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Abstract

A spatially-explicit, stochastic model is developed for Bahia bark scaling, a threat to citrus production in north-eastern Brazil,
and is used to assess epidemiological principles underlying the cost-effectiveness of disease control strategies. The model is
fitted via Markov chain Monte Carlo with data augmentation to snapshots of disease spread derived from a previously-
reported multi-year experiment. Goodness-of-fit tests strongly supported the fit of the model, even though the detailed
etiology of the disease is unknown and was not explicitly included in the model. Key epidemiological parameters including
the infection rate, incubation period and scale of dispersal are estimated from the spread data. This allows us to scale-up the
experimental results to predict the effect of the level of initial inoculum on disease progression in a typically-sized citrus
grove. The efficacies of two cultural control measures are assessed: altering the spacing of host plants, and roguing
symptomatic trees. Reducing planting density can slow disease spread significantly if the distance between hosts is
sufficiently large. However, low density groves have fewer plants per hectare. The optimum density of productive plants is
therefore recovered at an intermediate host spacing. Roguing, even when detection of symptomatic plants is imperfect, can
lead to very effective control. However, scouting for disease symptoms incurs a cost. We use the model to balance the cost
of scouting against the number of plants lost to disease, and show how to determine a roguing schedule that optimises
profit. The trade-offs underlying the two optima we identify—the optimal host spacing and the optimal roguing schedule—
are applicable to many pathosystems. Our work demonstrates how a carefully parameterised mathematical model can be
used to find these optima. It also illustrates how mathematical models can be used in even this most challenging of
situations in which the underlying epidemiology is ill-understood.
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Introduction

Mathematical models of plant disease can be used to screen and

assess control strategies [1–10]. Although work on plants is not

subject to the ethical concerns that hamper experimentation

targeting pathogens of animal or human hosts, mathematical

modelling nevertheless becomes particularly compelling for plant

diseases when logistic constraints mean that experimentation

would be costly or difficult. This situation is exemplified by

diseases caused by pathogens with epidemiology necessitating long

experiments to yield useful data [11–13], pathogens causing

symptoms that are difficult to detect [14,15], pathogens with

epidemiology that is ill-understood [16,17], and/or pathogens that

would require experimental trials in the vicinity of susceptible

commercial growing operations [18,19].

Here we develop a model of Bahia bark scaling of citrus

(BBSC) on grapefruit, a pathosystem subject to each of these

logistical constraints. BSSC has been endemic to north-eastern

Brazil since the 1960s [20], but its etiology remains unknown

[21]. We use Markov chain Monte Carlo with data augmentation

[22] to fit a spatially-explicit, stochastic, epidemiological model to

a data-set charting the spread of BBSC through a small

experimental grove. We go on to alter the host topology and

parameters in this model to use it to assess the efficiency and cost-

effectiveness of control at the scale of a typical grove as used in

citrus production in Brazil. As little is known of the putative

BBSC pathogen, and even less about any potential vector, it is

difficult to reliably estimate the efficacy of any chemical [23] or

biological [24] control. We therefore concentrate on cultural

strategies [25], and focus on the effectiveness of reducing the

density of planting [26] and of roguing [10] (i.e. searching for and

removing infected plants).

The spread of plant pathogens is typically localised, and so it is

intuitive that the progression of disease through a host population

will be affected by planting density. Direct as well as indirect

effects of host density on disease incidence have been proposed
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[26], and lower host densities are almost always associated with

lower levels of disease [27]. Indeed the ‘‘dilution effect’’ caused by

increased distances between pairs of hosts has been suggested to

underlie the success of crop mixtures [28] and intercropping [29],

although other more complex mechanisms are thought to be

involved in both cases [30–33]. However, there are very few

models specfically targeting the effect of host density on disease

spread. Despite work concentrating on how percolation thresholds

can be related to the distance between pairs of nearest neighbours

[34,35], tests of that theory have largely been restricted to small-

scale model systems [36], and application to real pathosystems

remains in its infancy [37,38]. Percolation is also only strictly

relevant to systems where spread is restricted to nearest neighbour

transmission, although this does map well to the soil-borne

pathogens that are the focus of that work. Other work has

concentrated on how host density affects invasion thresholds

[39,40], but does not provide a clear prescription for how to

optimise host densities when disease is able to invade. While there

have also been studies showing how the landscape-scale dynamics

of disease are conditioned on the configuration and availability of

patches of suitable habitat [41], or fields planted with susceptible

varieties [42], that work offers little at scales relevant to individual

farmers or growers.

Roguing is commonly used for systemic diseases of high-value or

perennial crops [43], particularly when labour is cheap compared

with the cost of chemicals [44], or for pathogens which cannot be

effectively controlled by chemical means [18,19]. Viral pathogens

for which roguing is practised include cassava mosaic [45], bunchy

top of banana [46], cocao swollen shoot [47,48], citrus tristeza

[49], plum pox [50] and sweet potato chlorotic stunt [51],

although roguing is also used for bacterial pathogens (e.g. almond

leaf scorch, caused by Xylella fastidiosa [52]), and for fungal

diseases (e.g. lettuce drop, caused by Sclerotinia minor [53]). The

only constraint is that pathogens must cause symptoms that can be

detected, either by visual inspection or by diagnostic testing.

