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Introduction. The microarray datasets from the MicroArray Quality Control (MAQC) project have enabled the assessment of the
precision, comparability of microarrays, and other various microarray analysis methods. However, to date no studies that we are
aware of have reported the performance of missing value imputation schemes on the MAQC datasets. In this study, we use the
MAQC Affymetrix datasets to evaluate several imputation procedures in Affymetrix microarrays. Results. We evaluated several
cutting edge imputation procedures and compared them using different error measures. We randomly deleted 5% and 10% of the
data and imputed the missing values using imputation tests. We performed 1000 simulations and averaged the results. The results
for both 5% and 10% deletion are similar. Among the imputation methods, we observe the local least squares method with 𝑘 = 4 is
most accurate under the error measures considered. The k-nearest neighbor method with 𝑘 = 1 has the highest error rate among
imputationmethods and error measures.Conclusions.We conclude for imputingmissing values in Affymetrix microarray datasets,
using the MAS 5.0 preprocessing scheme, the local least squares method with 𝑘 = 4 has the best overall performance and k-nearest
neighbor method with 𝑘 = 1 has the worst overall performance. These results hold true for both 5% and 10% missing values.

1. Introduction

In microarray experiments, randomly missing values may
occur due to scratches on the chip, spotting errors, dust, or
hybridization errors. Other nonrandom missing values may
be biological in nature, for example, probes with low intensity
values or intensity values that may exceed a readable thresh-
old. These missing values will create incomplete gene expres-
sion matrices where the rows refer to genes and the columns
refer to samples. These incomplete expression matrices will
make it difficult for researchers to perform downstream
analyses such as differential expression inference, clustering
or dimension reductionmethods (e.g., principal components
analysis), or multidimensional scaling. Hence, it is critical to
understand the nature of the missing values and to choose an
accurate method to impute the missing values.

There have been several methods put forth to impute
missing data in microarray experiments. In one of the first
papers related to microarrays, Troyanskaya et al. [1] examine
several methods of imputing missing data and ultimately
suggest a 𝑘-nearest neighbors approach. Researchers also
explored applying previously developed schemes formicroar-
rays such as the nonlinear iterative partial least squares
(NIPALS) as discussed by Wold [2]. A Bayesian approach for
missing data in gene expression microarrays is provided by
Oba et al. [3]. Other approaches such as that of Bø et al. [4]
suggest using least squares methods to estimate the missing
values in microarray data, while Kim et al. [5] suggest using
a local least squares imputation. A Gaussian mixture method
for imputing missing data is proposed by Ouyang et al. [6].

While many of these approaches can be generally applied
to different types of gene expression arrays, we will focus
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on applying these methods to Affymetrix gene expression
arrays, one of the most popular arrays in scientific research.
Naturally, when proposing a new imputation scheme for
expression arrays, it is necessary to compare the newmethod
against existing methods. Several excellent papers have com-
pared missing data procedures on high throughput data
platforms such as in two-dimensional gel electrophoresis as
in Miecznikowski et al.’s works [7] or gene expression arrays
[8–10]. Before studying missing data imputation schemes in
Affymetrix gene expression arrays, it is reasonable to first
remove any existing missing values. In this way, we ensure
that any subsequent missing values have known true values.
A detection call algorithm is used to filter and removemissing
expression values based on absent/present calls [11]. Subse-
quently, a preprocessing scheme is then employed. There are
numerous tasks to perform in preprocessing Affymetrix
arrays, including background adjustment, normalization,
and summarization. A good overview of the methods avail-
able for preprocessing is provided by Gentleman et al. [12].
For our analysis, the detection call employs MAS 5.0 [13] to
obtain expression values; thus, we also use the MAS 5.0 suite
of functions as our preprocessing method.

For our analysis, we focus on the microarray quality con-
trol (MAQC) datasets (Accession no. GSE5350), where the
datasets have been specifically designed to address the points
of strength and weakness of various microarray analysis
methods.TheMAQC datasets were designed by the US Food
and Drug Administration to provide quality control (QC)
tools to the microarray community to avoid procedural fail-
ures. The project aimed to develop guidelines for microarray
data analysis by providing the public with large reference
datasets along with readily accessible reference ribonucleic
acid (RNA) samples. Another purpose of this project was to
establish QC metrics and thresholds for objectively assessing
the performance achievable by various microarray platforms.
These datasets were designed to evaluate the advantages and
disadvantages of various data analysis methods.

