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Groove—defined as the pleasurable urge to move to a rhythm—depends on

a fine-tuned interplay between predictability arising from repetitive rhythmic

patterns, and surprise arising from rhythmic deviations, for example in the

form of syncopation. The perfect balance between predictability and surprise

is commonly found in rhythmic patterns with a moderate level of rhythmic

complexity and represents the sweet spot of the groove experience. In

contrast, rhythms with low or high complexity are usually associated with a

weaker experience of groove because they are too boring to be engaging or

too complex to be interpreted, respectively. Consequently, the relationship

between rhythmic complexity and groove experience can be described by an

inverted U-shaped function. We interpret this inverted U shape in light of the

theory of predictive processing and provide perspectives on how rhythmic

complexity and groove can help us to understand the underlying neural

mechanisms linking temporal predictions, movement, and reward. A better

understanding of these mechanisms can guide future approaches to improve

treatments for patients with motor impairments, such as Parkinson’s disease,

and to investigate prosocial aspects of interpersonal interactions that feature

music, such as dancing. Finally, we present some open questions and ideas

for future research.
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Introduction

In the field of musicology, the term groove was coined
in the context of African-American musical genres, such as
R&B, jazz, soul, disco, funk, and hip-hop, where it can refer
to esthetic qualities of the music, specific rhythmic patterns, or
the musicians’ way of effortlessly synchronizing and interacting
with each other (Senn et al., 2019; Câmara and Danielsen,
2020; Duman et al., 2021). In contrast to this multifaceted
understanding, recent studies in music perception and cognition
agree on a sharper definition of groove as the pleasurable urge
to move one’s body in relation to the rhythm of music (Madison,
2006; Janata et al., 2012; Stupacher et al., 2013; Senn et al., 2020).
These different approaches to defining groove are discussed,
for example, by Câmara and Danielsen (2020), who distinguish
three aspects of groove: (1) a rhythmic pattern and performance,
(2) a pleasurable urge to move, and (3) a state of being.

Here, we focus on the pleasurable, movement-inducing
aspect of groove. In this approach, groove is genre-independent,
in that every rhythmic pattern and performance evoking the
pleasurable urge to move possesses the quality of groove.
Although soul, disco, funk and related genres may be more
likely to induce groove, the pleasurable urge to move can also be
experienced while listening to rock, jazz, electronic dance music,
and many other genres.

We argue that groove, when defined as the pleasurable
urge to move to a rhythm, depends on a fine-tuned interplay
between predictability and surprise. The predictability arises
from repetitive rhythmic patterns, and the surprise arises
from slight deviations from these patterns, for example in
the form of syncopation. This tension represents the sweet
spot of the groove experience, and is commonly found in
rhythmic patterns that are simple enough for us to interpret and
predict, but complex enough to keep us challenged and engaged
(Vuust and Witek, 2014; Witek et al., 2014). We will use this
perspective to discuss the experience of groove in body, brain,
and social interactions.

Groove in body and brain

The neural mechanisms that are engaged from the moment
we start to listen to music to the moment we are tapping
our foot in time with the beat or start dancing, rely on
the human brain’s ability to integrate external stimuli with
internal representations, expectations, or predictions (Koelsch
et al., 2019; Pando-Naude et al., 2021). This continuous
flow of stimulus-driven bottom-up information and top-down
processes requires specialized neural processing, such as audio-
motor coupling (Jäncke, 2012), a phenomenon driven by
temporal predictions (Vuust et al., 2009; Schröger et al.,
2015) that is associated with reward, pleasure, and other
cognitive and emotional mechanisms (Koelsch, 2010, 2014,

2020; Koelsch et al., 2013; Salimpoor et al., 2015). How
accurately we can predict a rhythm and how pleasurable
a rhythm is, therefore depend, on the one hand, on an
individual’s long-term priors, such as listening biography,
cultural background, musical expertise, dance training, and
general cognitive and motor abilities, and on the other hand,
on the rhythm’s complexity. Both aspects are integrated in the
predictive coding framework (PC), which proposes that the
brain minimizes prediction errors by using Bayesian inference
when comparing a real-time internal model to a given sensory
input (Friston, 2005). When listening to music, this means
that we constantly check and update the predictive model
of a rhythm by comparing it to the actual musical input
(Vuust and Witek, 2014).

