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GapClust is a light-weight approach distinguishing
rare cells from voluminous single cell expression
profiles
Botao Fa1,2, Ting Wei1,2, Yuan Zhou2,3, Luke Johnston3, Xin Yuan1,2, Yanran Ma1,2, Yue Zhang1,2 &

Zhangsheng Yu 1,2,3,4✉

Single cell RNA sequencing (scRNA-seq) is a powerful tool in detailing the cellular landscape

within complex tissues. Large-scale single cell transcriptomics provide both opportunities and

challenges for identifying rare cells playing crucial roles in development and disease. Here, we

develop GapClust, a light-weight algorithm to detect rare cell types from ultra-large scRNA-

seq datasets with state-of-the-art speed and memory efficiency. Benchmarking on diverse

experimental datasets demonstrates the superior performance of GapClust compared to

other recently proposed methods. When applying our algorithm to an intestine and 68 k

PBMC datasets, GapClust identifies the tuft cells and a previously unrecognised subtype of

monocyte, respectively.
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The introduction of single-cell RNA sequencing (scRNA-
seq) technology has significantly boosted biomedical
research in single cell resolution, which is a necessity for

dissecting cellular heterogeneity within complex tissues in health
and disease. With evolving throughput and efficiency, scRNA-seq
datasets consisting of transcription profiles with over a million
cells have been contributed1–4. Major cell types among these can
be characterised comprehensively with toolkits such as Seurat5

and Scater6, whereas the rare cell types, making up the majority of
the new cell types, remain to be uncovered by specialised
approaches. Moreover, evidence suggests that rare cell popula-
tions, including circulating tumour cells7, endothelial progenitor
cells8,9 and antigen specific T cells10–12, are instrumental in
cancer pathogenesis, angiogenesis and immune response media-
tion in cancer and other diseases. With increasingly vast numbers
of cells profiled by advanced technologies, more rare cell types
can be sampled, posing opportunities and challenges for new cell
type identification.

With extensive investigations, several algorithms for rare cell
type detection are readily available, and eminent among these are
rare cell-type identification (RaceID)13, GiniClust14, cell subtype
identification from up-regulated gene sets (CellSIUS)15 and finder
of rare entities (FiRE)16. RaceID appropriates information from
iterative steps of unsupervised clustering with the expense of large
computational costs determining abundant cell types, and
therefore discovering outlier cells. GiniClust uses a more straight-
forward strategy, identifying rare cell types by applying density-
based clustering with informative genes, which are exclusively
expressed within rare cell populations and consequently show
high Gini index values. CellSIUS takes advantage of established
major cell types to screen marker genes whose expression exhibits
a bimodal distribution within each cluster and then aggregate
these genes for one-dimension clustering to identify cluster-
specific sub-populations. FiRE employs the highly efficient
Sketching technique17 to assign each cell a hash code for multiple
times and uses the populousness of a hash code as an indicator of
the rareness of its resident cells. In contrast with the other three
methods for discrete stratification, FiRE assigns a continuous
score to each cell, and those with scores higher than the threshold
are identified as rare cells. In addition, EGDE18, a novel approach
for dimensionality reduction and feature gene extraction of
scRNA-seq data, can detect rare cell groups as a side product.

Notably, the algorithms above can be used depending on the
characteristics of the dataset. In growing cases, scRNA-seq
datasets containing thousands of cells preclude the use of
RaceID due to unrealistic amount of running time14,16, and
GiniClust, which was reported to fail in processing expression
data of over 45,000 cells16. Moreover, droplet-based protocols
have enabled the parallel profiling of tens of thousands of single
cells1, which are widely used due to significantly reduced per-cell
cost. CellSIUS can only be applied to datasets with major cell
types determined15, and misclassified cluster information would
considerably compromise the efficacy. FiRE is more powerful in
handling large scRNA-seq datasets but does not discriminate
between an outlier and cells representing minor cell types, thus
relies on downstream analysis to flag outlier cells and identify
minor cell clusters16. Intuitively, EDGE can provide two-
dimensional embeddings of scRNA-seq datasets to show the
rare cell types18. However, the exact indexes of the rare cell types
need to be analytically determined.

To overcome these limitations, we have developed a light-
weight tool, GapClust, which achieves a balance between accuracy
and efficiency when searching for the needle (rare cells) in the
haystack. Instead of clustering by iterative modeling or marker
genes that exhibit skewed or bimodal distributions, the design of
GapClust is inspired by the observation that for a particular data

point in a minor cluster Cn of size n, then the distance to its
nearest neighbours outside Cn is far greater than to its neighbours
inside Cn due to the gap between Cn and its neighbouring cluster.
A second-order derivative type distance score capturing the
variation of distance changes is proposed to fully utilise this gap
information. With diverse simulation experiments based on
multiple scRNA-seq datasets, we have demonstrated that Gap-
Clust outperforms existing methods in both precision and sen-
sitivity in terms of rare cell detection. More importantly, superior
speed and memory efficiency enable GapClust to handle vast
scRNA-seq datasets with ease and manage the evolving
throughput of scRNA-seq era19. Applications to the intestine and
68 k PBMC datasets display the capability of GapClust in rare cell
type identification.