The initial results from theMAQCproject were published
in Shi’s work [14] and later in Chen et al.’s work [15] and
Shi et al.’s work [16]. Specifically, the MAQC experimental
design for Affymetrix gene expression HG-U133 Plus 2.0
GeneChip includes 6 different test sites, 4 pools per site, and
5 replicates per site, for a total of 120 arrays (see Section 2).
This rich dataset provides an ideal setting for evaluating
imputation methods on Affymetrix expression arrays. While
this dataset has beenmined to determine inter-intra platform
reproducibility ofmeasurements, to our knowledge, none has
studied imputation methods on this dataset.

The MAQC dataset hybridizes two RNA sample types—
Universal Human Reference RNA (UHRR) from Stratagene
and a Human Brain Reference RNA (HBRR) from Ambion.
These 2 reference samples and varyingmixtures of these sam-
ples constitute the 4 different pools included in the MAQC
dataset. By using various mixtures of UHRR and HBRR, this
dataset is designed to study technical variations present in
this technology. By technical variations, we are referring to
the variability between preparations and labeling of sample,
variability between hybridization of the same sample to dif-
ferent arrays, testing site variability, and variability between

the signal on replicate features of the same array. Meanwhile,
biological variability refers to variability between individuals
in population and is independent of the microarray process
itself. By theMAQCdataset being designed to study technical
variation, we can examine the accuracy of the imputation
procedures without the confounding feature of biological
variability. Other than MAQC datasets, similar technical
datasets have been used to evaluate different analysismethods
specific to Affymetrix microarrays, for example, methods for
identifying differentially expressed genes [17–19].

In summary, our analysis examines cutting edge imputa-
tion schemes on an Affymetrix technical dataset with min-
imal biological variation. Section 2 discusses the MAQC
dataset and the proposed imputation schemes. Meanwhile,
Section 3 describes the results from applying the imputation
methods for addressing missingness in the MAQC datasets.
Finally, we conclude our paper with a discussion and conclu-
sion in Sections 4 and 5.

2. Materials and Methods

2.1. Datasets. TheMAQC experiments and datasets are fully
described by Shi [14]. The MAQC dataset hybridizes 2 RNA
samples a Universal Human Reference RNA (UHRR) from
Stratagene and a Human Brain Reference RNA (HBRR) from
Ambion. From these 2 samples, 4 pools are created, that is, the
2 reference RNA samples as well as 2 mixtures of the original
samples: Pool A, 100% UHRR; Pool B, 100% HBRR; Pool C,
75%UHRR and 25%HBRR; and Pool D, 25%UHRR and 75%
HBRR. Both Pool A and Pool B are commercially available
and biologically distinct where we expect a large number of
differentially expressed genes between Pool A and Pool B.

There are 6 different test sites where each test site assayed
the 4 pools with 5 replicates per pool. Thus, for each test site
there are a total of 20 arrays and thus a total of 120 arrays
over the 6 sites. The data is examined separately for each
pool (4) and each site (6) separately yielding 24 “site and pool
datasets.”

2.2.Missing Values andDetection Call Algorithm. UsingMAS
5.0, a detection call algorithm is used to flag the missing
values [13]. The detection call determines if the transcript of
a gene is present or absent in the sample. For every gene, the
microarray chip has probes that perfectly match a segment
of the gene sequence (PM probes) and probes that contain
a single mismatched nucleotide in the center of the perfect
match probe (MM probes). The difference in the intensity of
the perfect and mismatch probes is used to make detection
calls.