Roguing has been included in non-spatial mathematical models

for a number of years [1,2,54,55], and more recent work has

embedded control by roguing in spatial models of pathogen spread

[10,56–58], although realistic parameterisation of pathogen

dispersal is less common [6–8]. Typically these later models have

also considered culling, in which all hosts within a particular

distance of a symptomatic focal host are removed at the time of

control. Some of these models [57,58] have explicitly included

economics, although the focus has been the cost of treatment (i.e.

the cost of removal of diseased host plants). For perennial hosts

that are not replanted, however, the cost of detection may, in fact,

be more important, since an individual host can be removed at

most once, but may be examined for symptoms any number of

times. The only model to include detection costs used optimal

control theory to show rigorously how to balance the costs of

detection and control within a fixed budget [59], but the

mathematical complexity of this procedure necessarily restricted

attention to a non-spatial, deterministic model. There are no

examples of a model-based approach that optimises the economic

aspects of roguing including the cost of detection via a model

parameterised to spread data.

We have taken advantage of the availability of experimental

data for model fitting to frame our analyses specifically in terms of

the dynamics and control of BBSC. However, the controls we

examine are widely used, and the techniques we use in our

modelling and fitting are applicable to a large number of

pathosystems. We therefore prefer to think of the BBSC system

as a data-driven case study that provides an opportunity to address

the following more general questions.

1. Can we use a model to describe the spread of a disease even

when its detailed etiology is unknown?

2. Can we parameterise the model using experimental results to

allow us to scale-up and make predictions at agriculturally-

relevant scales?

3. How can the financial benefit of effective cultural control be

balanced against its inherent cost?

Materials and Methods

Bahia bark scaling of citrus
BBSC affects most citrus species and varieties, but is especially

severe on grapefruits [60]. Symptoms appear similar to Citrus

Psorosis A, and include darkening and thickening of the bark

leading to scaling lesions on the trunk and branches, dieback of

young branches, and significant gum extrusion. However leaf

symptoms on inoculated indicator plants, together with histopath-

ological and molecular studies, indicate BBSC is a distinct disease.

The study of Laranjeira et al. [20] resulted in the only published

data focusing on BBSC spread (see Text S1). It demonstrated that

the disease is polyetic and naturally transmitted. The speed of

disease spread and the pattern of dispersal appear consistent with

an insect vector of limited dispersion ability. However the identity

of this putative vector is unclear, as is the identity of the pathogen

itself [21].

BBSC currently remains restricted to two states in the Brazilian

north east, Bahia and Sergipe [21,61]. Since dispersal is thought to

be localised, the principal risk of an epidemic arising elsewhere in

Brazil is likely to occur by transplanting infectious plants.

Introduction of BBSC by inadvertent transplantation is certainly

possible: Santos et al. [62] have described BBSC symptoms in

plants used for budwood in Bahia, Brazil. There is therefore a

need to understand whether and how a spatially-isolated epidemic

could be effectively controlled. This must be done even though our

biological understanding of the epidemiology of BBSC remains

limited.

Author Summary

We consider how mathematical models can be used to
inform the control of plant disease, even when the identity
and biology of the pathogen are not well understood. This
is often the case: control of emerging epidemics is most
likely to have a significant effect when epidemics remain
small, but little may then be known. We analyse data from
an experimental plot concerning spread of Bahia bark
scaling of citrus, an economically-important disease in
north-eastern Brazil, by fitting a mathematical model,
which also accounts for uncertainty, to disease spread. Our
model captures the epidemiological features of the
disease, revealing that transmission is localised and that
disease spreads relatively slowly. We use the model to
investigate fundamental trade-offs underlying cultural
disease control at scales relevant to citrus production.
We show how optimal planting densities can be defined,
which balance slower spread of disease against the profit
that would be lost by growing fewer plants. We also show
how the cost of looking for and removing symptomatically
diseased plants can be balanced against the reduced
disease it leads to. Ours is the first study to consider how a
parameterised mathematical model can be used to design
optimised cultural controls of plant disease.

Modelling Control of Bahia Bark Scaling of Citrus
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Epidemiological model
We use a spatially-explicit, stochastic, compartmental SEIR

model [4] to represent BBSC dynamics at the scale of a

grapefruit grove. Individual host plants are categorised by

disease status: (S)usceptible hosts are uninfected; (E)xposed hosts

are latently infected, and so are neither symptomatic nor

infectious; (I)nfected hosts are both infectious and symptomatic;

and (R)emoved hosts have been removed by control (Fig-

ure 1(a)). The E to I transition occurs at rate r, corresponding to

average latent period 1=r (see also Table S1). Since infectious

hosts are always symptomatic in our model, the average

incubation period is also 1=r. Infected hosts do not appear to

suffer increased mortality due to BBSC infection [20], and so in

the absence of control the rate of transition from the I to R

compartment is fixed at zero. However, if control by roguing is

included in the model, the removal rate is set by how frequently

and efficiently infected plants are detected and removed, with

rounds of detection and removal according to a schedule that is

fixed in advance. Since we work over a twenty year timescale,

similar to the typical productive lifespan of an individual citrus

host [63,64], we do not attempt to model natural death. We also

do not consider replanting of any plants removed by roguing,

since this is not common in the Brazilian citrus industry,

perhaps due to growers’ perception that replanting removed

hosts would lead to a heterogeneous grove that would be more

difficult to cultivate [63].

