. This arbitrarily tunable OAM we proposed here is not associated directly with the vortex 
phases with the fractional topological charge, so we cannot directly measure the arbitrarily tunable OAM based 
on the measurement of fractional topological charge. We use the indirect method to measure the arbitrarily tun-
able OAM and confirm our idea by the optical tweezers.

The created azimuthally varying polarized vector field is introduced into an optical tweezers system composed 
of an inverted microscope including a 60×  objective with NA =  0.75 (Fig. 2a). The neutral isotropic colloidal 
microspheres with the almost same diameter of 2.8 μ m are dispersed in a layer of sodium dodecyl sulfate solution 
between a glass coverslip and a microscope slide. The azimuthally varying vector field with the top-hat profile is 
focused into a multi-ring structure composed of a principal ring and secondary rings (Fig. 2d), and laser power 
in the focal region is kept at ~15 mW. The neutral microparticles can be trapped in the principal ring. The motion 
behavior of the trapped particles can indirectly characterize the photon OAM carried by the light field. If the 
trapped isotropic particles in the ring optical tweezers move around the ring orbit, implying that the azimuth-
ally variant vector fields will have the capability to exert torque to the trapped isotropic particles. No doubt this 
verifies the presence of photon OAM. The motion direction and speed of the trapped particles indicate the sense 
and magnitude of the photon OAM carried by the azimuthally variant vector field. If no motion of the trapped 
isotropic particles is observed around the ring, implying that the fields carry no photon OAM. Through taking 
the video of the motion of the trapped particles, the orbital period or motion speed of the trapped particles can be 
measured, which indirectly characterize the OAM.
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