The detection call algorithm is further summarized by
Mei et al. [11]. For each genetic transcript, there is a probe
set with 11 to 20 probe pairs where a probe pair consists of
a PM probe and MM probe. In short, discrimination scores
are calculated for each probe set from the raw intensity data
for the probe pairs in the probe set. For each probe pair, the
ratio of the sum and difference of the PM and MM probes
gives the discrimination score for that probe pair. This score
is calculated for all the probe pairs in a probe set. The null
hypothesis is that the median discrimination score of a probe
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set is equal to 𝜏, and the alternate hypothesis is that the
median discrimination score is greater than 𝜏, where 𝜏 is
defined as a small nonnegative number which can be changed
by the user to adjust the specificity and sensitivity. One-sided
Wilcoxon rank sum tests are performed for each probe set.
Two significance levels 𝛼

1
and 𝛼

2
, act as the cutoffs for the 𝑃

values for probe set detection calls. A present call is made for
a probe set (transcript) with a 𝑃 value <𝛼

1
, an absent call for

a transcript with 𝑃 value ≥𝛼
2
and a marginally detected call

for a transcript with 𝛼
1
≤ 𝑃 value < 𝛼

2
. We use the MAS 5.0

preset values 0.04, 0.06, and 0.015 for 𝛼
1
, 𝛼
2
, 𝜏, respectively,

to determine if the probe set is present, marginally present, or
absent in the sample.

2.3. Percent Present Algorithm. We use the “mas5calls” func-
tion detailed in Affymetrix [20] from the “affy” package [13]
to make the detection calls. Using this function, we get a
present, marginal, or absent call for each probe set in each
array. For every sample, probe sets were filtered based on
the present calls where probe sets that were present in all 5
replicates of a given pool and a given site were retained for
further analyses. Probe sets that were detected as absent or
marginally present in 1 or more replicates of a sample were
removed. This creates a complete expression matrix for each
site and pool combination.

TheSimpleAffyRpackage hasmethods for quality control
metrics on Affymetrix arrays [21]. One metric is percent
present call which calculates the percentage of present probe
sets in each array. Using this metric, we calculate the percent
present calls for all 120 arrays separately and then average the
percentages over the 5 replicates for each sample and each site.

2.4. Preprocessing Algorithm. We pre-process each complete
expression matrix using MAS 5.0 available in Bioconductor
[22] to obtain expression values for further analyses. The
MAS 5.0 preprocessing was implemented using the R lan-
guage “affy” library [13].

Preprocessing algorithms for Affymetrix gene expression
microarrays are necessary to account for the systematic varia-
tion present in array technology and to summarize the signal
for each gene which is measured via a series of probe sets.
As discussed by Gentleman et al. [12], preprocessing schemes
can be organized into three steps: a background adjustment
step, a normalization step, and a summarization step. In short,
the MAS 5.0 preprocessing algorithm is outlined in the Sta-
tistical Algorithms Description Document [20] and used in
the MAS 5.0 software Affymetrix [20]. The steps in MAS 5.0
involve (1) a weighted nearest neighbor step to estimate and
remove the background signal, (2) a normalization step that
scales all arrays to a baseline array, and (3) a summarization
step using an ideal mismatch, which may be slightly different
than the perfect mismatch probe described earlier.

To compare imputation methods, we randomly remove a
percentage of the probe set expression values from the com-
plete expression matrix and compare the complete dataset
and the dataset(s) with the missing probe sets expression
values estimated via an imputation method. We randomly
remove 5% and 10% of the probe set expression values from

the complete expression matrix with 1000 Monte-Carlo sim-
ulations at each deletion percentage.

2.5. Missing Value Imputation Methods. Similar to the anal-
ysis by Oh et al. [10], we examine the following missing data
analysis methods for the MAQC dataset:

(1) row average (ROW),
(2) 𝑘 nearest neighbors using Euclidean distance or Pear-

son correlation, with 𝑘 = 1 or 5, where 𝑘 is the number
of neighbors in the imputation (KNN),

(3) singular value decomposition (SVD) [1],
(4) least squares adaptive (LSA) [4],
(5) local least squares (LLS), choosing 𝑘 = 1, 3, and 4,

where 𝑘 is the cluster size used for regression [5],
(6) Bayesian principal components analysis (BPCA) [3],

and
(7) noniterative partial least squares (NIPALS) [2].