The rate of infection of susceptible hosts depends on the disease

status of all other hosts in the system. In particular, if host i is

susceptible at time t, then it becomes latently infected (i.e.

transitions to the E compartment) at rate wi , where

wi~b̂b
X
j[VI

K̂K(dji; a): ð1Þ

The summation runs over the set of all (I)nfectious hosts, VI ,

and dji denotes the distance from infectious host j to susceptible

host i. The parameter b̂b sets the rate of infection. Spatial

dependency in spread is controlled by the dispersal kernel,

K̂K(dji; a). Here, noting the constant velocity of the epidemic front

in the experimental grove [65], and following exploratory analyses

that strongly supported the choice, we used the exponential kernel,

normalized in two dimensions

K̂K(d; a)~L(2pa2){1 exp {d=að Þ, ð2Þ

where L is the area of susceptible tissue presented by an individual

host. The factor of L is included since, strictly-speaking, the

underlying normalised dispersal kernel (2pa2){1 exp {d=að Þ is a

probability density function, with dimensions of inverse area,

meaning the observed rate of infection must be calculated by

integration over the area of the recipient plant. Assuming the

kernel is constant over this area reduces the integration to a simple

multiplication, and so leads to Equation (2) above [66,67]. Since

the infection rate wi then depends entirely on the product b̂bL in

Equation (1), we rescale the area of a single host into the infection

rate, setting

b~b̂bL, ð3Þ

K~K̂K=L~(2pa2){1 exp {d=að Þ, ð4Þ

wi~b
X
j[VI

K(dji; a): ð5Þ

Our model fitting then estimates the value of b directly, since it

is this product which sets the observed rate of spread of disease in

our model. The mean distance of dispersal is 2a [68]. Since we

model a grove that initially contains immature plants, and guided

by the temporal pattern of disease spread in the experimental

grove, we include a delay, d, to allow young plants to reach

epidemiological maturity [20,21]. This delay prevents the disease

from spreading for the first d units of time, but otherwise does not

affect the dynamics of infection in the model. Including this delay

is therefore equivalent to considering two age classes of tree in the

model: juveniles of age less than d, that cannot become infected or

transmit infection, and adult trees of age greater than d, that are

epidemiologically competent. The inclusion of this extra param-

eter was strongly supported by our model fitting (see Results and

Text S2).

Host topology. The host landscape comprises a central grove

and the adjoining ten rows/columns of the eight neighbouring

groves (Figure 1(c)). The central grove contains 1680 trees,

arranged in 14 rows of 120, at spacing 6 m|4 m. The distance

between adjacent pairs of groves is 12 m. Spacings between

individual trees and between pairs of groves reflect standard

cultivation citrus patterns in Brazil [63]. We focus on the disease

status of trees within the central grove, and although underlying

pathogen dynamics are identical over the entire landscape, only

the central grove is subject to any control. Since we include hosts

in neighbouring groves, our model incorporates both secondary

infection within the central grove, and infection due to the

surrounding groves becoming infected and then re-exporting

inoculum into the central grove (i.e. primary infection from the

point of view of the target). This force of primary infection on the

central grove varies over time, as the density of infection in

neighbouring groves changes.

Initial infection. Initial infection is assumed to occur via

transplantation into the central grove, planting one or more

immature infected plants at t~0 at random positions. These are

set to be in the exposed compartment in the model and so are

neither symptomatic nor infectious initially. We denote the

percentage of exposed plants that are introduced at t~0 by E0,

and we allow this quantity to vary, corresponding to a measure of

how carefully new plantings are inspected for suspected symptoms

of the disease.

Parameter estimation from experimental data
Data from the experiment of Laranjeira et al. [20] were used to

fit the model. These data consist of successive snapshots over time,

tracking the disease status of each host in a small experimental

grove. This grove contained 240 grapefruit (Citrus paradisi Macf.)

plants in 16 rows of 15. Immature plants were planted at regular

2 m|2 m spacing at the start of the experiment, at a closest

distance of 5 m from twenty-five BBSC symptomatic adult

grapefruit plants arranged in a rectangular lattice at separation

6 m|4 m (see Figure 2a). Disease progress was assessed by

detailed visual inspection at three monthly intervals for the first

five years of the experiment, followed by additional more irregular

surveys for two years thereafter. The data consist of the visible

Modelling Control of Bahia Bark Scaling of Citrus
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disease status of each grapefruit plant in the experimental grove at

each survey time; i.e. a series of maps showing which hosts were

susceptible and which were (visibly) infected on each survey.

However, since surveys were separated by at least three months,

and because the S?E transition is not visible, exact transition

times of individual plants are unknown. We therefore fitted the

model in Equations 4 and 5 using Markov chain Monte Carlo with

data augmentation to estimate the model parameters of interest

(i.e. a, b, r and d) [22,69], treating the unobserved times as

additional nuisance parameters to be estimated. Posterior distri-

butions for the epidemiological parameters could then be obtained

post hoc by marginalization. Further details of the fitting

methodology and expressions for likelihood functions are given

in the Text S2.

Simulating disease progress without control
One thousand independent simulations of the model were

performed to assess how BBSC would spread in a typical grove

(i.e. 1680 plants at 6 m|4 m spacing) when disease control is not

attempted. We (arbitrarily) took E0~1%, and simulated progres-

sion over 20 years, a notional productive lifespan of a citrus grove

[63,64]. Parameter values used in each simulation were drawn

randomly from the joint posterior distribution for a,b,r and d as

obtained in estimation. The model was simulated using the

Gillespie algorithm [70] (see Text S3 for details).