Results
Overview of the GapClust. To facilitate the understanding, we
use a two-dimensional representation of each cell for illustration
(the first box in Fig. 1), where the clusters in different colours
denote different cell types. Herein, the gap denotes the large
Euclidean distance between the rare cell cluster Cn (red) and the
neighbouring cluster Cneighbour (green) based on their expression
profiles (the first box in Fig. 1). The gap is closely associated with
the identification of the rare cell type Cn, as it can be approxi-
mated by the distance between any given cell m in Cn and its
nearest neighbour from Cneighbour (the first box in Fig. 1), since
the gap is large relative to the minor cluster Cn. For each cell m in
Cn, its first n-1 nearest neighbours are the remaining n-1 cells in
Cn, and then its nth nearest neighbour is from Cneighbour, namely
the nearest neighbour cell in Cneighbour. Therefore, the gap can be
estimated with the distance D<m, n> between each cell m in Cn and
its nth neighbour (the first box in Fig. 1, Supplementary Fig. 1).

As a result of the large gap relative to the minor cluster Cn, the
abrupt increase of D<m, n> can be observed and used to distinguish
the n cells of the Cn cell type (red) from the neighbouring abundant
cell type (green) (the second box in Fig. 1). Importantly, the smaller
number (n) of cells in Cn, the earlier abrupt increase of D<m, n>

values at nth nearest neighbour of each cell in Cn can be observed.
As rare cell types such as Cn have low abundance (small n), we can
capture Cn based on the abrupt increase of D<m, n> values without
inquiring too many neighbours of each cell.

According to the basic mathematical theory that the first-order
derivative of a variable represents the rate of change of itself with
respect to another variable, this abrupt increase in D<m, n> value
of the cells from Cn can thus be captured by its considerably large
first-order derivative value ΔD<m, n> (the third box in Fig. 1).
However, the values of ΔD<m, k> where k is equal to 1 or close but
not equal to n can also be relatively large, posing barriers to
accurate identification of ΔD<m, n> (the third box in Fig. 1).

Compared with the first-order derivative, the second-order
derivative is widely used for measuring the roughness variation of
a twice-differentiable curve20 and preferred for the identification
of peaks in spectra analysis21. To capture the ΔD<m, n> value, we
design a second-order derivative like statistic ΔΔD<m, k> (formula
in Fig. 1), which measures the summation of the difference
between the ΔD<m, k> and each of the ΔD<m, k−1>, ΔD<m, k + 1>.
Compared with ΔD<m, k>, ΔΔD<m, k> can maintain the peak value
of ΔΔD<m, n>, but shrink the values of ΔΔD<m, k> when k is close
but not equal to n, giving the exact location of ΔD<m, n> (the
fourth box in Fig. 1).

To quantitatively capture the peak location of ΔΔD<m, n>, we
first calculate the skewness of the distribution of ΔΔD<m, k> values
of all cells when k varies from 1 to K, and high skewness<n> larger
than the threshold value 2 can be observed (the fifth box in
Fig. 1)22, as large values of ΔΔD<m, n> from the rare cells in Cn
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lead to right-skewed distribution. Finally, the n cells comprising
the cell with top ΔΔD<m, n> value and its n-1 nearest neighbours
are determined as the rare cell type Cn. The details of the
algorithm are outlined in the Methods section.

GapClust accurately detects artificially planted rare cells. To
provide a proof-of-concept, we have used Splatter23 to simulate
five scenarios of different levels of differential expression between
the rare cell type and the abundant cell types. In each scenario, we
generate 99 datasets comprising two major cell types of 500 cells
and one rare cell type of different numbers of rare cells (2–100),
with which five methods including RaceID, GiniClust, CellSIUS,
FiRE and GapClust are compared in terms of detection perfor-
mance. We utilised F1 score for performance evaluation con-
cerning rare cell type identification, which reflects the balance
between precision and sensitivity (Methods). The results (Sup-
plementary Fig. 2a-e) correspond to five different settings of
differential expression levels between the rare cell type and the
two abundant cell types, with varying probabilities (0.1, 0.2, 0.4,
0.6 and 0.8) that a gene is differentially expressed (DE) in the rare
cell group. In comparison, GapClust provides the best perfor-
mance among all the methods in all simulation settings. RaceID
detects the rare cells perfectly in most datasets but could still not

be comparable to GapClust. Despite the high F1 scores, the per-
formances of CellSIUS and FiRE are not stable throughout all
the datasets. GiniClust displays a relatively poor capability in
detecting the rare cells in most datasets. In addition, we evaluate
the sensitivity and specificity of these five methods on the
simulated datasets (Supplementary Fig. 3, 4), and find that
GapClust can provide high sensitivity and specificity simulta-
neously across all datasets.

We compared the performance of GapClust to GiniClust,
RaceID, CellSIUS and FiRE using a simulation-based experiment
in the presence of ground truth cell-type identity. For this, we
used a widely utilised public scRNA-seq dataset consisting of
transcription profiles of ~68,000 peripheral blood mononuclear
cells (PBMCs)2, which were classified into 11 sub-types. We
focused on three large sub-populations: CD56+ natural killer
(NK) cells, CD14+monocytes and CD19+ B cells, whose
transcriptomic profiles were distinct from one another (Fig. 2a).
To mimic the rare cell phenomenon systemically, we added
between 2 and 100 monocytes (0.2–10% of rare cell-type
proportions) to two homogeneous populations of 500 NK cells
and B cells (Methods).

