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Abstract: Non-alcoholic fatty liver disease (NAFLD) and -steatohepatitis (NASH) imply a state
of excessive fat built-up in livers with/or without inflammation and have led to serious medical
concerns in recent years. Antrodan (Ant), a purified β-glucan from A. cinnamomea has been shown to
exhibit tremendous bioactivity, including hepatoprotective, antihyperlipidemic, antiliver cancer, and
anti-inflammatory effects. Considering the already well-known alleviating bioactivity of A. cinnamomea
for the alcoholic steatohepatitis (ASH), we propose that Ant can be beneficial to NAFLD, and that the
AMPK/Sirt1/PPARγ/SREBP-1c pathways may be involved in such alleviations. To uncover this, we
carried out this study with 60 male C57BL/6 mice fed high-fat high-fructose diet (HFD) for 60 days,
in order to induce NAFLD/NASH. Mice were then grouped and treated (by oral administration) as:
G1: control; G2: HFD (HFD control); G3: Ant, 40 mgkg (Ant control); G4: HFD+Orlistat (10 mg/kg) (as
Orlistat control); G5: HFD+Ant L (20 mg/kg); and G6: HFD+Ant H (40 mg/kg) for 45 days. The results
indicated Ant at 40 mg/kg effectively suppressed the plasma levels of malondialdehyde, total
cholesterol, triglycerides, GOT, GPT, uric acid, glucose, and insulin; upregulated leptin, adiponectin,
pAMPK, Sirt1, and down-regulated PPARγ and SREBP-1c. Conclusively, Ant effectively alleviates
NAFLD via AMPK/Sirt1/CREBP-1c/PPARγ pathway.

Keywords: Antrodia cinnamomea; Antrodan; orlistat; high-fat-high-fructose diet; non-alcoholic fatty
liver disease (NAFLD), insulin; hepatoprotective

1. Introduction

Patient with non-alcoholic fatty liver disease (NAFLD) implies a state of excessive fat built-up
in livers with, or without minimal inflammation [1–4]. NAFLD is the hepatic manifestation of the
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metabolic syndrome associated with obesity [5]. T2DM, if associated with NAFLD, would become
very complicated and makes diabetes management more challenging [6]. DM appears to promote the
development of NAFLD and increases the risk of cirrhosis and hepatocellular carcinoma [6].

A high-fat diet enhances intestinal permeability by modulating the intestinal tight junctions,
secretion of the barrier-disrupting hydrophobic bile acids, pro-inflammatory signaling cascades,
oxidative stress, and apoptosis of intestinal epithelial cells, as well as alters the barrier-disrupting
gut microflora [6]. On the other hand, high fructose consumption (HFC) leads to increased body
weight with elevated systolic blood pressure, blood glucose, insulin, and serum triglyceride (TG)
levels [7]. HFC reduces energy expenditure, thereby causing obesity, adipocyte hypertrophy, and
inflammation [8]; lipid spillover further causes hepatic steatosis, peripheral insulin resistance and
diabetes, raised levels of LDL and a decrease in HDL [9]. Furthermore, HFC elicits elevation of certain
pro-inflammatory serum proteins [10]. Worth noting, a high-fructose and high-fat diet potentially tends
to damage liver mitochondria, increasing the risk from fatty-liver disease and metabolic syndrome [8].

Much of the literature has implicated the beneficial bioactivities of A. cinnamomea,
including anti-adenocarcinoma, antihypertension, antileukemia, antiliver cancer, anti-inflammation,
hepato-protection against CCl4– and ethanol–induced liver injuries [11,12]. Previously, we showed
that the extract of A. cinnamomea alleviated the bladder transitional cell carcinomas (TCC) [12],
and showed a potent anti-metastatic effect via inhibiting the matrix metalloproteinase (MMP) -2
and -9.activities [13]. However, there has been little research into understanding how bioactive
polysaccharide of A. cinnamomea affects the fatty liver diseases.

The mycelia of A. cinnamomea contains polysaccharides 16.97%, from which five fractions of
polysaccharides were isolated and denoted as fractions AC-1 to AC-5 [14]. Antrodan, a β-glucan
obtained by further treatment of the AC-2 fraction, was named as “Antrodan” [14]. Fraction AC-2
demonstrated a rather potent anti-inflammatory capability [15], while astonishingly, we recognized that
Antrodan exhibited potent heptoprotective [16], as well as anti-benign prostate hyperplasia (BPH) [17].
On the other hand, Antrodan prevented the epithelial-mesenchymal transition (EMT) and exhibited
promising anti-inflammatory hypolipidemic bioactivities [17]. Antrodan was found beneficial for
alleviating lung cancer [18] and antimetastatic effects [13].

As widely recognized, AMP-activated protein kinase (AMPK) pathway is a master cellular
energy metabolic switch relevantly associated with positive lipid regulation in the liver; and AMPK
is well-established as the therapeutic target of NAFLD [19,20]. On the other hand, among seven
mammalian sirtuins (silent information regulator T, SIRTs), Sirt1 1 is the most extensively studied, due
to its many positive functions in both AFLD and NAFLD [21]. Both pAMPK and Sirt1 synergistically
suppressed the expression of PPARγ, leading to the inhibited lipid synthesis [21].

Considering the already well-known alleviating bioactivity of A. cinnamomea for the alcoholic
steatohepatitis (ASH) [22], and up to the present, there is no licensed drug that has been clinically
approved for the treatment of NAFLD [23]. Therefore, we propose that Antrodan can be beneficial to
the NAFLD and that the AMPK/Sirt1/PPARγ/SREBP-1c pathways may be involved in the alleviation
of NAFLD by Antrodan. To uncover this, a framework shown in Figure 1 was conducted to carry out
a mice-model fed on the high fat and high fructose diet to induce NAFLD, and examine the alleviative
effects of Antrodan on these NAFLD-affiliated mice.
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Figure 1. The time course of scheduled experiment to assess the alleviative effect of Antrodan for high 
fructose diet (HFD)–induced fatty liver in C57BL/6 mice. HFD: high fat 40% and high fructose 22% 
diet. Ant: Antrodan. Ant L: low dose Ant (20 mg/kg). Ant H: high dose Ant (40 mg/kg). 

