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Background. Gait alterations are hallmarks for the diagnosis and follow-up of patients with Parkinson’s disease (PD). In normal
conditions, age could affect gait dynamics. Although it is known that objective assessment of gait is a valuable tool for diagnosis
and follow-up of patients with PD, only few studies evaluate the effect of aging on the gait pattern of patients with PD. Objective.
,e purpose of this study was to assess differences in gait dynamics between PD patients and healthy subjects and to investigate the
effects of aging on these differences using a low-cost RGB-D depth-sensing camera.Methods. 30 PD patients and 30 age-matched
controls were recruited. Descriptive analysis was used for clinical variables, and Spearman’s rank correlation was used to correlate
age and gait variables. ,e sample was distributed in age groups; then, Mann–Whitney U test was used for comparison of gait
variables between groups. Results. PD patients exhibited prolonged swing (p � 0.002) and stance times (p< 0.001) and lower
speed values (p< 0.001) compared to controls. ,is was consistent in all age groups, except for the one between 76 and 88 years
old, in which the controls were slower and had longer swing and stance times.,ese results were statically significant for the group
from 60 to 66 years. Conclusion. Gait speed, swing, and stance times are useful for differentiating PD patients from controls.
Quantitative gait parameters measured by an RGB-D camera can complement clinical assessment of PD patients. ,e analysis of
these spatiotemporal variables should consider the age of the subject.

1. Introduction

PD is the second most common neurodegenerative disorder
worldwide, and its incidence is highly increasing even
surpassing other neurological diseases such as Alzheimer’s
disease. Primary motor symptoms of PD include bradyki-
nesia, rigidity, postural instability, and tremor [1]. Some of
these symptoms affect the lower limbs and alter gait pattern
of patients.

Spatiotemporal characteristics of gait are recognized as
valuable tools for evaluation and decision-making processes
regarding treatment of several illnesses, such as Parkinson’s

disease (PD), stroke, and multiple sclerosis [2]. Shortened
steps, reduced travel speed, increased support phase, and
reduced swing phase are some of gait changes reported in
PD patients.

Usually, gait is examined via visual assessment (naked
eye) by trained physicians or neurologists. Although this
approach is informative, the results from these observations
are often limited because they depend on the restrictive
consultation time and the experience of the clinician who
performed the assessment [3, 4]. In this context, gait analysis
through naked eye becomes even more complex if we
consider that about 35% of adults over 70 years have gait
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changes [5] including slower and shorter steps [6, 7]. ,is
means that even healthy elderly patients may have gait
changes similar to those found in PD. Little is known about
the relationship between gait and age in patients with PD
[8–10], and most studies compare spatiotemporal gait
variables without considering the age as a possible con-
founder factor.

Technology supporting human motion analysis has
made important advances in the past three decades; how-
ever, despite being useful, the routine applicability and
accessibility of this technology have been limited [11]. Gait
parameters can easily be obtained using three-dimensional
motion analysis cameras, foot switches, body-mounted in-
ertial tracking unit sensors, instrumented walkway systems
(e.g., GAITRite), and accelerometers [3]. ,ese instruments
can provide accurate quantitative data regarding many
variables; however, their routine implementation in clinical
environments requires a high-quality patient preparation,
longer time, expensive equipment, accessibility, and tech-
nical expertise and demands a special place [12–14].

Portable motion sensing devices, such as the Microsoft
Kinect®, are depth cameras originally developed for video
gaming. ,is technology uses infrared light to detect an-
atomical landmark positions in three dimensions, allowing
them to analyze gait and limb movements [15]. ,is device
has been proposed as a solution to the constraints of ob-
jective assessment of gait analysis because of its portability,
low cost, convenience, and simple use in clinical and re-
search laboratories [3]. Several clinical studies have favored
the use of Kinect®, reporting adequate concordance with
motion and gait laboratories on the assessment of healthy
subjects’ identification of steps [16], postural control,
speed, length of step, and gait cycle [13] and the assessment
of movements of upper extremities [17]. However, there is
still a paucity of research regarding potential usefulness of
the Kinect™ system for assessing gait in clinical
populations.

