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Abstract: Among biological networks, co-expression networks have been widely studied. One of
the most commonly used pipelines for the construction of co-expression networks is weighted gene
co-expression network analysis (WGCNA), which can identify highly co-expressed clusters of genes
(modules). WGCNA identifies gene modules using hierarchical clustering. The major drawback
of hierarchical clustering is that once two objects are clustered together, it cannot be reversed; thus,
re-adjustment of the unbefitting decision is impossible. In this paper, we calculate the similar-
ity matrix with the distance correlation for WGCNA to construct a gene co-expression network,
and present a new approach called the k-module algorithm to improve the WGCNA clustering results.
This method can assign all genes to the module with the highest mean connectivity with these genes.
This algorithm re-adjusts the results of hierarchical clustering while retaining the advantages of the
dynamic tree cut method. The validity of the algorithm is verified using six datasets from microarray
and RNA-seq data. The k-module algorithm has fewer iterations, which leads to lower complex-
ity. We verify that the gene modules obtained by the k-module algorithm have high enrichment
scores and strong stability. Our method improves upon hierarchical clustering, and can be applied
to general clustering algorithms based on the similarity matrix, not limited to gene co-expression
network analysis.

Keywords: gene co-expression networks; distance correlation; connectivity; enrichment analysis

1. Introduction

Gene co-expression networks are increasingly used to explore the system-level func-
tionality of genes [1]. They have been widely studied and used for predicting new gene
functions, discovering new disease biomarkers, and detecting genetic variants in can-
cers [2,3]. Network construction is conceptually straightforward: nodes represent genes
and are connected if the corresponding genes are significantly co-expressed across sam-
ples [1,4].

The most commonly used pipelines for co-expression networks construction is weighted
gene co-expression network analysis (WGCNA) [5]. WGCNA can be used for finding
clusters (modules) of highly correlated genes, for summarizing such clusters using the
module eigengene or intramodular hub gene, for relating modules to one another and
to external sample traits (using eigengene network methodology), and for calculating
module membership measures [6]. WGCNA identifies gene modules using unsupervised
clustering, and the default method is hierarchical clustering [1]. Hierarchical clustering is a
common method used to determine clusters of similar data points in multidimensional
spaces [7]. It can be mainly categorized into agglomerative and divisive procedures.
Agglomerative clustering uses a bottom-up approach, wherein each data point starts in its
own cluster. These clusters are then joined by taking the two most similar clusters together
and merging them. This merger continues until all the samples are clustered into one group.
Consequently, a tree-like structure, known as a dendrogram, is produced. If the number

Genes 2021, 12, 87. https://doi.org/10.3390/genes12010087 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-5979-8852
https://orcid.org/0000-0001-9812-2679
https://orcid.org/0000-0002-4297-3447
https://orcid.org/0000-0003-1852-7700
https://doi.org/10.3390/genes12010087
https://doi.org/10.3390/genes12010087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12010087
https://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/12/1/87?type=check_update&version=1


Genes 2021, 12, 87 2 of 15

of clusters is provided, the process of amalgamation of clusters can be terminated when
the desired number of clusters is obtained [8,9]. WGCNA identifies gene modules using
hierarchical clustering. Branches of the hierarchical clustering dendrogram correspond to
modules, which can be identified using the dynamic tree cut method [10]. The dynamic
tree cut method succeeds at identifying branches that could not have been identified using
the static cut method. Prior studies provide indirect evidence that the resulting clusters are
biologically meaningful [11].

Researchers have conducted considerable work to improve the standard of WGCNA.
Greenfest-Allen et al. [12] improved the robustness of the whole-transcriptome gene corre-
lation network clustering by pruning poorly fitting genes from estimated modules and then
rerunning WGCNA to refine gene clusters. Dai et al. [13] introduced a modified method
of WGCNA, known as the combination of signed and unsigned WGCNA (csuWGCNA).
Toubiana et al. [14] developed a stochastic optimization algorithm, known as the ge-
netic algorithm, optimizing the trait-to-gene module relationship by gradually increasing
the correlation between the trait and a subset of genes of the gene module. However,
hierarchical clustering was used in all the above algorithms, and its disadvantages were ig-
nored. Botía et al. [15] proposed k-means clustering as an additional processing step
to the standard WGCNA. Their definition of k-means used eigengenes as centroids,
and these specific types of networks separate upregulated genes from downregulated
genes in different modules. Using the eigengenes as the centroids in general networks
(networks that are not separated into up- and downregulated genes) may lead to some
problems. In practice, genes in a module may not always be highly correlated (in absolute
terms). In such cases, using the eigengene (defined as the first principal component of
the module’s expression matrix) is likely inappropriate, as it will not be representative of
the module.

Due to the characteristics of the algorithm, hierarchical clustering may assigns a gene
to a module just because the module contains one gene that has the highest correlation
with this gene. Since the relationship between genes is networked, more genes that have
higher correlations should be considered. The hierarchical clustering does not have a global
goal; therefore, we wanted to reverse and re-adjust the decisions found in hierarchical
clustering results, and simultaneously retain the advantages of the dynamic tree cut method.
In other words, our objective was to keep the number of modules constant while a small
number of decisions are re-adjusted. Our goal was to globally find cluster (module) for
each gene in which the gene has a high mean connectivity to the other genes. In this paper,
we calculate the similarity matrix with the distance correlation for WGCNA to construct a
gene co-expression network. Then, we present an additional post-processing step for the
hierarchical clustering of WGCNA, called the k-module algorithm. We verified that this
k-module algorithm, together with WGCNA, performs better than the standard WGCNA
in some aspects, such as enrichment analysis and module stability analysis.