2. Results 

2.1. The Retarding Effect of Antrodan Against the HFD Regarding the Liver- and Body-Weight  

HFD significantly increased the body- and liver-weights of mice. The body- and liver-weights 
and the ratio liver wt/body wt in the Antrogen (40 mg/kg) control group remained normal as the 
control (Table 1). Expectedly, a high dose Antrodan cotreatment in HFD significantly suppressed the 
body- and liver-weights, and the ratio liver wt/body wt, being more effective than the positive control 
‘Orlistat’ (Table 1). 

Table 1. Effects of Antrodan and Orlistat on body weight and liver weight in a high-fat/high-fructose 
diet (HFD)-fed mice model. 

Group. Control HFD Ant-H HFD+Orl HFD+Ant-L HDF+Ant-H 
Body weight (g) 25.47 ± 0.58 34.20 ± 1.11 ### 26.50 ± 0.63 33.80 ± 0.92 ** 32.40 ± 0.89 31.98 ± 0.56 * 
Liver weight (g) 1.15 ± 0.04 2.05 ± 0.21 ### 1.08 ± 0.07 1.89 ± 0.14 1.87 ± 0.15  1.61 ± 0.05 ** 

Liver weight/ 
Body weight (%) 

4.49 ± 0.14  5.93 ± 0.43 # 4.04 ± 0.19 5.58 ± 0.35 5.71 ± 0.32 5.04 ± 0.09 * 

HDF: high-fat/high-fructose diet. Ant: Antrodan. Orl: Orlistat. Ant H: Ant 40 mg/kg; HFD+Orl: 
HDF+Orlistat (10 mg/kg); HFD+Ant L: HDF+Ant (20 mg/kg), HFD+Ant H: HFD+Ant (40 mg/kg). One 
way ANOVA is followed by the post-hoc LSD test. Values are expressed as the mean ± SEM (n = 10); 
# p < 0.05 and ### p < 0.001 compared to the control; * p < 0.05, ** p < 0.01 compared to the HFD group. 

2.2. Effect of Antrodan on Plasma Levels of Malondialdehyde, Total Cholesterol, Triglyceride, and Ratio 
LDL-C/HDL-C  

The plasma levels of malondialdehyde were highly stimulated by HFD (p < 0.001) (Figure 2A). 
C fr1otreatment with Antrodan significantly reduced the lipid peroxidation (p < 0.01, low dose 

Figure 1. The time course of scheduled experiment to assess the alleviative effect of Antrodan for high
fructose diet (HFD)–induced fatty liver in C57BL/6 mice. HFD: high fat 40% and high fructose 22% diet.
Ant: Antrodan. Ant L: low dose Ant (20 mg/kg). Ant H: high dose Ant (40 mg/kg).

2. Results

2.1. The Retarding Effect of Antrodan Against the HFD Regarding the Liver- and Body-Weight

HFD significantly increased the body- and liver-weights of mice. The body- and liver-weights
and the ratio liver wt/body wt in the Antrogen (40 mg/kg) control group remained normal as the
control (Table 1). Expectedly, a high dose Antrodan cotreatment in HFD significantly suppressed the
body- and liver-weights, and the ratio liver wt/body wt, being more effective than the positive control
‘Orlistat’ (Table 1).

Table 1. Effects of Antrodan and Orlistat on body weight and liver weight in a high-fat/high-fructose
diet (HFD)-fed mice model.

Group Control HFD Ant-H HFD+Orl HFD+Ant-L HDF+Ant-H

Body weight (g) 25.47 ± 0.58 34.20 ± 1.11 ### 26.50 ± 0.63 33.80 ± 0.92 ** 32.40 ± 0.89 31.98 ± 0.56 *
Liver weight (g) 1.15 ± 0.04 2.05 ± 0.21 ### 1.08 ± 0.07 1.89 ± 0.14 1.87 ± 0.15 1.61 ± 0.05 **

Liver weight/Body
weight (%) 4.49 ± 0.14 5.93 ± 0.43 # 4.04 ± 0.19 5.58 ± 0.35 5.71 ± 0.32 5.04 ± 0.09 *

HDF: high-fat/high-fructose diet. Ant: Antrodan. Orl: Orlistat. Ant H: Ant 40 mg/kg; HFD+Orl: HDF+Orlistat
(10 mg/kg); HFD+Ant L: HDF+Ant (20 mg/kg), HFD+Ant H: HFD+Ant (40 mg/kg). One way ANOVA is followed
by the post-hoc LSD test. Values are expressed as the mean ± SEM (n = 10); # p < 0.05 and ### p < 0.001 compared to
the control; * p < 0.05, ** p < 0.01 compared to the HFD group.