Groove and predictive processing

Within the context of groove, PC has predominately
been deployed to interpret the inverted U-shaped relationship
between groove ratings and the degree of rhythmic complexity
(Vuust and Witek, 2014; Vuust et al., 2018; Koelsch et al.,
2019). Rhythmic complexity can depend on different factors,
such as meter or microtiming, but is most often operationalized
as syncopation, which is when notes occur on weak metrical
positions, and are followed by silences on stronger metrical
positions (Longuet-Higgins and Lee, 1984). The inverted U
shape suggests that moderately syncopated rhythms elicit the
strongest sensation of groove (Sioros et al., 2014; Witek et al.,
2014; Matthews et al., 2019; Stupacher et al., 2022). Under
PC, this effect arises from the fact that moderately syncopated
rhythms give rise to the greatest number of strongly weighted
prediction errors. Prediction errors result from a mismatch
between an internally generated model—here, the beat and
meter—and the sensory input (Friston, 2005). Together, beat
and meter form a predictive scaffold that determines how
strongly we expect a note to occur at each time point (Vuust
and Witek, 2014).

Panels A and B of Figure 1 illustrate how beat- and meter-
based temporal predictions can be conceptualized as probability
distributions (Large and Jones, 1999; Danielsen et al., 2019;
Koelsch et al., 2019; Cannon, 2021), with their mean and
spread reflecting the accuracy and certainty of these predictions,
respectively. Prediction certainty determines the weight of the
prediction error, that is, the degree to which it affects the
metrical model. Syncopations violate meter-based predictions,
and thus can introduce uncertainty into the metrical model and
the subsequent predictions. Therefore, all else being equal, the
degree of syncopation in a rhythm determines both the number
and certainty of prediction errors. As shown in panels A and B of
Figure 1, moderately syncopated rhythms combine a moderate
number of prediction errors with a moderate degree of certainty.
They therefore elicit the strongest top-down engagement to
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FIGURE 1

(A) Beat-based predictions, prediction uncertainty, and prediction errors for three rhythms with low, medium, and high degrees of complexity,
taken from Matthews et al. (2019). Dark blue rectangles denote the onsets of the rhythms and black rectangles denote the underlying beat with
the height indicating the metric weight of each beat point according to (Longuet-Higgins and Lee, 1984). The black traces represent metrical
models with beat-based predictions delineated as probability distributions wherein the mean of the distribution reflects the predicted onset
times, and the width of the distribution reflects the certainty of that prediction. As can be seen across the three traces, the predictions and their
certainty depend on the degree of syncopation, the metric weights of each beat, and the progression through the rhythm. That is, prediction
accuracy and certainty start out relatively low for all three rhythms as it takes several onsets before a beat and meter is induced. Meter-based
predictions can occur for each metric level relevant to a given rhythm, and depending on musical training (Palmer and Krumhansl, 1990),
however, for simplicity, only beat-based predictions at the quarter note level are shown. (B) The inverted U shape arises from the product of the
number of prediction errors and prediction certainty. Prediction errors increase from low syncopation rhythms to high, while the degree of
prediction certainty decreases. Multiplying these functions reveals that moderately syncopated rhythms elicit the greatest number of strongly
weighted prediction errors. (C) Groove ratings in Parkinson’s disease patients (N = 24) and healthy individuals (N = 27) from Pando-Naude et al.
(in preparation). The inverted U-shaped relationship is shifted from moderately complex rhythms in healthy individuals, toward less complex
rhythms in PD patients. Blue diamonds indicate mean values. Asterisks indicate significant differences (p < 0.05) in pairwise comparisons
adjusted with the Tukey method. Boxplots: The centerline represents the median. The lower and upper ends of the boxes correspond to the first
and third quartiles. Whiskers represent lowest and highest values within 1.5 × interquartile range (IQR) from the lower and upper quartiles,
respectively. Dots represent values outside 1.5 × IQR. (D) The tendency of an inverted U shape in relation to the level of syncopation can also be
found in social bonding with another person, as measured by Inclusion of Other in the Self (Stupacher et al., 2020).
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update and maintain the metrical model, that is, to minimize
further prediction errors and uncertainty.