Taken all cases with various numbers of rare cells together,
GapClust outperformed GiniClust, RaceID, CellSIUS and FiRE in
identifying the rare monocytes (Fig. 2b, and Supplementary
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Fig. 1 Overview of GapClust. The first step is obtaining K nearest neighbours for all cells. For each cell m, ΔD<m, k> and ΔΔD<m, k> can be obtained
according to the formula. Then the skewness of adjusted ΔΔD<m, k> values is calculated. Candidate k can be identified if skewness > 2. In the last step, for
each candidate k, the cell with largest ΔΔD<m, k> value among N cells and its k-1 nearest neighbours are identified and subject to filtering steps to determine
the final rare cell types.
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Fig. 5). GiniClust and RaceID lost accuracy in 73 and 40% of all
cases with an F1 score of zero, respectively. Despite high accuracy
on average, CellSIUS could not provide perfect detection
uniformly with an F1 score of 1 for most cases. FiRE performed
extremely poor with the default threshold criterion of q3+ 1.5 ×
IQR (Supplementary Fig. 5), where q3 and IQR denote the third

quartile and the interquartile range (75th percentile–25th
percentile), respectively, of the number of FiRE scores across all
cells. We implemented less stringent criteria of q3+ 1.0 × IQR
and q3+ 0.5 × IQR, which improved the performance, yet this
still was not comparable to GapClust (Supplementary Fig. 5). In
addition, we evaluate the sensitivity and specificity of these five

Fig. 2 Analysis of the simulated datasets subsampled from the 68 k PBMC dataset. a The tSNE plot of the full dataset with reference labels (left), along
with the three cell types selected for analysis (right). b Evaluation of the performance of different methods for rare cell type detection, quantified by F1
score. c Comparison of the ranking results for rare cells between GapClust and FiRE by continuous scores.
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methods on the subsampled datasets (Supplementary Fig. 6) and
find that GapClust can provide high sensitivity and specificity
simultaneously across all datasets. Notably, GiniClust, RaceID
and CellSIUS provided dichotomised predictions for rare cells,
whereas GapClust and FiRE offered continuous scores and binary
prediction. To eliminate the effect of the thresholding technique,
we directly compared the rankings of rare cells using scores
estimated by GapClust and FiRE, respectively. Consistently,
rankings of monocytes by GapClust were more enriched at the
extreme top of the entire cells compared with FiRE (Fig. 2c).

To further evaluate the performance of these algorithms, we
reproduced another experiment by Jindal et al.16 using a scRNA-
seq data comprising of 293T and Jurkat cells mixed in equal
proportion2. We generated ten subsampled datasets with this
dataset that mixed two cell types at various proportions, with the
rare cell type (Jurkat) proportions ranging from 0.5 to 5.0%
(Methods). As CellSIUS required at least two major cell types in
input, we therefore evaluated the four remaining methods with
these datasets. GapClust and RaceID displayed superior perfor-
mance than GiniClust and FiRE in all datasets, where GapClust
performed slightly better than RaceID (Supplementary Fig. 7).
FiRE produced improved predictions only when proportions of
the rare cells were higher, consistent with the results reported by
the authors of the FiRE algorithm16. GiniClust could not identify
rare Jurkat cells in any of the datasets.

Inspecting the five methods on extreme conditions with only
two rare cells (doublets) diluted in the major cell types with
various proportions, we created a total of 140 datasets that mixed
two CD14+monocytes into two homogeneous populations of
NK cells and B cells (0.08–5% of rare cell-type proportions,
Methods). GapClust identified the two monocytes of all datasets,
reflecting its sensitivity to rare cell type with extremely low
frequencies (Supplementary Fig. 8). RaceID displayed a modest
performance at a deficient proportion (0.08%) and a relatively
high proportion of 5%. The efficacy of CellSIUS degraded as the
rare cell proportion became lower. The remaining algorithms,
including GiniClust and FiRE, failed to detect the two monocytes
in all datasets. Taken together, these comparative analyses
conclusively suggested that GapClust could provide superior
performance in rare cell type detection.

Of note, the two-dimensional embeddings learnt by EDGE are
represented with figures, which are not appropriate for direct
comparison with the other five methods. Therefore, we have
compared GapClust with EDGE by multiple simulation datasets
with varying differential expression levels between the rare cell
types and the abundant cell types, and different rates of dropout
events (Supplementary Table 1). The results demonstrate that
GapClust performs better than EDGE in cases with a low
differential expression level (de.prob= 0.05, 0.1) between the rare
cell type and major cell types and high rates of dropout events
(0.6, 0.7 and 0.8) (Supplementary Figs. 9–13; Supplementary
Table 2).