2.2. Effect of Antrodan on Plasma Levels of Malondialdehyde, Total Cholesterol, Triglyceride, and Ratio
LDL-C/HDL-C

The plasma levels of malondialdehyde were highly stimulated by HFD (p < 0.001) (Figure 2A).
C fr1otreatment with Antrodan significantly reduced the lipid peroxidation (p < 0.01, low dose
Antrodan, 20 mg/kg; and p < 0.05, the high dose Antrodan, 40 mg/kg) (Figure 2A). Similar trends were
observed for the plasma levels of total cholesterol (Figure 2B) (p < 0.001) and triglyceride (Figure 2C)
(p < 0.001). Antrodan alone could not affect the plasma total cholesterol levels, but efficiently suppressed
the plasma total cholesterol levels when co-treated with HFD, despite high or low doses, and it seemed
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that its effect was comparable with Orlistat (p < 0.001) (Figure 2B). In contrast, Antrodan (40 mg/kg)
seemed to have significantly suppressed the plasma triglyceride levels, compared to the control, and as
a consequence, when co-treated with HFD, the plasma triglyceride levels were significantly reduced
(p < 0.001) (Figure 2C). HFD significantly increased the LDL-C/HDL-C ratio (p < 0.001), unexpectedly,
Antrodan (40 mg/kg) showed a similar effect (p < 0.01) (Figure 2D). In all other HDF-co-treated groups
all the ratios were highly raised (p < 0.001).
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Antrodan was ineffective for suppressing the elevated leptin level when compared to the HFD group 
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Figure 2. Effects of Antrodan on the plasma lipid peroxidation (A) and lipid profiles (B–D) in HFD-fed
mice. Dada are expressed as mean ± SEM (n = 10). HFD: high fat 40% and high fructose 22% diet. Ant:
Antrodan. HFD+Orl: HFD+Orlistat (10 mg/kg). HFD+Ant L: HFD+Ant (20 mg/kg), HFD+Ant H:
HFD+Ant (40 mg/kg). ### p < 0.001 and ## p < 0.01 compared to the control; *** p < 0.001 and ** p < 0.01
compared to the HFD group.

2.3. Effect of Antrodan on the Plasma Levels of Glucose, Insulin, Leptin and Adiponectin

When compared to the control, HFD significantly stimulated the plasma levels of glucose and leptin
(p < 0.001), moderately elevated insulin, and reduced adiponectin levels (Figure 3), and Antrodan alone
(40 mg/kg) effectively suppressed the plasma levels of glucose, leptin, insulin, and adiponectin‘(Figure 3).
When co-treated with HFD, Orlistat showed very promising suppressing effect on the plasma glucose
level, compared to the low Antrodan (20 mg/kg) (p < 0.001) (Figure 3). Strangely, high doses Antrodan
(40 mg/kg) were less effective (p < 0.05). The insulin level was significantly suppressed by high dose
Antrodan (40 mg/kg), as well, in the co-treated groups. Antrodan was ineffective for suppressing the
elevated leptin level when compared to the HFD group (Figure 3), but slightly effective to raise the
level of adiponectin.
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levels of GOT (p < 0.001) and GPT (p < 0.05). As for uric acid, Orlistat (p < 0.01) was seen more effective 
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diet. Ant: Antrodan. Ant H: Ant 40 mg/kg, HFD+Orl: HFD+Orlistat (10 mg/kg), HFD+nt L: HFD+Ant
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2.4. Effect of Antrodan on the Activities of Plasma Levels of GOT, GPT, and Uric Acid

The plasma levels of GOT, GPT, and uric acid were all significantly elevated by HFD (p < 0.001)
(Figure 4). Antrodan (40 mg/kg) was safe and did not show any harmful damage to the liver. In
combined treatments, Orlistat, Antorodan, despite low or high dose all showed significantly reduced
levels of GOT (p < 0.001) and GPT (p < 0.05). As for uric acid, Orlistat (p < 0.01) was seen more effective
than Antrodan (p < 0.05) (Figure 4).
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2.5. Histopathological Findings 

According to the staging system for steatohepatitis [24], the results shown in hematoxylin-eosin 
(H&E) stain (Figure 5) revealed that the liver tissues were damaged with severe steatohepatitis when 
induced by HFD (Figure 5b), compared to the control (Figure 5a) and that of Antrodan (40 mg/kg) 
treated (Figure 5c). A vast number of large fat droplets accumulated in the liver tissues with 
inflammation. Abundant number of inflammatory cells, in particular eosins, also appeared in the 
inflammation sites. Similar results were previously demonstrated by Wang et al. [25], who indicated 
that high-fat diet-induced hepatocellular steatosis, ballooning degeneration, lobular inflammation, 
spotty focal necrosis that were gradually shown in the hepatic lobule, especially in zone 3 of acinus. 
In the study, at the end of HFD treatment (day 105), steatohepatitis established with inflammatory 
cell infiltration and spotty focal necrosis. Compared to Orlistat (Figure 5d), Antrodan partially 
alleviated these pathological changes after being treated for 45 days (Figure 5e,f). 

Figure 4. Effects of Antrodan on the plasma levels of GOT, GPT, and uric acid in HFD-fed mice. Values
are expressed as the mean ± SEM (n =10). ### p < 0.001, ## p < 0.01 and # p < 0.05 compared to the
control; *** p < 0.001, ** p < 0.0.01 and * p < 0.05 compared to the HFD group.

2.5. Histopathological Findings

According to the staging system for steatohepatitis [24], the results shown in hematoxylin-eosin
(H&E) stain (Figure 5) revealed that the liver tissues were damaged with severe steatohepatitis when
induced by HFD (Figure 5b), compared to the control (Figure 5a) and that of Antrodan (40 mg/kg)
treated (Figure 5c). A vast number of large fat droplets accumulated in the liver tissues with
inflammation. Abundant number of inflammatory cells, in particular eosins, also appeared in the
inflammation sites. Similar results were previously demonstrated by Wang et al. [25], who indicated
that high-fat diet-induced hepatocellular steatosis, ballooning degeneration, lobular inflammation,
spotty focal necrosis that were gradually shown in the hepatic lobule, especially in zone 3 of acinus. In
the study, at the end of HFD treatment (day 105), steatohepatitis established with inflammatory cell
infiltration and spotty focal necrosis. Compared to Orlistat (Figure 5d), Antrodan partially alleviated
these pathological changes after being treated for 45 days (Figure 5e,f).
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HFD+Orl: HFD+orlistat (10 mg/kg). (e) HFD+Ant-L (20 mg/kg), and (f) HFD+Antr (40 mg/kg). Scale 
bar: 100 μm. (Magnification, 200×). 
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HFD inhibited the expression of Sit1 compared to the control (p < 0.01) (Figure 6). Antrodan 
alone did not show any effect. In the co-treated groups, Orlistat, Antrodan at 20 mg/kg, and 40 mg/kg 
significantly upregulated Sirt1 at significant levels of p < 0.001, p < 0.01, and p < 0.001, respectively 
(Figure 6). The levels of AMPK and p-AMPK were downregulated by HFD (p < 0.001 and p < 0.05, 
respectively), was significantly upregulated by co-treatment with Orlistat (p < 0.05), Antrodan (20 
mg/kg) (p < 0.001), and Antrodan (40 mg/kg) (p < 0.05) (Figure 6). 
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diet. Ant: Antrodan; (a) control; (b) steatosis caused by HFD; (c) HFD+Ant-L (20 mg/kg). (d) HFD+Orl:
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2.6. Protein Expressions Affected by Antrodan