The number of plants in the central grove that are susceptible at

time t is S(t), and the number of plants in the exposed

compartment is E(t). We define the number of asymptomatic

plants at time t as A(t)~S(t)zE(t). This corresponds to the

number of productive (i.e. fruit-bearing) plants at any time. We

consider the final number of asymptomatic plants after twenty

years, A(20), as a simple composite measure of disease spread,

corresponding to the productive trees that remain after accounting

for the final size of the epidemic over a 20 year period, and we

examined the response of this to values of E0 ranging from 0.06%

to 2%, i.e. from 1 to 34 initially exposed trees within the central

Figure 1. The underlying model and typical results without control. (a) The compartmental structure of the (S)usceptible, (E)xposed,
(I)nfected, (R)emoved model. (b) Spread of disease in a typical grove when there is no control, showing the number of asymptomatic plants within
the central grove (A(t)~S(t)zE(t)) as a function of time, t, starting with 1% of hosts (i.e. 17 plants) exposed to the pathogen at t~0, and sampling
parameters (a,b,r,d) randomly on each run independently from the joint posterior parameter distribution obtained in model fitting. The density of
shading shows the distribution of A(t) at each value of t (1000 independent simulations). Breaks between different colours are at the
5th,10th,20th,30th,40th,60th,70th,80th,90th and 95th percentiles, with the 50th percentile marked by the black curve. (c) Snapshots of disease spread from
the single realisation shown by the red curve in Figure 1(b); green corresponds to healthy trees (S), blue to trees that have been infected but are not
yet infectious (E), and red to trees that are able to infect other trees (I). Since there is no control, no trees enter the (R)emoved compartment.
doi:10.1371/journal.pcbi.1003753.g001

Modelling Control of Bahia Bark Scaling of Citrus
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grove. We again used 1000 independent simulations for each

initial condition we considered, as we did for each set of

parameters in each of the scenarios described below.

Planting density
To test the effect of host density on disease dynamics, the within-

row and between-row spacing of trees were altered, while

constraining the total number of trees in the central grove to

remain fixed at 1680. The ratio of horizontal to vertical separation

was held fixed at 3 : 2 throughout. Again we focused on the final

number of asymptomatic plants (A(20)) in a grove with E0~1%,

and considered planting densities from 50 to 500 plants per hectare.

While this approach illustrates the effect of inter-host distance

on disease spread, it is an oversimplification, since fixing the

number of trees at different planting densities corresponds to

groves with different areas. To examine the trade-off between

disease prevention and productivity we therefore considered the

density of asymptomatic trees at t~20 years in the central grove as

a function of host density, again for E0~1%.

Roguing
We modelled a programme of scouting for disease symptoms

and roguing detected infected plants. This was included in the

model by simulating the examination of every surviving plant in

the central grove every D units of time, and independently

detecting symptomatic (i.e. class I) plants with probability p. Any

detected plants were immediately removed. We considered

roguing intervals, D, between 7 days and 2 years, and took the

Figure 2. Goodness of fit. (a) The experimental grove. The red circles correspond to infected mature plants used as initial sources of inoculum, and
the green circles correspond to the juvenile plants that were planted at t~0 and that were available to become infected throughout the experiment
(the density of shading shows the time at which symptoms emerged on each plant). The mature plants were at 6 m|4 m spacing; the immature
plants at 2 m|2 m spacing; the closest distance between the two groups of plants was 5 m. (b) Comparing temporal spread of disease in the
experiment with the results from an ensemble of simulation runs: the simulated distribution of the number of symptomatic plants at each time is
shown by the density of red shading; the experimental data by blue dots. (c) Comparing spatial spread of disease in the experiment with the results
from an ensemble of simulations: the density of blue shading shows the proportion of each row that was symptomatic by any particular time in the
experiment; the red horizontal bars summarise the results of simulations. The median time at which the 4th and 11th plants in each row became
symptomatic is shown by the end points of each red bar, and the red dot shows the median time at which the 8th plant became symptomatic. All
times from simulations were rounded up to the next date of sampling in the actual experiment to allow fair comparison with the discrete times of
sampling used in the experimental protocol.
doi:10.1371/journal.pcbi.1003753.g002
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PLOS Computational Biology | www.ploscompbiol.org 5 August 2014 | Volume 10 | Issue 8 | e1003753



probability of detection on a round of scouting to be p~0:6,

supported by data from Belasque et al. [71]. Again we assessed the

efficacy of control by examining the value of A(20), the number of

productive trees in the central grove after twenty years.

We considered the responses of A(20) to the roguing interval (D)

with fixed E0~4%, and to E0 with fixed D~12 months. We also

considered the response of the median value of A(20) and of the

probability of eradicating the pathogen within twenty years as

both D and E0 were varied simultaneously. Since the default

detection probability p~0:6 is an estimate, we also considered the

sensitivity of our results to this choice, by considering the response

of the median value of A(20) as D and p were simultaneously

varied.

Optimising roguing. As the roguing interval (D) becomes

shorter, control improves, and so the yield of the grove increases.

However, since scouting then happens more frequently, more

plants would need to be examined over the entire lifetime of the

grove. The increased number reflects the increased frequency of

visits, but also increased numbers of healthy plants associated with

improved control. We therefore examined the trade-off between

improved yield and additional detection costs by searching for the

roguing interval that maximises a measure of the overall

profitability of the central grove.

Assuming yearly harvesting from all adult trees aged three years

or older at the end of each year [72], the cumulative number of

trees that would be harvested (the ‘‘(Y)ield’’) over our 20 year time

scale is given by

Y~
X20

t~3

(S(t)zE(t))~
X20

t~3

A(t) ð6Þ

where S(t) and E(t) are the numbers of susceptible and exposed

plants within the central grove at time t, and (as before) the sum

A(t)~S(t)zE(t) is the total number of productive plants. If the

roguing interval is D (years), the number of rounds of scouting that

occur over the twenty year period is T~t20=Ds. Since removal is

immediate and because removed trees do not need to be

examined, the total number of plants that are examined

(‘‘(V)isited’’) is then

V~
XT

n~0

A(nD)zI(nD)ð ÞzE, ð7Þ

where

E~
20

D
{T

� �
| A(TD)zI(TD)ð Þ ð8Þ

is a correction factor to account for whether or not the roguing

interval exactly divides 20 years. If the ratio of the cost of a single

examination of a tree for disease symptoms relative to the net

profit from the sale price of the fruit from a tree in a single year

after cultivation costs have been accounted for is s, then the profit

over the lifetime of the grove will be proportional to P, given by

P~Y{sV : ð9Þ

Although a number of factors are omitted from this definition of

profitability, including the initial cost of planting the trees,

economic discounting, the potential increase in productivity as

trees age and so produce more fruit, and the cost of removing

diseased trees, we use P as a simple proxy for the profitability of

the central grove.