GapClust is sensitive to cell type identity. To benchmark
GapClust’s robustness and sensitivity with respect to the number
of DE genes for varying incidence (i.e. the total number of rare
cells), we subsampled three datasets comprising 500 CD19+ B
cells and varying numbers of CD14+monocytes (2, 5 and 10)
from the 68 k PBMC dataset, respectively (Methods). The rare
monocytes represented about 0.4%, 1% and 2% of the total
population, respectively. A total of 120, 131 and 144 DE genes
between two cell types were identified with stringent criteria for
each dataset (Methods). Given a dataset, for each iteration of the
experiments, we replaced a fixed number of non-DE genes with
an equal number of DE genes, and the count of replaced genes

varied between 1 and the total number of DE genes to evaluate
the sensitivity of GapClust in detecting the rare cell type (Fig. 3a).
We repeated the aforementioned procedure 100 times to obtain
the average area under the curve (AUC) of receiver operating
characteristics in minor population detection for each count of
DE genes.

For comparison, we also applied GiniClust, RaceID and FiRE
in each experimental replicate. Similarly, CellSIUS was not
applicable due to only one major cell type. All four methods
struggled to detect the monocytes with only a few DE genes
(Fig. 3b). However, the performance of GapClust improved more
sharply than competitors when more DE genes were introduced.
In the setting with two CD14+monocytes, when 50 DE genes
were present, GapClust offered an average AUC of 0.89, far
higher than the performances of RaceID, GiniClust and FiRE,
which were 0.63, 0.5 and 0.5, respectively (Fig. 3b). We
consistently observed similar results in the other two scenarios
with 5 or 10 monocytes, which demonstrated superior sensitivity
of GapClust compared with existing approaches.

GapClust is scalable and fast. With the rapidly increasing
throughput of single-cell technology, up to millions of tran-
scriptomes can now be profiled at single-cell resolution. The
scalability of computational algorithms in recent years has
become a major concern for scRNA-seq data analysis. To evaluate
the computational efficiency of RaceID, GiniClust, CellSIUS,
FiRE and GapClust, we tracked the time taken by these methods
with varying input data sizes on a single machine with forty cores
of 2.5 GHz Intel Xeon CPU and 183.59 GB of memory. For
comparison, we subsampled 16 datasets from the 68 k PBMC
dataset, comprising between 1000 and ~68,000 expression pro-
files. Consistent with the previous study, GiniClust encountered a
runtime error when the input data consisted of beyond ~45,000
cells16 (Fig. 4a, and Supplementary Table 3). RaceID was com-
putationally expensive compared to other methods, taking the
most prolonged duration to run, with just over 5000 cells. By
contrast, GapClust and FiRE had processed expression profiles of
~68,000 cells in seconds, and GapClust was three times faster
than FiRE (Supplementary Table 3).

Demanding memory usage posed another challenge to the
scalability of the computational algorithm in processing large-
scale single cell transcriptomics. Previous studies focused on
comparing the computation efficiency among rare cell detection
algorithms without addressing memory issue14,16. We compared
the maximum memory utilisation of each algorithm when
processing the 16 datasets above. CellSIUS consumed the most
memory resource (over ~150 GB) among the five methods
(Fig. 4b, and Supplementary Table 4). The memory usages of
GiniClust and RaceID were 118 GB and 78 GB, respectively. It
should be noted that these three methods processed 14, 11 and 9
of the 16 datasets, with the largest one consisting of 60,000,
45,000 and 35,000 expression profiles. FiRE achieved drastic
improvements in memory utilisation (<20 GB) compared with
the above three methods. GapClust cut down the memory
requirement further (~3 GB) when handling the same datasets.
Taken together, GapClust could be scalable to huge scRNA-seq
datasets with a higher speed and much lower memory demand,
making it more user friendly.

GapClust identifies rare tuft cells in intestine crypt. Tuft cells
are rare, chemosensory epithelial cells that were identified over 60
years ago24,25. These rare cells did not generate interest until three
reports in 2016 identified tuft cells to be central in type 2 immune
circuits and crypt epithelial cell progenitors26–28. A recent study
by Arshad et al.29 delineated multiple sub-types of enriched
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crypts by analysing the expression profiles of fluorescence-
activated cell sorting sorted cells from crypt zone. The authors
observed that tuft cells, enterocytes, enteroendocrine cells and
some other sub-types were increased in numbers following
irradiation.

We asked whether tuft cells could also be detected in enriched
crypts prior to irradiation. To this end, we applied GapClust to
the expression profiles of 4491 non-irradiated cells published by
Arshad et al.29. GapClust reported a total of three rare cell types,
and cluster 1 was divided into two sub-populations (R1_1, R1_2)
(Fig. 5a). With the marker genes (Dclk1, Trpm5) reported by