HFD inhibited the expression of Sit1 compared to the control (p < 0.01) (Figure 6). Antrodan
alone did not show any effect. In the co-treated groups, Orlistat, Antrodan at 20 mg/kg,
and 40 mg/kg significantly upregulated Sirt1 at significant levels of p < 0.001, p < 0.01, and p < 0.001,
respectively (Figure 6). The levels of AMPK and p-AMPK were downregulated by HFD (p < 0.001 and
p < 0.05, respectively), was significantly upregulated by co-treatment with Orlistat (p < 0.05), Antrodan
(20 mg/kg) (p < 0.001), and Antrodan (40 mg/kg) (p < 0.05) (Figure 6).
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The level of PPARγ was highly upregulated (p < 0.05) by HFD, while Antrodan (40 mg/kg) alone 
significantly downregulated (p < 0.001) its level (Figure 7). When Antrodan was cotreated with HFD, 
the level of PPARγ was found significantly suppressed by Orlistat (p < 0.01), Antrodan (20 mg/kg) (p 
< 0.05), and Antrodan 40 mg/kg (p < 0.001), respectively (Figure 7). As contrast, the level of SREBP-
1C was highly elevated by HFD (p < 0.001). Antrodan (40 mg/kg) alone did not show any effect. 
Among the cotreated groups, Orlistat, Antrodan (20 mg/kg), and Antrodan (40 mg/kg) revealed to be 
significantly effective regarding the suppression of SREBP-1C (each p < 0.05) (Figure 7). 

 

Figure 6. Effect of Antrodan on high-fat/high-fructose diet-induced expression of Sirt1, AMPK and
p-AMPK in the liver tissues of mice. Data are expressed as the mean ± SEM (n = 10). # p < 0.05 and
## p < 0.01 compared with the control. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared with the
HFD group.

The level of PPARγ was highly upregulated (p < 0.05) by HFD, while Antrodan (40 mg/kg)
alone significantly downregulated (p < 0.001) its level (Figure 7). When Antrodan was cotreated
with HFD, the level of PPARγ was found significantly suppressed by Orlistat (p < 0.01), Antrodan
(20 mg/kg) (p < 0.05), and Antrodan 40 mg/kg (p < 0.001), respectively (Figure 7). As contrast, the level
of SREBP-1C was highly elevated by HFD (p < 0.001). Antrodan (40 mg/kg) alone did not show any
effect. Among the cotreated groups, Orlistat, Antrodan (20 mg/kg), and Antrodan (40 mg/kg) revealed
to be significantly effective regarding the suppression of SREBP-1C (each p < 0.05) (Figure 7).
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Figure 7. Effect of Antrodan on high-fat/high-fructose diet-induced expression of PPARγ and SREBP-
1c in the liver tissues of mice. Data are expressed as the mean ± SEM (n = 10). # p < 0.05 and ## p < 0.01 
compared with the control. * p < 0.05 and ** p < 0.01 compared with the HFD group. 

3. Discussion 

3.1. The Adverse Metabolic Role of a High Fat Diet 

High fat diet induces oxidative stress and apoptosis in intestinal epithelial cells [6]. In addition, 
a high-fat diet enhances intestinal permeability directly by stimulating pro-inflammatory signaling 
cascades and indirectly via increasing barrier-disrupting cytokines like TNFα, interleukin (IL) 1B, 
IL6, and interferon γ (IFNγ), and decreasing barrier-forming cytokines like IL10, IL17, and IL22 [6]. 

3.2. Fructose Pays a Higher Energy Cost Regarding the ATP Production 

The consumed fructose is first converted into glucose in the liver, then followed by glucose 
oxidation in the extrahepatic cells, this reaction pathway requires the use of an additional 2 ATPs 
compared to that for the direct oxidation of blood glucose, which means this is associated with a 
higher ATP used/ATP synthesized ratio, and thus, a higher energy cost of net ATP gained [26]. The 
diet-induced thermogenesis (DIT) is always higher for fructose than glucose [26]. Biochemically, for 
glucose metabolism, it can be estimated that 2 moles of ATP are used and 26.5 moles ATP are 
synthesized, corresponding to a net gain of 27.5 moles ATP/mole glucose. Since the initial energy 
content of one mole glucose is 686 kcal, the energy efficiency of glucose oxidation, i.e., the energy cost 
of ATP gained, can be estimated as 686/27.5, or 24.9 kcal/mole ATP [26]. In contrast, when fructose is 
oxidized as lactate in extrahepatic cells, the overall number of ATP used (2 ATP) and synthesized 
(26.5 ATP) is the same as for glucose oxidation, and the overall energy efficiency is therefore similar 
to that of glucose. However, 2 ATP are used in the liver, while 26.5 ATP are synthesized in 
extrahepatic cells. As a consequence, the energy cost of ATP gained increases to 26.9 kcal/mole. This 
corresponds to an 8% increase compared to glucose [26].  

3.3. How Does the High Fructose Diet Affect Llipid Metabolism? 

After ingestion, the fructose molecules can be rapidly absorbed through the glucose transporter-
5 (GLUT5) and released into the bloodstream. Fructose is then absorbed mainly by the liver cells that 
exhibit high amounts of GLUT2 [27] (Figure 8). In contrast, virtually no fructose can be absorbed by 
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3. Discussion

3.1. The Adverse Metabolic Role of a High Fat Diet

High fat diet induces oxidative stress and apoptosis in intestinal epithelial cells [6]. In addition,
a high-fat diet enhances intestinal permeability directly by stimulating pro-inflammatory signaling
cascades and indirectly via increasing barrier-disrupting cytokines like TNFα, interleukin (IL) 1B, IL6,
and interferon γ (IFNγ), and decreasing barrier-forming cytokines like IL10, IL17, and IL22 [6].