According to PC, there are two ways to minimize prediction
errors and thereby reduce uncertainty (Friston, 2003). One way
is to change the model to better fit the input, either by shifting
the phase of the meter, i.e., ‘resetting,’ to better align with the
rhythm (Fitch and Rosenfeld, 2007), or switching to a different
meter altogether, e.g., from a duple to a triple meter. Recent
empirical and theoretical work implicates the motor system
in the phase resetting and dynamic maintenance of temporal
predictive processes during rhythmic auditory tasks (Morillon
and Baillet, 2017; Rimmele et al., 2018). The second way to
minimize prediction error is to move one’s body in time with
the beat (Koelsch et al., 2019). Moving to the beat results
in rhythmically timed proprioceptive input that reinforces
the metrical model. Therefore, by optimally challenging the
predictive model, moderately syncopated rhythms lead to
greater engagement of the underlying motor systems, which is
experienced as an automatic urge to move.

Uncertainty reduction also engenders the pleasurable
component of groove. Within PC, this uncertainty reduction,
as driven by improving the correspondence between model
and input, corresponds to learning. In this context, learning
is thought to be inherently rewarding as it serves the innate
drive for competence (Ryan and Deci, 2000) and satisfies
the intrinsic motivation for information gain (i.e., curiosity;
Schmidhuber, 2010; Kidd and Hayden, 2015; Friston et al.,
2017; Gottlieb and Oudeyer, 2018). Therefore, organisms are
intrinsically motivated to seek out and attend to activities
that afford maximal uncertainty reduction, in other words
“learnable activities that are just beyond [their] current
predictive capacities” (Oudeyer et al., 2016, p.9). In this context,
moderately syncopated rhythms elicit pleasure by maximizing
the intrinsic reward derived from actively refining our predictive
processes via covert or overt motor processes. Recent work
has demonstrated a direct link between music-evoked reward
and moderate levels of prediction error and uncertainty in
the context of melodic and harmonic expectations (Cheung
et al., 2019; Gold et al., 2019b; Shany et al., 2019). We believe
that applying a similar approach to groove will be crucial to
understanding why a rhythmic sweet spot has such power
to move us, and to uncovering the neural mechanisms that
drive this effect.

Intriguingly, the basal ganglia (BG), a set of subcortical
nuclei involved in motivation and motor control, along with
dopaminergic transmission within the BG, have been implicated
in all of the processes discussed above, including beat and meter-
based perceptual and motor timing (Schubotz et al., 2000; Grahn
and Brett, 2007; Grahn and Rowe, 2009; Schwartze et al., 2011;
Kung et al., 2013), music-evoked pleasure (Salimpoor et al.,
2011, 2013; Gold et al., 2019a), and prediction certainty (Friston
et al., 2014; Owens et al., 2018; Gershman and Uchida, 2019).
This suggests that the BG and dopamine play a crucial role

in groove, a perspective that is supported by a recent fMRI
study linking groove ratings to activity within limbic- and
motor-associated BG nuclei (Matthews et al., 2020). Based on
these results, the authors proposed a theoretical model wherein
beat-based temporal predictions and the associated reward
are integrated in the BG via parallel striato-cortical loops,
particularly the limbic, motor, and associative loops (Alexander
et al., 1986; Obeso et al., 2008).

Groove and Parkinson’s disease

One way to test the role of the BG and dopamine in
groove is to compare Parkinson’s disease (PD) patients with
healthy controls. PD results from dopaminergic dysfunctions
in the BG caused by neuronal degeneration of the substantia
nigra pars compacta (SNc). Such dopaminergic depletion
disrupts disinhibitory mechanisms between the BG and the
motor thalamus, altering the fine-tuning between initiation
and suppression of the activity in the motor loop, and giving
rise to the characteristic motor symptomatology. In terms of
groove, a recent study showed that the inverted U-shaped
relationship between rhythmic complexity and pleasurable
desire to move is shifted from moderately complex rhythms
in healthy individuals, toward less complex rhythms in PD
patients, who seem to prefer little incongruence between the
internal predictive model and the stimulus (Figure 1C; Pando-
Naude et al., in preparation). Notably, PD patients do not show
an overall reduction in groove ratings, suggesting that PD does
not reduce the overall urge to move to the rhythm, but only
alters which types of stimuli elicit these responses, potentially
as a function of altered predictive processes.