Arshad et al.29, we easily identified that the 29 cells from cluster
R2 were tuft cells (Fig. 5b). For these four groups, we conducted
differential expression analysis to filter cell-type specific genes,
which clearly distinguished each cluster from the remaining cell
types (Fig. 5c). Marker genes such as Cd8a, Cd3g, Ccl5, Gzma and
Gzmb, were specifically expressed in sub-population R1_1,
suggesting that these 131 cells belonged to intestine-infiltrating
CD3+CD8+ T cells30. Consequently, the 19 cells from the
remaining sub-population (R1_2) would be implicated with
intestinal immunity. Furthermore, high expression of antigen
presentation genes (major histocompatibility complex (MHC)
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Fig. 3 Benchmarking on the sensitivity of different approaches to cell-type identity. a Schematic overview of dataset perturbations. Starting from two
cell types within the 68 k PBMC dataset (abundant CD19+ B cells and rare CD14+ monocytes), we firstly generated three datasets by subsampling 2, 5
and 10 monocytes and 500 B cells. Differentially expressed (DE) genes between two cell types were selected through a stringent criterion for each dataset,
respectively. We replaced a fixed number of non-DE genes by the pre-identified DE genes. The count of replaced genes varied between 1 and the total
number of DE genes. b The comparison of sensitivity of different methods to cell-type identity while varying the number of DE genes replaced.
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Fig. 4 GapClust is fast and memory efficient. a Execution time recorded for the five methods (GapClust, RaceID, GiniClust, CellSIUS and FiRE) while
varying the number of cells from 1 k to ~68 k. b Maximum memory usage for the five methods in processing cells with number varying from 1 k to ~68 k.
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Abundant 

R1_2 
R2 
R3 

Fig. 5 Analysis of the intestine dataset. a The two-dimensional embeddings learnt by EDGE on the intestine dataset with rare cell types labeled in different
colours. b Expression of differentiated lineage marker genes across all rare cell types. Note that marker genes (Dclk1, Trpm5) of tuft cells reported by
Arshad et al.29 are enriched in cluster R2. c Heatmap of top differentially expressed genes for each minor cluster. The same colour-coding scheme is used
in all panels.
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class II [H2-Aa, H2-Ab1, H2-Eb1], Cd74) confidently demon-
strated the functionality of these rare cells31. A total of six cells in
the smallest cluster R3 presented multiple erythrocyte markers,
including Alas2 and hemoglobin genes (Hbb-bs, Hba-a1 and
Hbb-bt), implying the pollution of erythrocytes during cell
sorting32.

GapClust identifies rare CD14+monocytes in large 68 k
PBMC dataset. The well-studied 68 k PBMC dataset was exten-
sively adopted by various computation algorithms as the bench-
mark for scalability to large datasets. Both GiniClust and FiRE
were applied to analyse these PBMCs and identified the rare cell
type of (CD34+ ) megakaryocytes14,16. Our interest was whether
GapClust could replicate the findings and discover unreported
rare cell types. Within the full 68 k PBMC dataset, GapClust
identified two rare cell types (Fig. 6a). Surprisingly, the three cells
of the first group R1 were only captured by GapClust, but not by
GiniClust and FiRE. We found that the three cells were classified

as CD14+monocytes with the established labels and explored
the DE genes between these cells and the remaining CD14+
monocytes. Though up-regulated compared with remaining
monocytes, the 57 DE genes did not show any co-expression
pattern within the three cells, making it difficult for these cells to
form a cluster (Fig. 6b). So, we examined the remaining genes
with absolute log2 fold-change larger than 1 between two groups
and found that the majority of 218 down-regulated genes were
not expressed in all three cells from cluster R1 in contrast with the
remaining CD14+monocytes (Fig. 6c). These unexpressed genes
included lymphocyte markers such as CD4, CD52, CD68, CD74,
CD9733–35, and MHC class genes (HLA-C, HLA-DMA, HLA-
DQA1, HLA-DQA2, HLA-DQB1, HLA-E36), suggesting that these
three cells were different from the remaining CD14+monocytes.
Additional validation would be necessary to determine whether
this cluster was functionally distinct.

Within the second rare cell type R2, GapClust detected 185
CD34+megakaryocytes successfully, like GiniClust and FiRE.
We observed that the remaining 77 CD34+ cells within PBMCs

Fig. 6 Identification of novel, rare cell types from the 68 k PBMC dataset. a The tSNE plot of the full 68 k PBMC dataset with rare cell types labeled in
different colours. b Heatmap of the top differentially expressed genes between minor cluster R1 and the remaining CD14+ monocytes. c Expression
distribution of 218 genes with absolute log2 fold-change larger than 1 between the minor cluster R1 and the remaining CD14+monocytes. d Heatmap of the
top differentially expressed genes between minor cluster R2 and the remaining CD34+ cell population.
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were not included and thus conducted differential expression
analysis between cluster R2 and the remaining CD34+ cell
population, with a total of 3339 DE genes identified (Fig. 6d).
Among these genes, MHC class genes such as HLA-B, HLA-C,
HLA-E and inflammatory chemokine gene CCL5 were highly
expressed in the cells of cluster R2. In contrast, hematopoietic
differentiation regulating lncRNA MALAT137 and various
ribosomal protein genes (RPS2, RPL13, RPL10, RPL13A) were
up-regulated in the remaining CD34+ cells, implying a distinct
subset of megakaryocytes. To summarise, GapClust could not
only recover the rare CD34+ cells, but also identify rare cell type
of only three cells (~0.004%) classified as CD14+monocytes in
the large 68 k PBMC dataset.