3.2. Fructose Pays a Higher Energy Cost Regarding the ATP Production

The consumed fructose is first converted into glucose in the liver, then followed by glucose
oxidation in the extrahepatic cells, this reaction pathway requires the use of an additional 2 ATPs
compared to that for the direct oxidation of blood glucose, which means this is associated with
a higher ATP used/ATP synthesized ratio, and thus, a higher energy cost of net ATP gained [26].
The diet-induced thermogenesis (DIT) is always higher for fructose than glucose [26]. Biochemically,
for glucose metabolism, it can be estimated that 2 moles of ATP are used and 26.5 moles ATP are
synthesized, corresponding to a net gain of 27.5 moles ATP/mole glucose. Since the initial energy
content of one mole glucose is 686 kcal, the energy efficiency of glucose oxidation, i.e., the energy cost
of ATP gained, can be estimated as 686/27.5, or 24.9 kcal/mole ATP [26]. In contrast, when fructose
is oxidized as lactate in extrahepatic cells, the overall number of ATP used (2 ATP) and synthesized
(26.5 ATP) is the same as for glucose oxidation, and the overall energy efficiency is therefore similar to
that of glucose. However, 2 ATP are used in the liver, while 26.5 ATP are synthesized in extrahepatic
cells. As a consequence, the energy cost of ATP gained increases to 26.9 kcal/mole. This corresponds to
an 8% increase compared to glucose [26].

3.3. How Does the High Fructose Diet Affect Llipid Metabolism?

After ingestion, the fructose molecules can be rapidly absorbed through the glucose transporter-5
(GLUT5) and released into the bloodstream. Fructose is then absorbed mainly by the liver cells that
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exhibit high amounts of GLUT2 [27] (Figure 8). In contrast, virtually no fructose can be absorbed
by pancreatic beta cells due to extremely low affinity of the pancreatic beta cell GLUT2 and GLUT5
transporters for fructose (https://www.ncbi.nlm.nih.gov/gene/6514). On the other hand, glucose
can trigger the release of insulin from pancreatic beta cells, but fructose is unable to stimulate
insulin secretion [28]. High fructose consumption leads to the accumulation of adipose tissue,
systemic inflammation, obesity, oxidative stress, and consequently insulin resistance in different
tissues [9,25,29,30].
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Figure 8. Summary of the results in this study. GOT: Glutamate-oxaloacetate transaminase;
GPT: Glutamate-pyruvate transaminase; p-AMPK: phosphor-AMP-activated protein kinase; PPARγ:
Peroxisome proliferator-activated receptor gamma; SREBP-1c: Sterol regulatory element-binding
protein-1c. Fructose contained in the high fat HFD is transported via glucose transporter 5 (Glut-5)
located on the villi in intestine into the blood stream and then distributed to many tissues, in particular,
the liver carrying Glut-2 via which fructose is transferred into the cytoplasm of cells, where HFD
induces steatohepatitis, which can be alleviated by Antrodan at 20–40 mg/kg.

Mechanistically, fructose-1-P (F-1-P) exhibits multiple effects to initiate fatty liver. F-1-P over
upregulates cytoplasmic malonyl-coA, inhibiting the carnitine palmitoyl transferase 1 (CPT-1), thereby,
retarding the transport of lipids into mitochondria and subsequent β-oxidation [31]. Simultaneously,
F-1-P activates peroxisome proliferator-activated receptor-gamma coactivator 1 beta (PGC-1β) protein,
which in turn increases the expression of the sterol regulatory element-binding protein 1c (SREBP1c).
SREBP1c initiates the transcription of fatty acyl-CoA synthase (FAS) and acetyl-CoA carboxylase (ACC)
proteins [32].

The over-produced fatty acids in cells now have three different ways to dispose: (1) Part of the
triglycerides deposit in the hepatocytes, leading to NAFLD. (2) Another part binds to apolipoprotein
(ApoB) to produce VLDL; or (3) Part of them simply diffuses in form of free fatty acids into the
bloodstream, causing hypercholesterolaemia and dyslipidemia [33].

3.4. Why is Antrodan Ineffective at Suppressing the Ratio LDL-C/HDL-C?

NAFLD is the liver injury most often associated with disordered insulin resistance, including
obesity, diabetes, and the metabolic syndrome [34]. To induce such a complicated pathological
syndrome, a simple high-fat diet would be impossible. High-fat and high-fructose diets have been
used to induce animal model diabetes mellitus to evaluate the effect on change of leptin level [35].

https://www.ncbi.nlm.nih.gov/gene/6514
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Studies indicate that fructose may be a carbohydrate with greater obesogenic potential than other
sugars [8,36]. Fructose promotes and complicates glucose metabolism, enhancing the accumulation of
triacylglycerol in the hepatocytes, and causing alterations in the lipid profile associated with severe
inflammatory responses, simultaneously stimulating huge production of ROS leading to a systemic
etiology with insulin resistance [8]. A high-fructose diet can cause hyperinsulinemia, while a high-fat
diet can result in impaired pancreatic function of insulin secretion and glucose intolerance, indicating
that a high-fructose diet and a high-fat diet may exert divergent effects on glucose metabolism in
rats [35]. As can be imagined, such a highly complicated syndrome, in fact, would not be simply
alleviated by a single medicine. Antrodan alleviated MDA, TC, and TG levels, but failed to suppress
the ratio LDL-C/HDL-C (Figure 2). Orlistat inhibits lipases in the gastrointestinal tract, preventing the
absorption of approximately 30% of dietary fat [37], revealing a non-systemic treatment for obesity.
Although, the literature indicates that Orlistat improves lipid profiles in non-diabetic obese patients,
reducing levels of total cholesterol, and low-density lipoprotein cholesterol [37]. However, Orlistat
also failed to rescue the LDL-C/HDL-C ratio (Figure 2).