We first examined the response of Y and V to the roguing

interval, D, with E0~4%. We then examined the profit, P, as a

function of D, for a range of relative costs of surveying, s. There

was an optimal roguing interval, in the sense of a well-defined

value of D that maximises P, for all values of s. We therefore

further examined the response of this maximum profit, and the

optimum roguing interval at which it was attained, to the value

of s, for different levels of initial infection, E0.

Results

Epidemiological parameters for the experimental data
Goodness of fit. Goodness of fit was tested by simulating the

model [73] 1000 times on a system with the same topology and

initial conditions as in the experiment, with model parameters a,

b, r, and d sampled from the estimated joint posterior

distribution independently for each simulation. Experimental

data for disease progress over time (Figure 2(b)) fell consistently

within the range (90% credible interval) of the predicted epidemic

trajectories. The temporal evolution of the spatial pattern of

disease is summarised (Figure 2(c)) by plotting the proportion of

symptomatic trees for each row at each of the discrete survey

times. The observed spatial pattern (blue shading) is in good

agreement with the pattern from the simulation runs (red). The

alternative model without the delay d to allow the plants to reach

epidemiological maturity was a very poor fit to both the temporal

and spatial aspects of the experimental data, and so the inclusion

of this extra parameter in our model was judged to be

appropriate (data not shown).

Estimates of epidemiological parameters. The dispersal

scale parameter, a, was estimated to have median 2:51 m, with

95% credible interval ½1:96,3:21� m. Our estimate of the median

average dispersal distance of BBSC is therefore 2|2:51 m&5 m.

The 95% interval for the rate of infection, b, was

½2:79,7:31� m2month{1, with median b~4:42 m2month{1.

Since the dispersal kernel at distance d is (2pa2){1 exp {d=að Þ
(Equation 4), the average force of infection on a single susceptible

plant in the default typical grapefruit grove from a neighbouring

single infected plant in the same column is 0:0227 month{1. This

corresponds to an average time until infection of about 3:5 years.

Of course this estimate does not account for the fact that a single

infected has more than one neighbour, that there is more than one

route of infection apart from nearest neighbour spread, and that

there will almost always be more than one infectious plant.

Nevertheless, it does indicate that the progression of BBSC in the

typical citrus grove we consider is likely to be relatively slow.

The 95% credible interval for the rate of emergence of

symptoms, r, was ½0:135,0:235� month{1, with median

0:170 month{1. This corresponds to an average incubation

period of 1=0:170&6 months. Since symptomatic plants are

infectious in our model, this also corresponds to our estimate of the

pathogen’s latent period. The delay before the pathogen could

spread, d, had 95% interval ½17:9,25:4� month, and median

22:7 month.

Pairwise posterior distributions (Figure 3) reveal a strong

negative correlation between b and r. This was expected: if hosts

become infectious more quickly, the rate of infection does not need

to be so large to lead to the same amount of disease spread. There

were also smaller correlations between a and b and a and r.

However, since we sample from the joint posterior distribution of

all four parameters on each run of the model, we account for any

Modelling Control of Bahia Bark Scaling of Citrus
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effect of correlations between those pairs of parameters that are

associated.

Disease progress without control
Although the disease initially spreads rather slowly, almost all

plants within a typical grove are expected to become symptomatic

within 20 years when the initial level of infection E0~1%
(Figure 1(b)). On average 50% of plants become symptomatic

within approximately the first 10 years. Spatial snapshots from an

arbitrarily chosen run of the model (Figure 1(c)) indicate that

disease spread is very localised, with infection apparently being

transmitted largely (but not exclusively) between neighbouring

pairs of plants. It also appears to be rather difficult for the

pathogen to escape the central grove and to infect plants in the

surrounding groves, although this does happen occasionally.

Snapshots from other runs indicate that these aspects of BBSC

dynamics are general for E0~1%; spread is localised with separate

foci of infection that grow and coalesce over time, and spread is

also largely restricted to the central grove, at least for the first 5 to

10 years. Varying the initial level of infection indicates the final

number of productive (i.e. asymptomatic) plants at t~20 years,

A(20), is highly dependent on E0 (Figure 4(a)), at least for low

values of E0. However, since A(20) decreases sharply with the

amount of inoculum that is initially present, effectively the

whole of the central grove becomes infected by t~20 years for

E0w1%.

Optimising the planting density
The value of A(20) depends strongly on the planting density

(Figure 4(b)), with low host density leading to very little spread and

so high values of A(20) (again with E0~1%). However at more

realistic planting densities the spread is much more devastating.

Figure 3. Posterior distributions of parameters. (a)-(f) Pairwise joint posterior distributions for the scale of dispersal, a; the rate of infection, b;
the rate of emergence of infectivity, r; and the delay for plants to reach epidemiological maturity, d. These estimates were obtained by fitting to the

experimental data via MCMC with data augmentation. 95% credible intervals: a[½1:96,3:21� m, b[½2:79,7:31� m2month{1 , r[½0:135,0:235� month{1

and d[½17:9,25:4� month.
doi:10.1371/journal.pcbi.1003753.g003
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On average only &3% of plants escape (visible) disease by t~20

years at the density of the typical grove (
100

6
|

100

4
&420 plants

per hectare).