Discussion
Computational methods including GiniClust14, RaceID13,
CellSIUS15 and FiRE16 have made rare cell type detection feasible
by various innovative design. However, the balance between
accuracy and scalability has been the primary concern of all times.
In terms of accuracy, GapClust consistently performs better than
existing approaches in extensive simulation experiments,
including five scenarios of simulated datasets with varying
numbers of rare cells, different levels of differential expression
between the rare cell type and other cell types by Splatter,
99 subsampled datasets from the 68 k PBMC dataset, ten sub-
sampled datasets from the 293T-Jurkat dataset and 140 sub-
sampled datasets from the 68 k PBMC dataset for doublets
identification. In sensitivity analyses, GapClust offers higher
prediction accuracy with the same DE genes between the rare cell
type and the abundant cell type than GiniClust, RaceID and FiRE
in all experiments. In terms of scalability to the large datasets
subsampled from the 68 k PBMC dataset, GapClust utilises far
less computational time and memory resources than GiniClust,
RaceID and CellSIUS, and is slightly more efficient than FiRE.
Comparisons between EDGE and GapClust with multiple simu-
lation experiments demonstrate that GapClust performs better in
cases with a low level of differential expression between the rare
cell type and major cell types and high rate of dropout events.

In addition, GapClust has been successfully applied to multiple
real datasets. Within the full 68 k PBMC dataset, GapClust
identifies a new minor cluster of only three rare cells classified as
CD14+monocytes, which GiniClust and FiRE have not
reported14,16. Tuft cells are identified in the intestinal dataset,
validated by existing maker genes including Dclk1 and Trpm5.
Moreover, we have identified rare cell types in the heterogenous
human hippocampus scRNA-seq dataset38 (Supplementary
Fig. 14), the Drosophila wing disc datasets39 (Supplementary
Figs. 15, 16), the mouse embryonic stem cells dataset40 (Supple-
mentary Fig. 17), the mouse somatosensory cortex dataset41

(Supplementary Fig. 18; Supplementary Table 5), the Jurkat
dataset16 (Supplementary Fig. 19), the Bacillus subtilis cells
dataset42 (Supplementary Fig. 20) and the mouse tracheal epi-
thelial cells dataset43 (Supplementary Fig. 21). The same rare cell
type identified in the four Drosophila wing disc datasets of two
scenarios with replicates strongly demonstrates that GapClust can
recover rare cell types from different batches of datasets.

Intuitively, GapClust takes advantage of the gap information
between the minor cluster and its neighbouring cluster to allow
the rare cells within the minor cluster to stand out by designing
the second-derivative (reflecting the variation of functions) like
statistic ΔΔD<m, k>. Meanwhile, unlike most of the competitors
struggling to search for rare cell informative genes, GapClust
learns the cluster size and rare cells using simple arithmetic cal-
culation, illustrating the high efficiency and scalability to large
datasets. Of note, GapClust does not report all rare cell types of

the same size on a single run but identifies the rare cell type with
the largest gap between its neighbouring cluster and itself. To
discover these hidden clusters, users can rerun GapClust in no
time with the identified rare cell types removed. Moreover, with
the simulation datasets by Splatter, we have evaluated the per-
formance of GapClust based on Euclidean and Manhattan dis-
tance, respectively, and found that Euclidean distance is the
optimal choice for GapClust, due to its robust performance and
fast calculation (Supplementary Fig. 22).

In principle, GapClust does not apply to the occasional situa-
tion where only the rare cell-type-specific genes distinguish the
rare cell population from the abundant cells, as these features
cannot be captured by vst feature selection in Seurat due to low
variance. In practice, except for the rare cell-type-specific genes,
other up-regulated genes, which are expressed in the majority of
the whole cell population and especially highly expressed in the
rare cells, would have high variances. Furthermore, the down-
regulated genes low expressed in the rare cells and highly
expressed in remaining abundant cells, would have high variances
and also be found by vst method.

GapClust is currently the fastest rare-cell detection method to
analyse such large datasets with less memory resources, as demon-
strated by the benchmark using the 68 k PBMC dataset. Such unri-
valled efficiency, combined with high accuracy and sensitivity in rare
cell detection, allows GapClust to be utilised as a fundamental tool for
new cell type discovery within ultra-large scRNA-seq datasets.

Methods
Data preprocessing. The processed 68 k PBMC dataset was represented as UMI
counts. Genes that were expressed in less than three cells were excluded, leaving
20,387 genes for further analysis, and cells expressing <200 genes were also
excluded. A total of 68,579 cells passed this filter. The normalisation procedure was
accomplished using the scran package44. Cell type labels were determined based on
the maximum correlation between the gene-expression profile of each cell to 11
purified cell populations, using the code provided by 10× Genomics.

The processed 293T-Jurkat dataset had been filtered and normalised with the
scran package. Moreover, the intestine dataset was represented as UMI counts.
Genes that were expressed in less than three cells were excluded, leaving 16,091
genes for further analysis. Cells expressing <200 genes were excluded. A total of
4491 cells remained for further analysis. Filtered data was subjected to global
median normalisation, as the size factors by the scran package had negative values.