The reasons can be attributed to the increased LDL-C formation when induced by HFD. The studies
of Fernandez and West have demonstrated that, among the saturated fatty acids (SFAs), stearic acid
(18:0) appears to have a neutral effect on LDL-C, while lauric (12:0), myristic (14:0), and palmitic
(16:0) acids are considered to be hypercholesterolemic. SFAs increase plasma LDL-C by increasing the
formation of LDL in the plasma compartment and by decreasing LDL turnover [38].

3.5. Animal Model Selection Affects the Experimental Outcomes

In addition, the selection of the animal model will also greatly affect the outcome of experiment.
Compared to the dyslipidemic subject who exhibits LDL-C = 154 ± 7; HDL-C= 48 ± 4 mg/dL; and
LDL-C/HDL-C = 3.21), the corresponding values of C57BL/6 mice are: LDL-C = 21 ± 2; HDL-C = 97
± 4 mg/dL; and LDL-C/HDL-C = 0.26 [39]. Obviously, the wide genetic variation exists, implying
that animal models, in fact, can only be used as a clinical reference. A major difference of mouse
models from humans is that mice lack cholesteryl ester transport protein (CETP) [40]. CETP is the key
enzyme involved in plasma cholesterol transport, which transfers cholesteryl ester (CE) from HDL
to apoB-containing lipoproteins such as LDL and VLDL [40]. Rats, dogs, and pigs also have no- or
low-plasma CETP activities, and they all display high high-density lipoprotein cholesterol (HDL-c)
and low LDL-c plasma lipoprotein distribution, similar to mice, which is associated with a low risk of
CVD [40].

3.6. Antrodan treatments Appear to be Effective in Regulating Adiponectin but not in Leptin Levels

Fructose affects the sensation and response of the central nervous system via elevation in
cannabinoid 1 (CB1) receptor messenger RNA (mRNA) and leptin [35], hence, it might disturb hunger
and satiety control, as well as contribute to the development of obesity and metabolic complications [8].

Increased circulating levels of leptin (a proinflammatory adipokines) in obesity lead to
hypothalamic leptin resistance, turning down anorexigenic and energy expenditure signals and further
contribute to aggravate obesity [41]. Increased levels of pro-inflammatory adipokines (e.g., leptin),
and decreased levels of anti-inflammatory adipokines (e.g., adiponectin) in obesity may produce
a chronic state of low-grade inflammation and promote the development of insulin resistance and
type-2 diabetes, hypertension, atherosclerosis and other cardiovascular diseases, and some types of
cancer [42]. Moreover, since adiponectin also acts as an insulin-sensitizing hormone in muscles and
the liver, lower levels of adiponectin further contribute to peripheral insulin resistance in obesity [22].
Although highly elevated leptin level seemed to be not affected from the Antodan treatment, the slightly
raised adiponectin level (Figure 3) was found to be sufficiently high enough to activate AMPK into
pAMPK (Figure 6).
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3.7. Elevated PPARγ and SREBP-1c Increased Lipid Synthesis

The hepatic PPARγ plays a putative role in the progression of fatty liver disease in the
NAFLD patients [43]. Hepatic PPARγ and the nuclear hormone receptors liver X receptor α (LXRα)
independently regulate lipid accumulation in mice livers [21]. Signals of LXRα-SREBP-1c and ChREBP
upregulate the expression of lipogenic genes in both normal and obesity mice livers [44]. Normally,
the PPARγ expression in normal mice livers is low, but can be highly upregulated in fatty livers [45].
Similar evidence also indicated that PPAR-γ is up-regulated in the liver of obese patients with NAFLD,
and recently, the expression of PPAR-γ is considered as an additional reinforcing lipogenic signal,
assisting SREBP-1c to trigger the development of hepatic steatosis [43]. The literature has indicated
that, in fact, PPARγ could be upregulated as early as two weeks after being induced with high fat
diet [46]. We showed hepatic PPARγ was significantly upregulated (p< 0.05) (Figure 7) in mice liver
tissues associated with a huge amount of lipid deposit after 60 day-induction with HFD (Figure 5b).
The hepatic PPARγ signal is highly expressed in the fatty livers, compared to normal mice, implicating
the fact that, hepatic PPARγ may contribute more significantly to the development of fatty liver than
LXRα, consistent with our findings (Figure 7). Both pAMPK and Sirt1 synergistically suppressed the
expression of PPARγ, leading to the inhibited lipid synthesis [21].

3.8. Sirt1 and pAMPK Inhibited PPARγ and SREBP-1c, thereby, Suppressed Lipid Synthesis and Alleviated
Insulin Resistance

Increased levels of pro-inflammatory adipokines (e.g., leptin) (Figure 3), and decreased levels of
anti-inflammatory adipokines (e.g., adiponectin) (Figure 3), in obesity may produce a chronic state
of low-grade inflammation and promote the development of insulin resistance and type-2 diabetes,
hypertension, atherosclerosis, and other cardiovascular diseases, as well as some types of cancer [42].

AMP-activated protein kinase (AMPK) and the histone/protein deacetylase Sirt1 are fuel-sensing
molecules, that regulate each other and share many common target molecules [47]. AMPK is
a fuel-sensing enzyme that is activated by decreases in AMP/ATP ratio in the cells [48,49]. Sirt1 is
widely expressed in mammalian cells and has been studied in many tissues, including liver, skeletal
muscle, adipose tissue, pancreas (β-cells), brain [50], and the endothelium [51].