,e aim of this research is to perform a quantitative gait
analysis using a portable movement capture system (Kinect)
to describe the relationship between age and gait variables in
PD patients and to compare gait changes between PD pa-
tients and healthy subjects according to age distribution.

2. Methods

2.1. Patient Selection and Clinical Assessment. ,irty PD
patients and 30 healthy subjects (age-matched) were
recruited for this cohort study. PD diagnosis was made by
the movement disorder specialist at the institution following
the UK Parkinson’s Disease Society Brain Bank diagnostic
criteria [18]. Exclusion criteria considered the absence of any
other neurological disease or severe comorbidity, which may
affect gait, the absence of dementia, and the ability to walk
without aids. All participants were evaluated in a single
session by an expert neurologist who administered theMDS-
UPDRS part III to determine the severity of motor symptom.
,e Dynamic Gait Index (DGI) and the Freezing of Gait
Questionnaire (FOGQ) were also administered by the
neurologist. Classically, patients with greater motor

involvement have higher scores in theMDS-UPDRS part III,
higher scores in FOGQ, and lower scores in DGI. Montreal
Cognitive Assessment (MoCA) test was administered as a
cognitive screening tool. Data on PD characteristics were
also obtained for the PD group. Institutional review boards
of both the Universidad Icesi and Fundación Valle del Lili,
Cali, Colombia, approved the study. ,is work was con-
ducted according to the Helsinki Declaration. Informed
consent was obtained from all subjects (patients and
controls).

2.2. Gait Analysis Method: E-Motion Capture System and
Kinect Sensor. ,e Microsoft Kinect sensor has an RGB-D
camera designed for applications in the gaming industry.
Kinect is able to detect and track 20 different body joints
(Figure 1(a)). Comparisons between the Kinect and
benchmark references have shown a high agreement [19, 20].
Also, this device has been used in different research areas,
like e-health [21, 22], security and surveillance [23–25], and
UAV and robot vision [26]. In e-health approaches, this
device has displayed good reliability in clinical context [27].
Furthermore, Kinect has been tested for PD diagnosis; some
researchers have used this device to measure and quantify
different symptoms like gait [21], arm swing [28], postural
instability, and tremor [29] in PD patients.

,erefore, we used the e-motion capture system, which
contains the e-motion software developed by the CENIT
research center fromUniversidad Icesi.,is system contains
a motion sensing device (Kinect™ V1 or V2), a computer
with the e-motion software, free interface capture area, and a
rater (physician or trained nurse). ,e e-motion software
captures [19] skeleton information from the Kinect and
records it in the computer, using an ID to identify the patient
in later analysis. From the skeleton information, we can
extract information from different joints and analyze it. For
the patients’ ankles, we obtain a set of coordinate points with
distance (vertical axis) and time (horizontal axis) in-
formation (Figure 1(c)).

Using the e-motion software, we extract the ankle in-
formation from the captured skeleton information and
postprocess it to obtain gait parameters. In this post-
processing, we use wavelet transform to convert the distance
versus time information into a binary signal with swing and
stance phases differentiated. ,is binary signal allows us to
compute gait parameters, such as swing time, stance time,
and speed used for gait analysis. Although it is possible to
obtain additional parameters, like stride length, only rele-
vant parameters are used in a clinical context.

To obtain gait information, 30 PD patients and 30
controls were recruited. For this study, the subjects were
instructed to walk on a flat walkway (approximately 4meters
in length and 2.5meters wide) toward the Kinect® device
(Figure 1(b)). For each subject, we performed three barefoot
walking trials; for which all PD patients were evaluated in the
“ON” state. For this study, the acceptable field of view was
restricted to a range of 1.5–3.5m from Kinect™. ,is dis-
tance allowed for a minimum of one full gait cycle per limb
to be recorded per walking trial.
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Recently, Kinect has gained popularity for various ap-
plications in PD diagnosis. However, in this research, Kinect
limits the capture area, which restricts the walking length to
4meters. Some researchers have addressed this limitation
using multiple Kinect devices [12], but synchronizing these
devices is challenging. Main advantages of the Kinect as a
sensor for PD diagnosis are portability, affordability, and
touchless.