Note that the row average method (ROW) and 𝑘-nearest
neighbor (KNN) imputation were done using the R com-
puting language with the 𝑖𝑚𝑝𝑢𝑡𝑒 package [23] while LSA
was implemented using the Java language code [24]. In the
ROW method, the average of the values that are present for
that particular probe set is used to replace the missing probe
set expression values. The KNN algorithm classifies objects
based on closest (“nearest”) probe sets. In this algorithm, we
find the 𝑘-nearest neighbors using a suitable distance metric,
and then we impute the missing elements by averaging those
(nonmissing) values of its neighbors. In the KNN method,
there are different types of distance metrics (Pearson correla-
tion, Euclidean, Mahalanobis, and Chebyshev distance) that
can be employed. We chose the Euclidean distance metric as
it has been reported to be more accurate [25].

Singular value decomposition (SVD) reduces the dimen-
sion of the data matrix and uses the global information in
the data matrix to predict the missing values as detailed by
Troyanskaya et al. [1]. Initially, all missing values are replaced
by the row average. With this complete gene matrix, SVD is
used to obtain “eigen genes” which are the orthogonal prin-
cipal components.Then, the nonmissing values are regressed
against the most significant eigen genes, and the regression
function is used to predict themissing values.Using an expec-
tation-maximization algorithm, missing values are estimated
repeatedly until the total change in the expressionmatrix falls
below the empirically determined threshold of 0.01.

The least squares adaptivemethod (LSA) is a combination
of gene-based and array-based estimates of the missing val-
ues. The gene-based estimate is based on the correlation
between genes and the array-based estimate is based on the
correlation between arrays. A weighted average of these two
estimates predicts the missing value. The weight is chosen to
minimize the sum of squared errors for the new estimate.
An adaptive weighting procedure is used which takes into
account the strength of the gene correlation in the gene-based
estimates. The LSA method is fully described by Bø et al.
[4] and was implemented using the LSimpute.jar java code
available at http://www.ii.uib.no/ trondb/imputation/.

http://www.ii.uib.no/_trondb/imputation/
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TheLLSmethod is a neighbor-based approach that selects
neighbors based on their Pearson correlation coefficient.
Multiple regression is performed using 𝑘-nearest neighbors
as described by Kim et al. [5], and the LLS method is imple-
mented using the R package “pcaMethods” [26].Themethod
restricts 𝑘 to be less than the number of replicates/columns. In
our case, with 5 replicates, we chose 𝑘 equal to 1, 3, or 4. Global
based methods, SVD [1] and BPCA [3], were implemented
using the R package pcaMethods [26]. The NIPALS method
is summarized by Wold [2] and is implemented using the
R package “pcaMethods” [26]. Similar to KNN, in order to
implement the NIPALS algorithm, it is necessary for the user
to specify the number of principal components. To evaluate
the different methods of imputation, probe set expression
values were randomly deleted from the complete dataset, and
the summary measures in the next section were compared
across the methods.

2.6. Quantitative Error Evaluation. The complete expression
matrices for each pool and site are such that the rows corre-
spond to probe sets, and the columns correspond to samples.
Similar to Oh et al. [10], we denote this complete expression
matrix as CD = (𝑦

𝑔𝑠
)
𝐺×𝑆

, where𝑦
𝑔𝑠
is the expression intensity

of probe set (roughly speaking “gene”) 𝑔 on sample 𝑠. To
simulate the missing data, we randomly remove 5% or 10%
of the entries in CD. Then given a missing value imputation
scheme, themissing value for probe set𝑔, sample 𝑠, is imputed
as 𝑦
𝑔𝑠
and the imputed dataset is denoted as ID.

To compare the imputed dataset ID with the complete
dataset CD, we employ the following summary statistics:

(1) root mean squared error (RMSE),

RMSE = √
1

no. of missing
∑

{𝑦𝑔𝑠 missing}

(𝑦
𝑔𝑠
− 𝑦
𝑔𝑠
)
2

, (1)

(2) relative estimation error (RAE) [25],

RAE = 1

no. of missing
∑

{𝑦𝑔𝑠 missing}


𝑦
𝑔𝑠
− 𝑦
𝑔𝑠



𝜙 (𝑦
𝑔𝑠
)
, (2)

where

𝜙 (𝑦
𝑔𝑠
) =
{

{

{


𝑦
𝑔𝑠


, if 𝑦𝑔𝑠


> 𝜖,

𝜖, if 𝑦𝑔𝑠

< 𝜖,

(3)