Among the seven mammalian homologs of sirtuin (Sirt1-7) [52], Sirt1 is the most extensively
studied member, and is involved in both NAFLD and AFLD [39,53]. Like AMPK, Sirt1 responds
to increases and decreases in nutrient availability (caloric restriction or starvation) [54], energy
expenditure [55], and antioxidant mechanism [56]. pAMPK changes the NAD+ abundance and the
NAD+/NADH ratio to upregulate Sirt1 [57], which in turn plays beneficial roles in modulating hepatic
lipid metabolism, hepatic oxidative stress, and mediating hepatic inflammation through deacetylating
some transcriptional regulators against the progression of fatty liver diseases [20]. In recent years,
the evidence has suggested that SIRTs play important roles in regulating the fatty liver disease-related
metabolic processes [20]. Antrodan elevated the level of adiponectin (Figure 3) and suppressed
that of PPARγ and SREBP-1c, thereby inhibiting the lipid biosynthesis and promoting obese- and
steatohepatitis-associated insulin resistance. Hence, the levels of GPT, GPT, and uric acid (Figure 4)
were all improved. Worth noting, mice livers have the highest NAD+/NADH ratio (4.0) compared to
the liver of swine (0.07) [58], implicating the feasibility of this mice model.

To summarize, the pathways whereby Antrodan alleviated the NAFLD induced by HFD, as
summarized in Figure 9. Biochemically, fructose associated with free fatty acids (FFA) played many
adverse roles, inducing NAFLD. FFA activated the production of long chain Acyl CoA, while fructose
enhanced the expression of SREBP-1c, activating FAS and ACC1, and increasing the synthesis of
malonyl CoA, the latter inhibits CPT-1 retarding the transport of extramitochondrial LCAcCoA into
mitochondrial outer membrane, and thereby, reduced the β-oxidation. On the other hand, fructose
produced a vast amount of glucose, inducing insulin resistance and ATP depletion, resulting in
increased low energy index ‘AMP/ATP’, which, together with the adiponectin, raised by Antrodan
stimulated AMPK phophorylation, the increased pAMPK in turn stimulated the NAD+/NADH ratio,
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and induced expression of Sirt1. Sirt1 activated mitochondrial biogenesis, and together with pAMPK
inhibited PPARγ/SCREBP-1c induced FAS activity and TG levels to alleviate the NAFLD (Figure 9).
Thus, it is evidently seen that Antrodan improved NAFLD via the AMPK/PPARγ/ SCREBP-1c pathway.
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Figure 9. Antrodan alleviated the HFD-induced NAFLD via the. AMPK/SREBP-1c/PPARγ pathway
HFD: High fat-high fructose diet. NAFLD: non-alcoholic fatty liver disease. ACC1: Acetyl-CoA
carboxylase-1; AMPK: AMP-activated protein kinase; p-AMPK: phosphor-AMP-activated protein
kinase; FAS: fatty acid synthase; FFA: free fatty acids; LCAc-CoA: long chain acyl CoA. PPARγ:
Peroxisome proliferator-activated receptor gamma; SREBP-1c: Sterol regulatory element-binding
protein-1c. TG: triglycerides; CPT-1: carnitine palmitoyltransferase I. The major part of fructose
was transported into the hepatocytes is converted into glucose, which induces insulin resistance.
The latter in turn increases the low energy index AMP/ATP, together with the adiponectin induced by
Antrodan induces the conversion of AMPK into pAMPK. pAMPK increases the ratio NAD+/NADH
and upregulates SIRT1. Working together with pAMPK, SIRT1 suppressed the insulin resistance and
the level of TG, and the activity of FAS, ACC1 and malonyl-CoA biosynthesis, leading to enhanced
CPT-1 and β-oxidation.

4. Materials and Methods

4.1. Chemicals and Antibodies

Antibodies against AMPK (ab131512), p-AMPK (ab23875), PPARγ (ab45036) and SREBP-1c
(ab26481), and HRP (horseradish peroxidase)-conjugated goat anti-(rabbit IgG) antibody (ab97051)
were purchased from Abcam (Cambridge, UK). Sirt1 (131611AP) antibody was provided by Proteintech
(Rosemont, IL, USA). β-Actin (tcba13655) was a product from Taiclone (Taipei, Taiwan). The high-fat
and high-fructose diet (HFD) (Research Diet D17010102) was supplied by the Research Diets, Inc.
(New Brunswick, NJ, USA), which contains 40% fat, 22% fructose, and 2% cholesterol. The regular or
standard diet (3.3 kcal/g) contained 58.9% carbohydrate, 26.7% protein, and 12.4% crude fat. Orlistat
was purchased from Sigma-Aldrich (St. Louis, MO, USA).
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4.2. Source of Antrodan

Antrodan from the Antrodia cinnamomea mycelia was prepared as previously reported [14] with
slight modification. In brief, the lyophilized defatted mycelia (1 kg) were suspended in water (1:10, w/v)
and heated at 80 ◦C for 2 h to remove the water soluble substances. The residue was extracted with hot
alkaline solution (pH 9.0, 1:10 w/v) at 80 ◦C for 2 h and filtered. The residue was repeatedly extracted
for additional two times. The three extracts were combined. Afterwards, the pH value was adjusted to
4.0 using 1 N HCl solution, the solution was left to stand at 4 ◦C overnight to facilitate the precipitation.
The precipitate was collected by centrifuging at 3500× g for 30 min and subjected to dialysis against
the deionized water (DDW) for 3 days to remove the free sugars and amino acids (dialysis tube MW
cut-off 12,000–16,000 Da, Wako, Japan), then lyophilized to obtain base-soluble extract. The extract
containing Antrodan was loaded onto a Sepharose CL-6B column (3.0 × 82 cm) and eluted with DDW
(pH 11.0 adjusted with 1N NaOH) at a flow rate 0.5 mL/min to separate the polysaccharides and collect
the target Antroden with a fraction collector. The yield was 9.19% (w/w) with an average molecular
weight of 442 kDa, as analyzed by the high-performance size-exclusion chromatography (HPSEC).