2.3. Signal Processing Techniques and Gait Phase Estimation.
Wavelets have demonstrated their utility in biomedical
signal analysis since 1996, when Michael Unser suggested
some applications for wavelet techniques on biomedical

applications like noise reduction, image enhancement, and
detection of microcalcifications in mammograms; image
reconstruction and acquisition schemes in tomographies
and magnetic resonance imaging; and multiresolution
methods for registration and statistical analysis of functional
images of the brain. As a conclusion, Unser claims that
wavelet transforms are not a panacea and should be used
with caution [30]. Additionally, wavelets are now being
applied in gait phase extraction, biomedical signal com-
pression [31], recognition of cardiac patterns [32], EMG
classification and decoding [31, 33], main features detection
and extraction on ECG [32] and PPG [34], and diagnosis of
epilepsy [35].
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FIGURE 1: (a) General setting and results obtained with e-motion system. (b) Capture area. (c) Recorded and binarized signal.
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For the gait phase identification, we apply wavelet de-
composition using the Daubechies family in one-level de-
composition, with eight vanishing moments (db8) because
in previous research, it was one of the decomposition with
less average error [36]. In one-level decomposition, we
obtain two resultant signals, one with approximation co-
efficients or in this case a gait signal denoised, and the second
one generates a signal with detailed coefficients, which re-
flects clear changes in gait phases.,is decomposition allows
us to obtain information in two domains: spectral and time.
,e swing phase corresponds to themoment where the ankle
is in motion and the stance phase to the moments where the
ankle is static on the floor. After the wavelet decomposition,
we establish the mean value as a threshold (denoted by
horizontal line in Figure 1(c)) to define swing and stance
phases. ,e swing phase is defined as the values above the
average value and the stance phase is defined as the values
below the average value. ,is classification was based on the
signal structure. ,e structure suggests that moments with
descending changes represent a swing phase and the other
ones represent the stance phase. We use the coefficients from
the second signal of the one-level decomposition to generate
a binary signal, in which the one values represent the swing
phase and the zero values represent the stance phase
(Figure 1(c)). Using binary signal, we established a time and
distance reference in each phase. Based on these values and
on the ankle information, we estimate the following
variables:

2.3.1. Stance Time. It is the duration of time (s) of limb
movements tracked in the support phase during a walking
trial in the acceptable field of view of Kinect.

2.3.2. Swing Time. It is the duration of time (s) of limb
movements tracked in the swing phase during a walking trial
in the acceptable field of view of Kinect.

2.3.3. Speed. It is the rate of motion, measured in meters per
second (m/s), during a walking trial in the acceptable field of
view of Kinect.

2.4. Statistical Methods and Data Analysis. Categorical
variables were expressed with relative frequencies and total
counts. Continuous variables were assessed with median and
interquartile range or with mean and standard deviation
based on their normality distribution determined by the
Shapiro–Wilk test. A bivariate analysis comparing PD pa-
tients and healthy subjects was based on Mann–Whitney U
and Pearson’s X2 test. Spatiotemporal gait variables of each
leg were analyzed together, independently of their laterality.
To assess gait-related changes (speed, stance time, and swing
time) with respect to age, Spearman’s rank correlation was
used. Subsequently, groups were classified according to the
age quartiles distribution and bivariate analyses were made
for each age group. A significant difference was reached with
p values ≤ 0.05. Statistical analyses were performed using
STATA© 13.0 (StataCorp, TX USA).

3. Results

Sixty subjects (30 PD patients and 30 healthy subjects) were
included. Both groups had a median age of 66 years (IQR
59–75). No significant differences were found by comparing
the groups for sex, age, or MoCA test score. Table 1 shows
the sociodemographic characteristics of the sample.

3.1. Clinical Background and Parkinson’s Disease
Characteristics. ,e median duration of the disease was 5
years (IQR 1–7). Hoehn and Yahr stage classification was
stage I for 17% of the PD patients, stage II for 73%, and stage
III for the remaining 10%. ,e mean MDS-UPDRS part III
score was 39.06 (±13.74), the mean DGI was 19.73 (±4.07),
and the mean FOGQ score was 6.73 (±4.95).