(3) logged RMSE (LRMSE) [8],

LRMSE = √
1

no. of missing
∑

{𝑥𝑔𝑠 missing}

(𝑥
𝑔𝑠
− 𝑥
𝑔𝑠
)
2

, (4)

where 𝑥
𝑔𝑠
= log (𝑦

𝑔𝑠
), and

(4) RAE-L2 [10],

RAE-L2 = √ 1

no. of missing
∑

{𝑦𝑔𝑠 missing}

(𝑦
𝑔𝑠
− 𝑦
𝑔𝑠
)
2

𝑦
𝑔𝑠

. (5)
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Figure 1: Percent present across pools and sites. Each curve shows a
different site, and the 𝑥-axis shows the 4 pools and the 𝑦-axis shows
the mean percentage of present probes on the Affymetrix arrays.
Pool B has the smallest percentage of present probes, while Pool D
has the largest percentage of present probes. Site 4 has the highest
percentage of present probes, while Site 2 has the lowest percentage
of present probes.

See Section 4 for the motivation for using these error mea-
sures to evaluate the imputation methods. To understand the
variability in the imputation procedures, we perform each
missing data simulation 1000 times.

2.7. Ranking the Imputation Methods. To identify the overall
best and worst performing imputation methods (IM), we
rank the IM based on their average performance across the
different error measures, all pools, and all sites. The ranking
procedure is carried out separately for 5% and 10% deletion.

For each simulation, we compute 4 error measures for
each of the 10 imputation methods. Averaging over the 1000
simulations, we get an average error value for each imputation
method for every site and pool combination. For example, for
the metric RMSE, there are 10 values: 1 for each imputation
method at, say, Site 1 and Pool A.

Then, we rank the 10 IM based on each error measure
separately for each site and pool combination. For example,
based on RMSE values, the IM are ranked from the lowest to
highest; the IM with lowest RMSE value is 1 and the IM with
the highest RMSE is 10. The IM each have a rank value for a
given error measure at each site for each of the 4 pools.

For every imputation method, the error measure rank
values are averaged across the 6 sites for each pool; thus we
obtain 4 average rank values, 1 for each pool. Finally, we
average these 4 rank values to obtain a single number that
gives a global ranking to every imputationmethod, reflecting
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Table 1: Summary of imputation methods for 5% and 10% deletion.