Research into auditory-motor activity and the neural
correlates of rhythm perception (Schubotz et al., 2000; Grahn
and Brett, 2007; Chen et al., 2008; Bengtsson et al., 2009; Grahn
and Rowe, 2009; Grahn, 2012) has led to new approaches for
developing movement therapies. Rhythmic auditory stimulation
improves motor deficits in patients with PD by providing a
regularly-timed cue, such as a metronome, with which patients
can synchronize their gait (Thaut et al., 1996; Pau et al.,
2016; Dalla Bella et al., 2017; Lei et al., 2019). However, the
low rhythmic complexity of the metronome may restrict the
method’s benefits (Dalla Bella et al., 2015; Cochen De Cock et al.,
2018). In contrast, ecologically valid stimuli incorporating both
rhythmic and harmonic elements may lead to a richer set of
predictions, potentially promoting better guidance for temporal
models of movements (Vuust et al., 2014). Dancing might offer
an even more ecologically valid and rich PD intervention that
can improve gait symmetry, decrease dual task costs (Fontanesi
and DeSouza, 2021), and reduce disease severity (Krotinger and
Loui, 2021). As discussed above, moderately complex stimuli
are likely to increase engagement of motor timing and reward
processes involving the BG (Matthews et al., 2020), potentially
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boosting motor benefits by increasing dopaminergic signaling
in these nuclei (Salimpoor et al., 2013; Hansen et al., 2017;
Matthews et al., 2020). A challenge for future research on music-
supported movement and dance therapies is to investigate
whether an individual PD patient’s preference for a certain level
of rhythmic complexity may depend on the progression of the
disease. One objective of future studies could therefore be to
find individualized sweet spots of rhythmic complexity for PD
patients with different levels of auditory, sensorimotor, and
timing deficits.

By comparing the experience of groove in PD patients and
healthy controls, we contribute to our understanding of the
underlying neural mechanisms linking temporal predictions,
movement, and reward. In turn, a better understanding of
these mechanisms can guide future approaches to better treat
motor deficits, and improve the quality of PD patients’ personal
and social life.

Groove in social interactions

When people come together to listen to or make music,
the level of rhythmic complexity that hits an individual’s sweet
spot for an optimal groove experience depends on their biology
and cultural background. In his interviews with musicians,
Charles Keil noted that “each person has a unique feel for
time and that bringing different or discrepant personalities
together generates different kinds of groove” (Keil, 1995, p.8).
Keil calls the intentional deviations in timing that result from the
constant relating and negotiating between players participatory
discrepancies and hypothesizes that they are necessary to make
music involving and socially meaningful (Keil, 1987, 1995). This
type of involvement may be especially strong with syncopated
rhythms, as performers—live or recorded—can invite listeners
and dancers to participate in the relating and negotiating
by filling in the gaps in the syncopated rhythmic structure
(Witek, 2017).

Groove and dance

Music and dance are so intertwined that some cultures
do not distinguish between them (Haugen, 2021), and groove
is an important element in understanding this connection
(Foster Vander Elst et al., 2021). Fitch argues that “if
we want to understand the rhythmic origins of a musical
style, it behooves us to know how contemporaries would
have moved to that music” (2016, p.6). Dance is also an
intrinsically social activity that encourages social bonding (Tarr
et al., 2014, 2015; Launay et al., 2016). Indeed, compared to
synchronizing movements in silence or with a metronome,
music can increase social closeness with another person
(Stupacher et al., 2017, 2021). Furthermore, the number of

people who can easily converse together is usually limited
to four (Robertson et al., 2017), but much larger groups
regularly form when people dance together. It has therefore
been posited that the prosocial and emotional effects of
group music-making and dancing might be evolutionary
adaptations (Huron, 2001; Loersch and Arbuckle, 2013;
Trainor, 2015).