When PD clinical characteristics were classified
according to age distribution, compared with the other age
groups, the patients between 76 and 88 years displayed the
highest MDS-UPDRS part III 43.5 (±8.84), the highest
FOGQ (7.83± 4.95), and the lowest DGI (18.83± 6.27)
scores. Contrarily, patients between 67 and 75 years dis-
played the lowest MDS-UPDR part III (33.66± 12.44) scores
and the ones between 40 and 59 years the lowest FOGQ
(4.87± 5.59) and the highest DGI (21.62± 2.87). Table 2
shows the PD characteristics for each patient group
according to the age distribution.

3.2. Gait Differences between Groups. Compared to the
control group, PD patients showed prolonged swing times
(PD� 0.90, healthy� 0.81 seconds, p � 0.002), prolonged
stance times (PD� 1.29, healthy� 1.16 seconds, p< 0.001),
and lower speed values (PD� 0.86, healthy� 0.94m/s,
p< 0.001). Table 3 shows the comparison of gait parame-
ters measured using the e-motion capture system.

3.3. Gait-Related Changes with respect to Age. When gait
variables and age were related, a negative correlation was
found for speed (PD: rho�−0.072, healthy: rho�−0.360)
and positive correlations were found for swing (PD:
rho� 0.086, healthy: rho� 0.40) and stance times (PD:
rho� 0.07, healthy: rho� 0.27). ,ese correlations were
significant only in the healthy subjects group (speed,
p � 0.004; stance time, p � 0.035; swing time, p � 0.001).

Below 76 years, compared to healthy subjects, PD pa-
tients exhibited lower speed values and prolonged swing and
stance times. ,ese results were statistically significant for
the 60 to 66 years group and almost achieved significance in
the one between 67 and 75 years. Over 75 years, healthy
subjects displayed lower speed values and prolonged swing
and stance times compared to PD patients; these differences
were no statically significant (see Table 3).

4. Discussion

Gait assessment is fundamental for the diagnosis and follow-
up of patients with PD. Since the evaluation of motor al-
terations can be highly subjective and taking into account
that the use of technologies for gait analysis is expensive and
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Table 2: PD patient characteristics by age group.

Variables 40–59 years 60–66 years 67–75 years 76–88 years
(n� 8) (n� 7) (n� 9) (n� 6)

Years of disease 1 (IQR 0–4) 6 (IQR 3–7) 6 (IQR 2–7) 5.5 (IQR 1–9)
Age at diagnosis 52 (43–56.5) 59 (55–63) 64 (61–70) 74.5 (71–76)
Subtype of PD
TD 3 (37.50%) 1 (14.29%) 2 (22.22%) 2 (33.33%)
PIGD 5 (62.50%) 6 (85.71%) 7 (77.78%) 4 (66.67%)

Hoehn and Yahr scale
I 4 (50%) 0 (0%) 1 (11.11%) 0 (0%)
II 3 (37.50%) 6 (85.71%) 7 (77.78%) 6 (100%)
III 1 (12.50%) 1 (14.29%) 1 (11.11%) 0 (0%)

Test
MDS-UPDRS part III 39.5± 18.44 41.71± 13.12 33.66± 12.44 43.5± 8.84
FOGQ 4.87± 5.59 7.71± 4.99 6.88± 4.72 7.83± 4.95
DGI 21.62± 2.87 19.42± 3.15 18.88± 3.98 18.83± 6.27
Patients with fall risk 1 (6.25%) 1 (6.67%) 4 (23.53%) 2 (16.67%)
MoCA test 23 (20.5–24) 24 (24–26) 20 (15–24) 18.5 (17–22)

Table 3: Spatiotemporal gait parameters obtained from the e-motion capture system in the PD patient group and the healthy subjects group.