Error metric RMSE LRMSE RAE RAEL2 Average
Deletion % 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
BPCA 2.38 2.33 5.5 5.71 5.13 5.46 5.63 5.67 4.66 4.79
KNN1 9.79 9.79 9.88 10 9.83 10 9.79 9.88 9.82 9.92
KNN5 7.83 7.83 9.08 8.88 8.33 8.75 8.42 8.79 8.42 8.56
LLS1 5.17 5.21 4.29 4.25 4.67 4.5 4.38 4.33 4.63 4.57
LLS3 3.83 3.75 2.17 2.25 2.13 2.17 2.17 2.17 2.57 2.58
LLS4 2.79 2.92 2.29 2.92 1.96 1.96 2 2.08 2.26 2.48
LSA 1 1 4.88 4.92 4.33 4.5 4.71 4.71 3.73 3.78
NIPALS 7.25 7.25 7.33 6.96 7.33 7.08 7.33 7.04 7.31 7.08
ROW 6 5.96 1.5 1.5 2 2 1.58 1.46 2.77 2.72
SVD 8.96 8.96 8.29 8.08 8.29 8.17 8.33 8.29 8.47 8.38
Rows correspond to imputation methods and columns correspond to error measures with the last columns showing the average across the error measures.
Each imputation method is ranked based on its average rank performance across all pools and all sites.The rank values for every error measure and imputation
method combination are averaged across the 6 sites and 4 pools as detailed in Section2. Smaller average rank values suggest more accurate imputationmethods.
From the table, we observe that RMSE metric suggests that LSA imputation method has the best performance. With LRMSE and RAEL2 metrics, ROW is the
best imputation method. LLS with 𝑘 = 4 (LLS4) has the best performance when we use the RAE error measure. KNN with 𝑘 = 1 (KNNl) has the highest rank
value for any given error measure; thus, it is the worst performing imputation method. LLS with 𝑘 = 4 (LLS4) has the overall best performance across the
different error measures. These results hold true for both 5% and 10% deletion.
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Figure 2: Average RMSE barplot with error bars. RMSE values are represented on the 𝑦-axis.The 𝑥-axis has the 6 sites (1, 2, 3, 4, 5, and 6) and
10 imputation tests (BPCA, KNN with 𝑘 = 1, 5, LLS with 𝑘 = 1, 3, 4, LSA, NIPALS, ROW, and SVD). Mean (M) depicted by the slashed bar is
the overall mean for individual IM where the RMSE values are averaged across the 4 pools and 6 sites. This figure shows the performance of
the 10 imputation tests using the RMSEmetric with 5% deletion of values. 1000 simulations were performed where each simulation generated
a dataset containing 5% missing values by randomly removing probe set values from the complete expression matrix of probe sets. Missing
values were imputed using the 10 imputation tests. The results are compared using the RMSE metric (see Section 2). The RMSE values are
averaged across the 4 pools. LSA has the best performance as it has the lowest RMSE value for a given site. KNN with 𝑘 = 1 has the highest
RMSE value and has the worst performance for all pools and all sites.
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Figure 3: Average LRMSE barplot with error bars. LRMSE values are represented on the 𝑦-axis. The 𝑥-axis has the 6 sites (1, 2, 3, 4, 5, and 6)
and 10 imputation tests (BPCA, KNN with 𝑘 = 1, 5, LLS with 𝑘 = 1, 3, 4, LSA, NIPALS, ROW, and SVD). Mean (M) depicted by the slashed
bar represents the overall mean for individual IM where the LRMSE values are averaged across the 4 pools and 6 sites. This figure shows
the performance of the 10 imputation tests using the RMSE metric with 5% deletion of values. 1000 simulations were performed where each
simulation generated a dataset containing 5% missing values by randomly removing probe set values from the complete expression matrix
of probe sets. Missing values were imputed using the 10 imputation tests. The results are compared using the LRMSE metric (see Section 2).
The LRMSE values are averaged across the 4 pools. ROW has the best performance as it has the lowest LRMSE value for a given site. KNN
with 𝑘 = 1 has the highest LRMSE value and has the worst performance for all pools and all sites.

its overall performance across different error measures, sites,
and pools for a given deletion percentage.

3. Results

We summarize our findings in two ways: probe set detection
call summaries and errormetrics and rankings for IM.Detec-
tion call results compare sites and pools while IM results
choose the best imputation method based on the error
metrics discussed in Section 2.

3.1. Detection Call Algorithm Results. Across the 120 samples,
as shown in Figure 1 the percent present calls has a minimum
value of 51% and a maximum value of 58.5%. We observe
that Site 4 have the highest mean percent present calls and
Site 2 has the lowest mean percent present calls for probe
sets. In terms of pools, Pool B has the lowest mean percent
present calls for probe sets while Pool D has the highest mean
percent present calls (see Figure 1).We performed an analysis
of variance (ANOVA) to examine the effects of site and pool
on the percentage of present probe sets in amicroarray.The𝑃
values for site and pool are <0.0001 indicating significant site
and pool effects. Nevertheless, the smallest percent present
is 49.77 while the largest percent present is 63.69. These
results indicate that the percentage of present probes is
sensitive to site and pool and could be caused by the wet

lab preparation of each pool and/or slight differences in each
laboratory’s (site) microarray protocols. Regardless of these
subtle differences, we believe that percent present calls are
similar across sites and pools, and hence it is reasonable to
compare the subsequent IM results across the different sites
and pools.

TheAffymetrixHG-U133 chip has 54675 probe sets. After
filtering the absent calls, the number of present probe sets
ranges from 22,900 (Pool B, Site 2) to 27,021 (Pool C, Site 3).
The number of present probe sets for Site 1 is 24,184 (Pool A),
23,557 (Pool B), 25,163 (Pool C), and 25,318 (Pool D). Further
tables and graphs representing the percent present calls and
present probe sets for each pool and site can be found in
Sadasiva Rao et al.’s work [27].