4.3. Induction of Fatty Liver Diseases and Treatment with Antrodan

In the previous study [59], the non-genetically modified C57BL/6 mice when exposed to the
high-fat high-carbohydrate (HFHC) diets may result in increased body weight, body fat mass, fasting
glucose, and insulin-resistant level, compared with chow mice. Based on the study, we applied the
high-fat and high-fructose diet (HFD) to conduct the hypothesis that mice given ad libitum access
to the HFD would induce increased hepatic lipid accumulation and generate significant fatty liver
symptoms. Sixty C57BL/6 male mice, 6-week-old, were provided by the BioLASCO Taiwan Co.,
Ltd. (Taipei, Taiwan). This experiment was carried out according to the regulation controlled by the
Animal Research Committee of Hungkuang University (HKU), and all experimental protocols were
approved by the Ethical Committee of HKU (approved affidavit No. HK-P-10613). The mice were
housed in a pathogen-free room under controlled temperature (25 ± 2 ◦C), relative humidity (65 ± 5%),
and alternating 12h-light/12h-dark cycles. For the first week, the mice were acclimated, then randomly
divided into 6 groups (n = 10 mice in each group) as follows: Group 1, the blank control fed standard
regular diet; Group 2, fed high-fat and high-fructose diet (HFD); Group 3, the Antrodan positive
control fed Antrodan 40 mg/kg; Group 4, fed combined HFD with Orlistat (10 mg/kg); Groups 5 and 6,
fed HFD, which was supplemented with Antrodan 20 mg/kg (low dose), and 40 mg/kg (high dose),
respectively. For induction, the mice were first fed HFD for 60 days, and then fed on HFD and tube
irrigated with Antrodan or Orlistat, once daily for further 45 days (Figure 1). Antrodan or Orlistat was
dissolved in phosphate buffer saline before tube irrigation to mice. During the whole course, the body
weight was regularly measured once a week. On day 105, the mice were euthanized after bleeding to
collect plasma, and the liver was dissected, rinsed with sterilized saline and stored at −80 ◦C, otherwise
fixed with 10% formalin for further studies.

4.4. Assay for the Plasma Biochemical Parameters

The activities of GOT and GPT, and the plasma level of total cholesterol (T-CHO), low density
lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglyceride (TG),
glucose (GLU) and uric acid (UA) were measured using the Fuji DRI-CHEM 3500 S plasma biochemistry
analyzer (Fujifilm Corporation, Tokyo, Japan).

4.5. Immunoassay for the Plasma Level of Insulin, Leptin, and Adiponectin

The plasma levels of insulin, leptin, and adiponectin in mice were determined by the mouse
insulin ELISA enzyme immunoassay kit (Mercodia AB, Uppsala, Sweden) according to the instruction
given by the manufacturer and the optical density was read at 450 nm with the ELISA reader (VersaMax,
Molecular Devices, Sunnyvale, CA, USA).
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4.6. Western Blotting

Following our previous report [13], the expression of proteins, including Sirt1, AMPK, p-AMPK,
SREBP-1c, and PPARγ in liver tissues was measured. In brief, the liver tissues were homogenized
in the RIPA buffer containing protease inhibitors. The homogenate was centrifuged at 10,000× g
for 5 min. The supernatant was separated and the protein content was determined and frozen at
−80 ◦C until use. An aliquot of the supernatant, containing 40 µg of protein, was measured and
mixed with 1/5 × Laemmli sample buffer (60 mM Tris-HCl pH 6.8, 25% glycerol, 2% SDS, 14.4 mM
β-mercaptoethanol and 0.1% bromophenol blue, denatured by heating at 95 ◦C for 5 min). The protein
samples were then separated on a 10% SDS-PAGE and electro-blotted to the nitrocellulose membranes.
After blocking with TBS buffer (20 mM Tris–HCl, 150 mM NaCl, pH 7.4) containing 5% non-fat milk,
the membrane was incubated overnight at 4 ◦C with various specific antibodies including AMPK
(1:1000; # ab1315120), p-AMPK (1:1000; #ab23875), PPARγ (1:500; #ab45036) and SREBP-1 (1:5000;
# ab26481) from Abcam (Cambridge, UK), Sirt1 (1: 1000; #131611AP) from Proteintech Group Inc.
(Rosemont, USA) and β-actin (1:3000; #MAB1501; Millipore, Billerica, MA, USA), followed by treatment
with horseradish peroxidase-conjugated anti-mouse IgG. The results were visualized with the ECL
chemiluminescent detection kit (PerkinElmer, Waltham, MA, USA) and quantified by with the Image J
gel analysis software.

4.7. Histological Examination of the Hepatic Tissues

The hematoxylin-eosin staining was applied to the histological examination of mice livers. Tissues
were formalin-fixed, embedded in paraffin, 2 µm sectioned, and subjected to H&E by conventional
protocol, and the images were photographed.

4.8. Statistical Analysis

Data are expressed as mean ± standard error of mean (SEM) and analyzed using one-way ANOVA,
followed by the Least Significant Difference (LSD), for comparing the inter-group variation of means.
All analyses were statistically treated with SPSS statistics for Windows, version 22.0. Unless specified
otherwise, a p-value < 0.05 is considered significant.

5. Conclusions

Dietary supplementation from fermentation products may be used as strategies for preventing or
alleviating the fatty liver symptoms. The fungi polysaccharide, Antrodan, a β-glucan isolated from
A. cinnamomea mycelia, has shown its beneficial effects against NAFLD development by suppressing
plasma MDA, GOT, GPT, total cholesterol, triglycerides, glucose, insulin, upregulating adiponectin,
leptin, pAMPK, Sirt1, and downregulating PPARγ and SCEBP-1c, which apparently have covered
a complete spectrum of therapeutic benefits to alleviate the liver injuries. These results indicate the
possible therapeutic potential of Antrodan in preventing or amelorating the HFD-induced NAFLD and
its progression to NASH. Simple and cost-effective preparation of Antrodan that provides kilogram
amount for further preclinical study in NAFLD is currently underway.
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