From the perspective of predictive processing, beat
and meter are mental models that can be shared by all
dancers and musicians in a group. If the models are alike,
i.e., ‘distributed’ across dancers, they facilitate synchronous
movements, which in turn can promote shared affective
experiences (Witek, 2019). In addition to strict synchronization,
dance is commonly also concerned with the expression of
creativity and “individual flourish” (Merker et al., 2009)
within the framework of a mental model of beat and meter.
When dancing together, moderately syncopated rhythms
may provide the ideal stimulus for facilitating both united
synchrony and individual creativity. On the one hand,
moderately syncopated rhythms include enough notes on
strong metrical positions that allow the dancers to form
shared beat- and meter-based predictions. On the other
hand, these rhythms also include notes on weak metrical
positions, “injecting energy” into upbeats (Fitch, 2016),
and pauses on strong metrical positions, inviting dancers
to fill the “open spaces” with creative movements (Witek,
2017). Therefore, moderately syncopated rhythms may
provide a common temporal framework within which
dancers can share basic movements, but also inspire each
other with individual creative movements—a combination
that may facilitate the experience of shared emotions. This
perspective is supported by a recent study suggesting that social
bonding with another person tends to follow an inverted U
shape in relation to the degree of syncopation (Figure 1D;
Stupacher et al., 2020). A certain level of complexity is
also preferred when playing the Mirror Game, in which
two individuals move as coordinated and synchronously
as possible (Ravreby et al., 2022). Ravreby and colleagues
found that social bonding with the partner increases with
increasing interpersonal synchronization, but also with
movement complexity. Although simple movements benefit
from greater synchronization accuracy, more complex and
novel movements may be introduced to keep each other
interested and engaged.

Both dancing and performing music in a group involve
moving in time together. However, dance and music improve
sensorimotor integration in both shared and unique ways
(Giacosa et al., 2016, 2019; Karpati et al., 2017). For example,
musicians perform better than dancers when synchronizing
finger taps with auditory rhythms, whereas expert dancers
perform better than musicians when imitating whole-body
dance movements (Karpati et al., 2016). To date, most of the
research investigating long-term-priors, such as the effects of
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expertise and listening biographies on groove is concerned
with effects of musical training and preferred musical style.
Musicians show greater neural activity in motor-related areas of
the brain when listening to high-groove music (Stupacher et al.,
2013), and a more pronounced U-shaped relationship between
groove ratings and degree of syncopation (Matthews et al., 2019,
2022). Additionally, Senn and colleagues note that “listeners’
susceptibility to bodily entrainment as a response to music is
strengthened when the music agrees with their taste” (Senn et al.,
2018, p.26). The rare studies on groove that have tested the effect
of dance experience are limited to behavioral paradigms, which
suggest that participants with greater frequency and enjoyment
of dancing experience more groove (Witek et al., 2014; Matthews
et al., 2019). However, while both of these studies differentiate
sharply between musicians and non-musicians based on years of
training, the differentiation between dancers and non-dancers is
less clear. Given the unique ways in which dancing affects whole-
body sensorimotor integration (Giacosa et al., 2016, 2019), it
would be beneficial for future work on the experience and
neurophysiology of groove to use similarly sharp selection
criteria for dancers. Groove is a universal phenomenon, but
some effects may be more pronounced in experienced dancers,
who are experienced in using their entire bodies to actively and
creatively engage with music.

Conclusion

In dance, music making, and music listening, groove
research can help us to better understand the interactions
between temporal processing, movement, social behavior, and
pleasure in both the general population and individuals
with motor impairments. Elucidating the neural mechanisms
underlying groove—especially the role of the basal ganglia—
will contribute to our understanding of the integration of motor
driven predictive timing and reward processes more generally.

One open question is how the experience of groove differs
when comparing individual versus collective situations of music
listening or dancing. It is also unclear how the type of
rhythm-related movements affects groove experiences. Future
research could, for example, compare whole body engagement
in dance with specific movements of particular body parts,
such as finger tapping or playing an instrument. Another
future direction of groove research could be to investigate
activities outside the field of music. Senn and colleagues
define the verb to groove as “playing music together in an
effortless and rhythmically well-coordinated manner” (Senn
et al., 2020, p.46). This use of groove can also be applied to other

coordinated interindividual activities, such as playing team
sports, verbal communication, or gestural mimicking. Based on
the relationship between rhythmic complexity and groove in
music, it could be expected that in these activities rhythmic
complexity follow similar U-shaped functions when measuring
pleasure and engagement.
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