3.2. Imputation Results. The imputation methods are ranked
based on average rank performance as described in Section 2,
and the results are summarized in Table 1. Based on this
ranking, the results are very similar at both 5% and 10%
deletion. RMSEmetric suggests that LSA imputationmethod
has the best performance. With LRMSE and RAEL2 metrics,
ROW is the best imputationmethod.The imputationmethod
LLS with 𝑘 = 4 has the best performance with the RAE
(𝜖 = 0.20) metric.

From Table 1, we observe that KNN with 𝑘 = 1 has the
highest value for any given error measure; thus, it is the worst
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Figure 4: Average RAE barplot with error bars. RAE values are represented on the 𝑦-axis. The 𝑥-axis has the 6 sites (1, 2, 3, 4, 5, and 6)
and 10 imputation tests (BPCA, KNN with 𝑘 = 1, 5, lls with 𝑘 = 1, 3, 4, LSA, NIPALS, ROW, and SVD). Mean (M) depicted by the slashed
bar represents the overall mean for individual IM where the RAE values are averaged across the 4 pools and 6 sites. This figure shows the
performance of the 10 imputation tests using the RAE metric with 5% deletion of values. 1000 simulations were performed where each
simulation generated a dataset containing 5%missing values by randomly removing probe set values from the complete expression matrix of
probe sets. Missing values were imputed using the 10 imputation tests. The results are compared using the RAE metric (see Section 2). The
RAE values are averaged across the 4 pools. LLS with 𝑘 = 4 has the best performance as it has the lowest RAE value for a given site. KNN
with 𝑘 = 1 has the highest RAE value and has the worst performance for all pools and all sites.

performing imputation method across all pools and sites.
LLS with 𝑘 = 4 has the overall best performance across the
different error measures.

Figures 2, 3, 4, and 5 show the performance of different
imputation methods for each error measure for all the pool
and site combinations for 5% deletion. Further supplemental
figures and tables showing the performance of different
imputationmethods on each site and pool asmeasured by the
4 error measures are found in Sadasiva Rao et al.’s work [27].
Results from 5% deletion and 10% deletion show a similar
pattern. As expected the imputed values and variance with
10% missing data are larger than 5% missing data. Site 4 has
the highest values for most of the imputation tests for all the
samples (see Sadasiva Rao et al.’s work [27] for more details).
Ultimately, LLSwith 𝑘 = 4 has the best performancewith 10%
deleted values.

4. Discussion

The MAQC project allows researchers to study a variety of
microarray aspects including comparisons of one-color and
two-color arrays [28], reproducibility [14, 15, 29], removal of
batch effects [30], and determining differentially expressed

genes [31]. From this diverse research, it is clear that
the MAQC projects represent a fertile testing ground for
microarray inspired algorithms and methods. However, to
date, we are not aware of any work examining imputation
methods on the MAQC datasets.

Our conclusion is that LLS with 𝑘 = 4 has the best
performance given our set of error measures. We note that
the optimality of LLS with 𝑘 = 4 is not uniform across
all error measures, sites, and pools. Also, in Figures 2–5, it
is clear that several other imputation methods offer similar
performance to LLS with 𝑘 = 4, for example, LLS with 𝑘 =
1, 3, LSA, and BPCA.These results are similar to those found
by Brock et al. [8] and commented on by Aittokallio [32]
concluding that the top performing imputation algorithms
(LS, LLS, and BPCA) are all highly competitive with each
other, but nomethod is uniformly superior in all analyses. To
that end, Brock et al. [8] develop measures to determine the
appropriate (optimal) imputation method for a given dataset
based on the correlation within the dataset.

We choose a set of cutting edge imputation schemes to
apply in the MAQC datasets. There are numerous applied
references for the imputation schemes including [7–10, 32–
34]. Optimality in the imputation schemes was assessed
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Figure 5: Average RAEL2 barplot with error bars. RAEL2 values are represented on the 𝑦-axis. The 𝑥-axis has the 6 sites (1, 2, 3, 4, 5, and 6)
and 10 imputation tests (BPCA, KNN with 𝑘 = 1, 5, LLS with 𝑘 = 1, 3, 4, LSA, NIPALS, ROW, and SVD). Mean (M) depicted by the slashed
bar represents the overall mean for individual IM where the RAEL2 values are averaged across the 4 pools and 6 sites. This figure shows the
performance of the 10 imputation tests using the RAEL2 metric with 5% deletion of values. 1000 simulations were performed where each
simulation generated a dataset containing 5% missing values by randomly removing probe set values from the complete expression matrix
of probe sets. Missing values were imputed using the 10 imputation tests. The results are compared using the RAEL2 error measure (see
Section 2). The RAEL2 values are averaged across the 4 pools. ROW has the best performance as it has the lowest RAEL2 value for a given
site. KNN with 𝑘 = 1 has the highest RAEL2 value and has the worst performance for all pools and all sites.