Gait variable Speed (m/s) Swing time (s) Stance time (s)

Age/group PD patients Healthy
subjects

p

value PD patients Healthy
subjects

p

value PD patients Healthy
subjects

p

value
All ages
(n� 60)

0.86 (IQR
0.73–0.93)

0.94 (IQR
0.86–1.14) <0.001 0.90 (IQR

0.80–1.09)
0.81 (IQR
0.71–0.92) 0.002 1.29 (IQR

1.13–1.57)
1.16 (IQR
0.95–1.27) <0.001

40 to 59 years
(n� 16)

0.89 (IQR
0.80–1.04)

0.97 (IQR
0.89–1.12) 0.10 0.86 (IQR

0.71–0.94)
0.77 (IQR
0.70–0.84) 0.19 1.22 (IQR

1.07–1.40)
1.1 (IQR
0.99–1.27) 0.13

60 to 66 years
(n� 15)

0.82 (IQR
0.75–0.86)

1.08 (IQR
0.95–1.29) <0.001 0.90 (IQR

0.86–1.06)
0.75 (IQR
0.7–0.81) <0.001 1.38 (IQR

1.26–1.54)
1.04 (IQR
0.75–1.19) <0.001

67 to 75 years
(n� 17)

0.85 (IQR
0.56–0.89)

0.91 (IQR
0.80–1.28) 0.004 0.91 (IQR

0.84–1.23)
0.84 (IQR
0.680.97) 0.05 1.35 (IQR

1.22–2.06)
1.26 (IQR
0.78–1.38) 0.05

76 to 88 years
(n� 12)

0.89 (IQR
0.52–1.03)

0.87 (IQR
0.77–0.91) 0.72 0.88 (IQR

0.72–1.47)
0.92 (IQR
0.901.05) 0.60 1.21 (IQR

1.08–2.14)
1.22 (IQR
1.17–1.3) 0.93

Table 1: Clinical background and characteristics of the sample.

Variables PD patients Healthy subjects
p value(n� 30) (n� 30)

Age
Years (median, IQR) 66 (IQR 59–75) 66 (IQR 59–75) 0.88
40–59 8 (26.6%) 8 (27)

0.9060–66 8 (26.6%) 7 (25%)
67–75 8 (26.6%) 9 (28%)
76–88 6 (20%) 6 (20%)

Gender
Male 17 (57%) 19 (63%) 0.60Female 13 (43%) 11 (36%)

Education
Elementary school 9 (30%) 5 (17%)

0.20Highschool 10 (33%) 10 (33%)
Graduate 11 (37%) 15 (50%)

Occupation
Employee 8 (27%) 15 (50%)

0.08Housewife 7 (23%) 5 (17%)
Retired 15 (50%) 10 (33%)
MoCA test 22 (IQR 16–26) 22.5 (IQR 21–24) 0.57
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is almost restricted for research purposes, we attempted to
assess the main gait variables using a low-cost system that
can be easily accessed during a medical consultation.
According to our results, compared with healthy subjects,
PD patients’ gait is slower and has longer swing and stance
times. While this is true, these changes are highly influenced
by the patient’s age and disease stage.

4.1. PD Patients Are Slower and Had Prolonged Swing and
Stance Times. As expected, based on existing research, we
found lower speed values in the PD group. ,is could be
explained by bradykinesia and gait changes related to the
disease, such as high cycle time, a high step number, and a
shortened stride length, all of which are related to a slow gait
[37, 38].

Regarding differences in swing time, higher values were
found in the PD group, which was unexpected based on the
results proposed by previous studies [38, 39]. We think this
could be explained by the fact that PD patients are slower
and need more time to perform a step. ,is means that both
swing and stance phases are prolonged. Compared to
healthy subjects, the stance time values were prolonged in
the PD group. Previous studies on gait analysis in PD have
also shown a higher stance time phase compared to controls,
which they have associated with longer double limb support
[19, 22].

4.2. Speed, Stance, and Swing Time Differences Are Influenced
byAge. When the sample was age-stratified, we observe gait
differences change depending on the age of the compared
groups.,is finding can be explained by two factors: the first
one is associated with the progression and the burden of the
disease and the second one is related to the gait changes
induced by the aging process in the control group.

Nonsignificant differences in the younger group: al-
though descriptive results showed that patients in the
younger group were slower and had prolonged swing and
stance times compared to controls, these results did not
reach significance. Patients in the younger group had the
shortest disease duration (1 IQR 0–4), the second lowest
MDS-UPDRS part III, the highest DGI, and the lowest
FOGQ score which could be associated with a lower disease
burden and fewer gait changes. ,erefore, differences in gait
kinematics in young PD patients can be very subtle, espe-
cially, in patients in early disease stages, in which lower limb
involvement is less frequent and gait alterations are almost
restricted to arm swing changes.