This behaviour leads to a disease-driven trade-off in the number

of productive plants per hectare. Low planting density can give

excellent disease control, with very high values of A(20), but of

course also implies fewer plants per hectare. The optimum density

of productive plants is therefore recovered at an intermediate host

spacing: for E0~1%, this was at a planting density of around 200

plants per hectare, with A(20)&130 per hectare (Figure 4(c)). This

qualitative result is robust to the initial level of infection, and there

was an optimum planting density for all values of E0 we

considered. However both the optimal planting density, and

A(20) per hectare at this planting density, decreased as the initial

level of infection was increased (Figure 4(d)), although these

responses begin to flatten off for E0w&1%.

We also considered the response of the yield (cf. Equation 6) to

the planting density. Again for a given level of initial infection, a

planting density that leads to an optimum yield per hectare can be

defined (Figure 4(e)), although the density that optimises yield

when E0~1% (&300 plants per hectare) is larger than that

required to maximise the value of A(20) (&200 plants per hectare,

as described above). The response was also differently shaped, with

the yield per hectare remaining at a non-zero value for even very

large planting densities (compare 4(c) with 4(e)). This is because

even at high densities the epidemic does not infect the entire

central grove within the first few years of the epidemic, and so the

Figure 4. Initial infection and planting density. (a) A(20), the number of asymptomatic plants (out of a total of 1680 plants) after twenty years,
as a function of the percentage of trees that are infected initially, E0. (b) A(20) as a function of the density of hosts, when E0 is held fixed at 1%. (c) As
Figure 4(b), but showing A(20) per hectare. (d) The maximum A(20) per hectare (the inset shows the planting density at which this optimum is
attained) for a range of values of E0. (e) The yield per hectare as a function of the density of hosts, when E0 is held fixed at 1%. The inset shows the
response of the yield before applying the normalisation by area (i.e. the inset is analogous to (b)). (f) The maximum yield per hectare (the inset shows
the planting density at which this optimum value is obtained) for a range of values of E0 . The black symbols on the x-axis of each graph mark default
values that are invariant in other scans (i.e. Figures 4(b), 4(c) and 4(e) have E0 fixed at 1%; Figure 4(a) shows results for &420 trees per hectare
(6 m|4 m)).
doi:10.1371/journal.pcbi.1003753.g004
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yield is then non-zero (see also the inset to Figure 4(e), which

shows the yield before normalisation of to fixed grove area).

However, the response of the optimum planting density required

to optimise yield per hectare for different values of the initial level

of infection, and the response of the optimum yield per hectare

itself at optimum planting density to the initial level of infection

both follow a similar pattern to the responses for A(20) (compare

Figure 4(d) and Figure 4(f)).

Roguing and eradication
Even at relatively high initial levels of infection, E0, roguing can

lead to excellent disease control (Figure 5(a)). At E0~4% (a level

at which every plant within the central grove would become

infected without control within 20 years), even the rather long

roguing interval D~2 years would save approximately 20% of

plants from visible symptoms at t~20 years. As D is shortened,

A(20) of course increases. Values of Dv6 months lead to high

levels of disease control (e.g. A(20)w&90%), and even D~12
gives A(20)&60%{70%. This response is comparatively robust

to the initial level of infection (Figure 5(b)): although A(20) does

decrease as E0 is increased (for fixed D~1 years), it does so only

relatively slowly.

The value of A(20) in fact always depends on D and E0 in this

broad fashion (Figure 5(c)), decreasing as either parameter is

increased. For short roguing intervals, however, A(20) was

relatively irresponsive to E0, and indeed there was a large set of

(D,E0) pairs for which excellent control was achieved. This was

despite the more restricted range of pairs of these parameters for

which the pathogen was reliably eradicated from both the central

and the surrounding groves (Figure 5(d)).

We also examined the response of the median value of A(20) to

changes in the roguing interval, D, and the probabilty of detection,

p (Figure 5(e)). Unsurprisingly, the impact of the epidemic is

increased as D is increased or p is decreased. In fact the shape of

the contours of constant A(20) can be explained by a simple

calculation. If the other epidemiological parameters are fixed, the

efficacy of roguing is set by the effective infectious period of the

average host. This is the time for which the host is infectious, i.e.

the time between the emergence of infectivity after the latent

period has passed and later removal of the host by roguing. If the

probability of detection is p, then the number of surveys required

to detect a host after the emergence of symptoms upon it is a

geometric random variable, with average 1=p. A particular

symptomatic plant could have become infectious at any time

between the final round of surveying when it was asymptomatic/

uninfectious and subsequent round by which time it was

symptomatic. If we assume the time of the transition between

states E and I in our model is uniformly distributed between

surveys (i.e. if we ignore any knock on effect from the slight

increase in the rate of infection between rounds of detection that

would occur because the number of infected plants increases

between surveys), then the average effective infectious period can

be approximated by

i&
1

p
{

1

2

� �
D: ð10Þ

For the default parameters p~0:6 and D~12 months, the

average infectious period is i&14 months; all (D,p) pairs with this

effective infectious period are shown by the black curve in

Figure 5(e).
Optimising roguing. Both the yield, Y , and the cost of

surveying, V , decrease as the roguing interval, D, increases

(Figure 6(a)). However, as D?0, the cost of surveying increases

without bound, meaning that for relative cost of surveying s~0:1,

the profit (P~Y{sV ) has a well defined maximum at

D&7 months (Figure 6(b)). The qualitative result – i.e. that there

is a roguing interval at which profitability is maximised – holds for

all values of sw0 we considered (Figure 6(c)). Unsurprisingly, as s
increases, the optimal value of D increases, and P decreases,

irrespective of E0 (Figure 6(d)).