via (1) raw score error measures and (2) rank-based error
measures taken across our cohort of error measures. The
error measures chosen (see Secton 2) were designed to assess
(1) errors in raw expression values (RMSE), (2) errors in
the logarithm transformed expression values (LRMSE), (3)
relative errors designed to penalize errors relative to the raw
expression values (RAE), and (4) relative errors designed
to penalize the error relative to the logarithm expression
value (RAEL2). Hence, there are 2 (relative and absolute)
error measures based on raw expression scores and 2 error
measures (relative and absolute) based on the logarithm of
expression values. Because of this balanced design in error
measures between relative and absolute measures and raw
and logarithm transformed data, it is reasonable to compute
the average rank across these error measures to assess the
overall quality of an imputation method (see Table 1). Thus,
these rank-based errormeasures shown in Table 1 summarize
the results in a straightforward manner across sites, pools,
and error measures. Note that we set 𝜖 = 0.20 for the RAE
error method. For future work, our group is interested in
studying the robustness of RAE to the choice of 𝜖. We also
include the raw score error measures to demonstrate the best
imputation methods regardless of the employed set of the
imputation methods (see Figures 2–5).

Our study is designed with the technical MAQC dataset
in mind. Thus, our error measures do not include biological
measures of the type discussed in [10]. These biological mea-
sures are designed to study the clustering and classification
schemes commonly applied to gene expression microarrays.
While our summary error measures are important to com-
pare the imputation schemes, it is not clear how the different
imputation procedures will affect downstream biological
analysis and interpretation. It is outside of the scope of this
paper to address this biological question since the MAQC
experiment does not represent a real biological experiment.

We study imputation methods while using the MAS 5.0
algorithm as the preprocessing method. However, there are
other preprocessing algorithms such as RMA [35–37] and
GCRMA [38] that are routinely used, and these methods
may influence the performance of the imputation scheme.We
highlight several works that extensively study and compare
preprocessing schemes for Affymetrix datasets including [17,
18, 39, 40]. It is of future work to compare imputation
methods across different preprocessing algorithms.

We recognize that the MAQC datasets are not without
criticism. For example, the issue of choosing an overall opti-
mal preprocessing scheme is still an open question [41].
Another serious criticism is provided in [42] with a reply by
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Shi et al. [43]. In that discussion, one of the main concerns
involves technical versus biological variation.This important
issue has arisen when studying other “technical” microarray
datasets [39]. Considering both aspects of this question, if
we use datasets containing biological and technical variation,
that is, datasets designed to answer biological questions, then
there are biases due to the intent of the original datasets
(e.g., biological variation of the species, sample preparation,
procurement of RNA, and hybridization affinities).

5. Conclusions

Missing values in microarray experiments are a common
problemwith effects on downstream analysis. Many variables
such as the biological variability of the dataset, experimental
conditions of the study, percentage of missing values, and
type of downstream analysis performed need to be consid-
ered when choosing an imputation method.

In our work, we use theMAQCdatasets with theMAS 5.0
preprocessing scheme to compare missing data imputation
schemes for Affymetrix datasets.The best andworst perform-
ing imputation schemes remain the same for both 5%and 10%
deletion percentages. We observe that 𝑘-nearest neighbor
method with 𝑘 = 1 has the worst performance among the
imputation schemes across all error measures. Local least
squares (LLS) method with 𝑘 = 4 gives the best performance
for imputing missing values across all error measures for
both 5% and 10% deletion. These conclusions are based on
studying 10 imputation methods with 4 error metrics and
1000 Monte-Carlo simulations.
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