Statistically significant results (p< 0.001) were found for
speed in the 60 to 75 years group; this finding supports that
speed changes could be useful in the differentiation between
PD patients and healthy subjects in that age range. Swing
and stance time differences were only significant between 60
and 66 years (p< 0.001) and showed a trend to reach sig-
nificance (p � 0.05) in the 67 to 75 years group, which could
be associated with the sample size increasing type 2 error.

Nonsignificant differences in the oldest group: although
patients in this group have the highest burden of disease
(highest scores in the MDS-UPDRS and FOGQ and the

lowest scores in the DGI), healthy subjects in this group
already have gait changes induced by age. As will be dis-
cussed later, older subjects tend to be slower and their gait
kinematic is also altered in relation to the physiological aging
process.

4.3. Gait Changes Related to Age Are Different between PD
Patients and Healthy Subjects. For the healthy group, a
significant negative correlation was found between age and
speed; this finding is similar to the reports in elderly Cau-
casian and Asian populations [40–42]. ,e physiologic loss
of muscle strength, the deterioration of motor cortical re-
gions, and the development of a more cautious with slower
speed and a reduced stride length [43] could explain why gait
slowness is negatively correlated with age. Although there
are no studies that correlate the swing or stance times with
aging, our results suggest that there is a positive relationship
between age and both gait variables. Reductions in stride
length [44], reductions in walking speed, and reductions in
cadence [45], which are associated with a longer stance time
and prolonged double support times in the elderly pop-
ulation, could explain this finding.

For the PD group, the correlations between age and the
gait spatiotemporal variables mentioned above were not
significant. PD patients have different patterns of motor
impairment, and the progression of motor symptoms varies
according to the age of onset and the duration of the disease.
Some studies suggest that patients with an older age of onset
have a faster rate of motor progression, worsening of motor
symptoms in a shorter time, and greater balance impairment
than those with early onset of disease [46, 47]. ,is indi-
vidual variability in the progression of PD could explain why
the correlations between the age of the patients and the
spatiotemporal variables of gait were not significant.

4.4. Limitations andAdvantages. ,e data obtained from the
other Kinect reference points were not considered because
the main objective of this work was to characterize gait only
using the data on lower limbs. Space-related variables (e.g.,
asymmetry) were not calculated because the test field cap-
tured by Kinect® was not long enough to estimate them.
However, the use of Kinect® in this clinical context has
reported relative and overall reliability regarding spatio-
temporal parameters [21, 48, 49] further advances in soft-
ware and hardware are essential to enhance Kinect’s
sensitivity for kinematic measurements [50, 51]. Never-
theless, because Kinect is an inexpensive and portable device,
it provides opportunities in the field of medicine and tele-
medicine, allowing easy access to gait assessment in clinical
space and allowing remote diagnose in rural areas, where
there are no clinical experts.

4.5. Challenges and Future Research. Precision medicine is a
growing field that enables objective characterization of
patients. E-motion is a diagnostic aid that could be used with
other complementary technologies to improve and quantify
gait assessment of patients diagnosed with neurological
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diseases such as PD. We consider that the strategy used for
data collection presents relevant advantages in terms of cost,
accessibility, and space [21, 48], compared to gait labora-
tories. Although Kinect system is no longer in production,
there are other RGB-D cameras that can be used with the
e-motion software. ,e operation of these cameras does not
require specialized training, and they can be placed in almost
any doctor’s office without making major adjustments to the
test area, making the device adaptable to any medical en-
vironment. In future research, a larger number of subjects
will be evaluated for establishing cutoff points that could
help in the differentiation of patients diagnosed with PD
from controls and to monitor the symptoms and severity of
the disease. ,e analysis of the information obtained from
upper limbs and technical limitations of our approach will be
considered in the development of future research.

5. Conclusion

,e development and improvement of new and more
portable technologies may allow for an objective evaluation
of quantitative gait parameters that can complement clinical
assessment and follow-up of patients, potentially detecting
earlier stages of neurodegenerative diseases such as PD. Age
is an important factor that affects gait; therefore, the analysis
of spatiotemporal variables should be individualized, con-
sidering the age of the patient.
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