Discussion

We used Markov chain Monte Carlo with data augmentation to

fit a spatially-explicit, stochastic, epidemiological model to the

spread of BBSC, and have estimated a number of key

epidemiological parameters. Dispersal was exponential, with

median approximately 5 m (similar to the distance between

neighbouring pairs of plants in a typical citrus grove in Brazil).

Laranjeira et al. [20] suggest that the BBSC pathogen may be

transmitted by an air-borne vector of limited dispersion ability,

and our results are consistent with that possibility. Our estimate of

the dispersal scale, together with a careful review of the dispersion

ability of arthropods detected in the Bahia region, may help to

narrow the set of candidate vectors. Certainly a number of mites

and scale insects are known to transmit viral diseases, both in citrus

[74] and other perennials [75], and similar species would be an

obvious place to begin such a search. Our parameter estimates are

also consistent with an association between a bark wounding insect

and a splash dispersed fungus.

To obtain an adequate fit to the experimental data we included

a delay for plants to reach epidemiological maturity before being

able to spread and/or show symptoms of the disease in our model.

While it is of course rather difficult to give a mechanistic

interpretation of this delay because of the uncertainities surround-

ing BBSC etiology, it could, for example, correspond to a need for

mature tissues for symptom expression, or a bark borer insect

vector that only feeds on mature bark. Irrespective of its

mechanistic basis, our estimate of the delay is approximately 24

months. Laranjeira et al. [20] took the long delay before disease

began to spread in the experiment as indicative of the incubation

period for the pathogen that causes BBSC, which we instead

estimated to be approximately 6 months. Given the very good

statistical support for our model fitting, we contend that our new

interpretation of the experimental results is more plausible,

especially since a two year incubation period is rather long for a

vectored disease.

In a grove at planting density typical of citrus production in

Brazil, we predict that BBSC would spread slowly. This was

unsurprising given the relatively slow rate of disease spread in the

original experiment, in which the density of host plants was

approximately six times higher than found in citrus production.

Nevertheless, and slow spread notwithstanding, we predict BBSC

would easily spread throughout an entire grove within 20 years,

even for modest levels of initial infection (E0&1%). In turn this

indicates that careful sanitation of new plantings for BBSC

symptoms is important. Despite the official programs to foster

propagative plants under screenhouses in Bahia, symptomatic

‘‘mother’’ plants are still found [62], and most nurseries are not

kept under screenhouses [76]. This clearly presents a risk,

particularly since there is no diagnostic test to identify asymptom-

atic infected plants. This compelled us to investigate other types of

control apart from sanitation. We note that, although high BBSC

severity and incidence can be routinely detected in mature

commercial groves in Bahia, the incidence of disease is usually

quite low at the time of first detection (HP Santos-Filho, personal
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communication). The particular range 0vE0v5 we used was

therefore intended to account for the full range of values that may

occur in practice, given groves at different distances from sources

of inoculum and/or with different levels of sanitation before

planting. The influence of the initial level of infection on the

optima we identify indicates that, for practical implementation, it

would be advantageous to perform further experimentation and/

or further data-collection to enable E0 to be more precisely

quantified.

We therefore used our model to examine the effect of host

spacing on disease spread. As the density of hosts was increased, so

did the level of disease, which of course was expected [26]. However

this is particularly unfortunate given recent trends toward higher

planting densities in commercial citrus production in Brazil [77].

We therefore examined the trade-off between host density and

productivity in the presence of disease by considering the density of

plants that escape infection over a 20 year timescale as the host

spacing was altered. We found an optimum planting density, at

which the reduction in productivity due to planting fewer hosts per

hectare was offset by the reduced losses to disease (cf. Figure 3(c)).

Although the exact nature of this optimum depended on the initial

level of infection, optimal densities were typically sufficiently low

that there would be enough space for an intercrop to be established.

This approach is already used in Brazil, where growers sometimes

plant passion fruit or pineapple between rows of citrus. However,

since the intercrop would undoubtedly have its own effect(s) on

pathogen dispersal [32,33], investigating the epidemiological

consequences of intercropping requires more data.

Figure 5. Roguing. (a) A(20) as function of D, the roguing interval, with initial level of infection E0~4%. (b) A(20) as a function of E0 , with D~12
months. (c) The median value of A(20) as a function of E0 and D. (d) The probability the pathogen is eradicated as a function of E0 and D. (e) The
median value of A(20) as a function of D and p, the probability of detecting a symptomatic plant in a single survey, for fixed E0~4%. The black curve

links pairs of values of D and p for which the effective infectious period, i&
1

p
{

1

2

� �
D~14 months (i.e. the value of i for the default pair of values

p~0:6,D~12 months, which is marked with the black dot).
doi:10.1371/journal.pcbi.1003753.g005
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According to our simulation results, roguing, even when

detection is imperfect, can control disease successfully (cf.

Figure 4). Control can be achieved for relatively long roguing

intervals, even for high levels of initial infection. Indeed in our

scans showing the effect of roguing interval on control efficacy we

used a default value of E0~4% (rather than 1% as used in

assessing the effect of host density) in order to obtain a more

meaningful response as the parameters of interest were changed.

This good level of control was possible because of the slow rate of

BBSC spread and its limited dispersal ability. Control by roguing is

also aided by the absence of cryptic infection (i.e. hosts that are

able to infect without showing symptoms). This contrasts with a

number of other pathogens of citrus, for example Xanthomonas
axonopodis, the bacterium that causes citrus canker, for which

there is both significant long-range dispersal [78] and cryptic

infection [6]. Indeed the recent attempt to eradicate citrus canker

from Florida involved removing any host plant within 579.1 m

(1900 ft) of a detected symptomatic focal plant, irrespective of

apparent disease status [79]. However, the epidemiology of BBSC

indicates that a similar approach is not required here, and initial

tests of this type of control strategy indicated that it did not

noticably outperform simple roguing (data not shown).