For the remaining datasets, genes that are expressed in at least two cells were
retained for downstream analysis. Each scRNA-seq dataset was normalised using
median normalisation. The normalised matrix was then log2 transformed after the
addition of 1 as a pseudo count.

GapClust method details. The GapClust pipeline includes the following steps.

1. Obtaining K nearest neighbours for all cells: For each gene in the input
expression matrix, the variance is calculated with the vst feature selection
method in Seurat package5. Based on the distribution of variance values, top
genes can be filtered by the elbow point of the density plot. Principal
component analysis (PCA) is applied to the expression matrix for
dimension reduction using the irlba package. With the top 50 principal
components, the K nearest neighbours of all cells are obtained using the
rflann package.

2. Identification of candidate k: Let D<m, k> denote the distance between cell m
and its kth neighbour,

D<m; k> ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
50

i¼1
ðx<m; i> � x<k; i>Þ2;

s

ð1Þ

where x<m, i> is the ith principal component by PCA in cell m,
x<k, i> is the ith principal component of cell m’s kth nearest
neighbour and ΔD<m, k> denote the first-order derivative of D<m,

k> with respect to k. Since k is discrete and increases by 1, for each
cell m, ΔD<m, k> can be obtained by calculating the difference of
D<m, k> and D<m, k−1>.

ΔD<m; k> ¼ D<m; k> � D<m; k�1>: ð2Þ
Furthermore, the second-order derivative like statistic ΔΔD<m, k>, which

measures the total difference between ΔD<m, k> and each of ΔD<m, k−1>, ΔD<m, k+1>,
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can be calculated according to the formula below:

ΔΔD <m; k> ¼ ΔD<m; k> � ΔD<m; k�1> þ ΔD<m; k> � ΔD<m; kþ 1>: ð3Þ
For each k between 2 and K−1, the ΔΔD<m, k> of each cell (m= 1, …, N) is

stabilised by taking the average of the ΔΔD<m, k> values of its nearest neighbour
and itself. With the top k values removed, the remaining ΔΔD<m, k> values are kept
as abundant cells if it is ≥q1+ 1.5 × IQR and ≤q3+ 1.5 × IQR, where q1, q3 and
IQR denote the first quartile, third quartile and the interquartile range (75th
percentile –25th percentile), respectively. As to hypothetic rare cells, the ΔΔD<m, k>

values of the top cell and its k−1 nearest neighbours are averaged to represent the
robust ΔΔD<m, k> value. Then the filtered ΔΔD<m, k> values representing abundant
cells and two averaged ΔΔD<m, k> values representing hypothetic rare cells are
combined and subject to skewness calculation using the e1071 package. Here, the
added number of averaged ΔΔD<m, k> value is set as two rather than k to maintain
sensitivity for relatively large minor clusters, as skewness of ΔΔD<m, k> tends to
shrink with increasing k. Candidate k can be identified if the skewness<k> > 2.

Identification of rare cell types: For each candidate k, we find the cell with the
largest ΔΔD<m, k> value among N cells and its k−1 nearest neighbours and allocate
skewness<k> to these k cells. We find the largest skewness value for each cell with
skewness values and allocate the corresponding k to this cell. In the last step, the
cells labeled with k whose count is equal to k are determined as a rare cell type.

Simulation studies. We utilised the R package Splatter to simulate scRNA-seq
datasets for comparison between the five methods. We first simulated scRNA-seq
data with 1200 cells and 5000 genes, which comprises three cell types with a ratio of
10:45:45. Secondly, varying numbers of cells between 2 and 100 were randomly
sampled from the cell type 1 as the rare cell type, and 500 cells were randomly
sampled from the other two cell types as major cell types. For the scenarios with
different differential expression levels, datasets comprising 1000 cells were simu-
lated with the ratio of two cell types 1:99, three cells were randomly sampled from
the cell type 1 as the rare cell type, and 500 cells were randomly sampled from the
cell type 2 as the major cell type. The differential expression level was determined
by varying the de.prob parameter (0.1, 0.2, 0.4, 0.6 and 0.8) in Splatter. For the
scenarios with different rates of dropout events, the rate of dropout events was
determined by varying the dropout.mid parameter (0.1068, 0.2033, 0.3090, 0.4050,
0.5023, 0.6078, 0.7041, 0.8026 and 0.9067) in Splatter.

EDGE visualisation. Dimension reduction by EDGE was performed using the
EDGE R package18. The EDGE algorithm was run using the (log2(normalised
counts+ 1) matrix to obtain a separate two-dimensional projection.

tSNE visualisation. Dimension reduction by tSNE was performed using the Rtsne
package45. The tSNE algorithm was run using the (log2(normalised counts+ 1)
matrix to obtain a separate two-dimensional projection.