Control was possible even though roguing only occurred within

the central grove. It did not require the pathogen to be entirely

eradicated from the system, and indeed for high values of E0, the

pathogen was eradicated only rarely (cf. Figure 5(d)), presumably

because there was at least one escape of the pathogen from the

central grove before it was effectively controlled there. This

surprisingly high level of control despite an ever-increasing

external reservoir reflects the low probability of the pathogen

returning to the central grove once it has escaped (cf. Figure 1(c)),

and on the occasions it does return, frequent roguing limits its

impact. Ultimatately this derives again from the limited disperal

ability of the pathogen that causes BBSC. For pathogens capable

of faster and/or long-distance dispersal, synchronisation in control

is acknowledged to be extremely important, since otherwise the

pathogen is able to persist, bulk-up and repeatedly cause

devastating reinvasion from uncontrolled areas that act as refugia

Figure 6. Economics of roguing. (a) Responses of the total yield, Y , and the total number of visits to individual plants, V , (shown in inset) both
over the twenty year nominal lifetime of the grove, to the roguing interval, D. The initial level of infection E0 was 4%. (b) The profit, P~Y{sV , as a
function of D, when the relative cost of surveying, s, is fixed at 0:1, again for E0~4%. The distribution of profit when there is no roguing is shown in
the histogram in the inset. (c) Responses of P to D for different values of s. The black dots denote the roguing interval for which maximum
profitability was attained. In all cases E0~4%. (d) The maximum P, and the value of D at which this maximum profit was attained (inset), for a range
of values of s and for different values of E0 .
doi:10.1371/journal.pcbi.1003753.g006
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[10]. Following common practice in the Brazilian citrus industry,

removed plants were not replaced in our model, which again

facilitated control. Replanting removed trees results in a constant

supply of new susceptible hosts to areas with infection, which

necessarily makes control more difficult.

The efficacy of roguing was characterised by considering i,
the average effective infectious period (Equation 10), and this

quantity was an excellent predictor of the number of plants that

escape disease (cf. Figure 5(e)). Investigating how this result

generalises to pathogens that are harder to control would be an

interesting extension, particularly because the approximation

used in the calculation of i is most accurate for pathogens that

spread slowly. We note that, although simple, the principle

underlying the calculation of i has been reported incorrectly in

previous studies that used non-spatial, compartmental models.

Parameter values given in Table 2 of Jeger et al. [3] (see also

Madden et al. [80]) indicate that if roguing is performed

monthly then the equivalent removal rate would be

1=30&0:033 day{1. This assumes that symptoms and infectiv-

ity are developed immediately after rounds of surveys, and so

that the average infectious period is &30 days. Given the more

accurate estimate of 15 days, the rate of removal for monthly

surveys with perfect detection should in fact be

1=15&0:067 day{1.

By introducing a simple measure of the profitability of a grove,

we demonstrated the trade-off between the cost of detection and

the benefits of control (cf. Figure 6). An optimum roguing

frequency can be determined, balancing the increased cost of

roguing more frequently against the improved control it leads to,

although this optimum is conditioned on the initial level of disease

(cf. Figure 6(d)) and the cost of examining a plant for disease

symptoms relative to the difference between the sale price of the

fruit from a single year’s harvest and the yearly cost of cultivating a

tree.

For simplicity and ease of presentation, our definition of the

cost of control focused exclusively on the cost of detection and

did not include the cost of removal. However, because an

individual plant would potentially be surveyed many times, but

can be removed at most once, we believe this is a reasonable

simplification. While our methodology could readily be extend-

ed to include more complex economics (e.g. removal costs, cost

of initial grove establishment, increased yield from older plants),

or to allow for growers potentially ceasing cultivation if the net

profit from a particular grove fell below zero despite the yield

that would subsequently accrue, the broad result would certainly

be robust to these changes. A more interesting extension would

be control strategies that change over time. An example of this is

a roguing interval that depends on the current (observed)

prevalence of infection, and so that could cause surveying to

slow down or even stop once the disease was judged to be under

control. This differs from the implementation considered here,

in which the cost of detection for low levels of initial infection

and short roguing intervals may be overstated: any grower who

surveyed weekly but did not find disease for a number of years

would doubtless reduce the frequency of surveying or even stop

entirely. Investigating this type of adaptive strategy, together

with the consequential risk of failure that derives from having to

predict whether the disease has actually been eradicated or has

merely not been found recently, will form the basis of our future

work in this area.

A number of previous models have used deterministic mean

field representations of cultural control [1,2,54,55,81]. More

recently stochastic, spatially-explicit models have predominated

[10,56–58], although typically these models are not fitted to data

(a series of studies of the failed eradication of citrus canker in

Florida are the exception [6–8]). What previous models lack,

however, is a treatment of the economic aspects of control, and

the trade-offs and optima to which this can lead. While significant

progress in examining this type of trade-off has been made using

optimal control theory [59,82,83], the complexity of the

associated mathematics has necessarily reverted attention to

deterministic, non-spatial models. Using a spatial, stochastic

model parameterised with real data to balance the benefits of

effective disease control against its costs is the novel aspect of our

work. In addition to the additional insight into BBSC epidemi-

ology obtained by our model fitting, providing a ‘‘real world’’

example showing how a mathematical model can be used to

optimise and test both the epidemiological and economic aspects

of control strategies for a plant disease is therefore the key

contribution of this paper.
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da pinta verde: definhamento precoce do maracujazeiro. Comunicado Técnico
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