F1 score computation for the simulation study. F1 score reflects the detectability
of rare cells by the harmonic mean of precision and recall in a two-class experi-
ment, which can be obtained from the confusion matrix. The F1 score is then
computed as follows:

F 1 score ¼ 2 ´
precision ´ recall
precisionþ recall

: ð4Þ

Simulation to assess sensitivity to DE genes. To evaluate the sensitivity of
GapClust to cell-type identity, we generated a synthetic scRNA-seq data comprising
two cell types based on the 68 k PBMC dataset. To ensure homogeneity, we started
with 96 CD14+ monocytes and 2686 CD19+ B cells from the largest cluster of each
cell type by DBSCAN46, and sampled 500 CD19+ B cells randomly as the major cell
type. We kept genes whose expression counts exceeded 2 in at least three cells for
analysis. Differentially expressed (DE) genes were filtered using the Wilcoxon’s rank-
sum test with a false discovery rate (FDR) adjusted p value cutoff of 0.05 and inter-
group absolute fold-change cutoff of 1. With 80 up-regulated and 1002 down-
regulated genes identified, we removed the top 80 down-regulated genes by the
absolute fold-change and all 80 up-regulated genes from the data and kept it as a
separate set. A total of 5009 genes with a p value > 0.05 were kept as a separate set of
non-DE genes. On the filtered datasets, we randomly sampled 2, 5 and 10 CD14+
monocytes and combined them with the 500 CD19+ B cells to generate three sce-
narios to benchmark the sensitivity of GapClust to the number of DE genes.

Differential expression analysis. Traditional Wilcoxon’s rank-sum tests were
applied to identify DE genes with an FDR adjusted p value < 0.05 and an inter-
group absolute log2 fold-change > 1. For a given gene, the fold-change value was
measured between group-wise mean expression values.

Identification of rare cell types with GiniClust, RaceID, CellSIUS, FiRE and
EDGE. GiniClust2 package was obtained from GitHub (dtsoucas/GiniClust2, ver-
sion as of 14 Jul 2018). The analysis was run with default parameters: MinPts= 3,

eps= 0.45, k= 10 for all datasets, except that MinPts was adjusted to 2 in case of
doublets identification, whilst other parameters were set to their defaults.

RaceID package was directly applied to the normalised expression matrix, with
all parameters at their default values, except that the initial clusters were
determined according to abundant cell types rather than by k-medoids.

CellSIUS package was downloaded from GitHub (Novartis/CellSIUS, version as
of 3 Jun 2019). The initial major cell types were determined using k-means with a
data-specific k. Other parameters were set to their defaults, except for the
min_n_cells parameter, which was set as 2 in the case of detecting any doublets.

FiRE package was obtained from GitHub (princethewinner/FiRE, version as of
9 Aug 2019). All parameters were set to their defaults. As to IQR thresholding
criteria for rare cell detection, we also tried 1.0 and 0.5 for the IQR coefficient.

EDGE package was obtained from GitHub (shawnstat/EDGE, version 1.0). All
parameters were set to their defaults.

The 68 k PBMC data subsampling. The full 68 k PBMC dataset was downsampled
for model evaluation. We considered only three cell types whose transcription profiles
were distinct from one another (Fig. 2a), including CD19+ B cells, CD14+ mono-
cytes and CD56+ NK cells, which were defined in the same way as in Daphne et al.14.
Based on these three cell types, we created a total of 99 subsampled datasets in the
following manner: 2–100 CD14+ monocytes were randomly sampled from the
monocyte population to form the rare cell group for the 99 datasets, respectively.
Then, for each dataset, 500 cells were randomly sampled from the CD56+ NK and
CD19+ B cells to form the two abundant cell types.

As to the evaluation of doublets detection, we created seven sets of
20 subsampled datasets, each based on the three cell types above in the following
manner: two CD14+ monocytes were randomly sampled from the monocyte
population to form a rare cell group for the 140 datasets. Then for each set of 20
datasets, cells were randomly sampled from the NK and B cells in specified number
(NK cell: 13, 25, 50, 100, 200, 400, 800; B cell: 25, 50, 100, 200, 400, 800, 1,600) to
form the abundant cell types.

The 293T-Jurkat data subsampling. Within a total of ~3200 cells, the authors of
the study determined the cell types by bioinformatically exploiting SNV profiles of
these cells2. We created ten subsampled datasets in the same manner as Aashi
et al.16: 1540 cells were randomly selected from 293T cell population to form the
common cell cluster. Then various numbers (8, 16, 24, 32, 40, 48, 56, 65, 73 and 82)
of cells were randomly sampled from Jurkat population for ten datasets with the
proportion of Jurkat cells varying between 0.5 and 5%.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The study uses multiple publicly available scRNA-seq datasets. Both 68 k PBMC and
293T-Jurkat cell datasets are available from https://support.10xgenomics.com/single-cell-
gene-expression/datasets. The intestine dataset can be assessed at the GEO under
accession code GSE123516. Moreover, the accession codes of other datasets are: the
human hippocampus scRNA-seq dataset (GSE131258), the Drosophila wing disc datasets
(GSE155543), the mouse embryonic stem cells dataset (GSE65525), the mouse
somatosensory cortex dataset (GSE60361), the Jurkat dataset (GitHub: princethewinner/
FiRE/data), the Bacillus subtilis cells dataset (GSE151940) and the mouse tracheal
epithelial cells dataset (GSE103354).

Code availability
GapClust is implemented in R and the source code has been deposited at https://github.
com/fabotao/GapClust and Zenodo (https://doi.org/10.5281/zenodo.4765514)47.
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