2. Methods
2.1. WGCNA and k-Module Algorithm

In this study, we sought to obtain modules with highly correlated member genes,
so we designed the k-module algorithm to improve the clustering results of WGCNA.
The flow chart of our algorithm is shown in Figure 1. The flow chart is divided into two
stages: WGCNA and the k-module algorithm.
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Figure 1. Weighted gene co-expression network analysis (WGCNA) and k-module algorithm flow chart.

In the first stage, we mainly demonstrate the process of module-obtaining in WGCNA.
Firstly, the similarity co-expression matrix sij is calculated for all genes,
where sij = |cor(xi, xj)| is the absolute value of the correlation coefficient between the
gene expression profiles of nodes i and j. In this paper, the correlation coefficients are
calculated by distance correlation. Since distance correlation coefficients are always pos-
itive, they define an unsigned network in which positive and negative correlations are
treated equally. Then, the similarity co-expression matrix is transformed into an adjacency
matrix aij by setting aij = sβ

ij, with β as the soft-thresholding power. The soft-thresholding
power is chosen based on the criteria of approximating the scale-free topology (SFT) of the
network [1]. Next, a topological overlap matrix is computed from the adjacency matrix.
Finally, hierarchical clustering is used to produce a tree (dendrogram) from the dissimilar-
ity topological overlap matrix. Using dynamic tree cutting, different numbers of clusters
(modules) are obtained.

The second stage is the k-module algorithm proposed in this paper. The input of the
k-module algorithm is the gene modules obtained by WGCNA. The main purpose of the
algorithm is to calculate the mean connectivity of the genes in each module, and assign the
genes to the modules to which they most highly connect. Here, the mean connectivity of
the gene gi to the mth module is defined as:

1
nm

∑
gj∈Sm

aij (1)
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where nm is the gene number of the mth module and gj belongs to Sm, the set of all genes
in the mth module. For each gene gi, we set the module label of gi to:

arg max
m

1
nm

∑
gj∈Sm

aij (2)

Then, we recalculate the mean connectivity of the genes in each module and repeat the
previous steps until none of the cluster assignments change or the iterations reach the set
maximum number. The R code of the k-module algorithm can be found in Supplementary
Material 1.

2.2. Distance Correlation

Distance correlation was proposed in 2007 by Szekely et al. It has a perfect theoretical
system and works for both linear and nonlinear dependencies [16,17]. The Pearson corre-
lation coefficient, as a linear dependence measure, is the most common default measure
among co-expression network tools. However, the true relationships observed in a biologi-
cal system are complex [18], involving not only linear dependence but also some nonlinear
dependencies. Therefore, in this study, we chose distance correlation to measure the corre-
lations between the gene expression profiles. The distance correlation was calculated using
the energy package in R (https://CRAN.R-project.org/package=energy).

2.3. An Algorithm Using Eigengenes as the Centroids

Botía et al. [15] proposed k-means clustering as an additional processing step to the
standard WGCNA. Their definition of k-means used eigengenes as centroids. These specific
types of networks separate upregulated genes from downregulated genes in different
modules. In this paper, for the purposes of comparison with the k-module algorithm,
which is also an additional processing step tot he standard WGCNA, we use an algorithm
that uses eigengenes as the centroids [15], but that is not limited to specific types of network.
For convenience, we call it the k-eigengene algorithm. The detailed description of the steps
of the k-eigengene algorithm is as follows: The modules obtained by WGCNA are the
input of the k-eigengene algorithm. (1) Calculate the correlation coefficients between the
genes and the eigengenes. (2) Assign the module label of each gi as:

arg max
j
|cor(gi, egj)| (3)

where egj is the eigengene in the jth module. (3) Then, repeat the previous two steps
until none of the cluster assignments change or the set maximum number of iterations
is reached.

2.4. Silhouette Coefficient and Dunn Index

Both k-eigengene and k-module algorithms are derived from the k-means algorithm,
so the silhouette coefficient and the Dunn index are the common and effective internal
measures for assessing the validity of clustering.

The silhouette value is a measure of the similarity of an observation to its own cluster
compared to other clusters, and its definition can be found in [19]. The silhouette coefficient
value ranges from −1 to 1. A value of 1 means the clusters are well apart from each other
and are clearly distinguished, a value of 0 means the distance between clusters is not
significant, and a value of −1 means clusters are assigned incorrectly. The Dunn Index is a
metric for judging a clustering algorithm; it is the ratio of the smallest distance between
observations in different clusters to the largest intra-cluster distance. A higher Dunn Index
implies better clustering. The details of the Dunn Index can be found in [20,21].

https://CRAN.R-project.org/package=energy
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2.5. Database for Annotation, Visualizationm and Integrated Discovery Enrichment Analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID;
http://david.abcc.ncifcrf.gov/) is a database of biological information [22,23]. It inte-
grates biological data and analytical tools, provides systematic and integrated biological
function annotation information for large-scale gene and protein lists, and helps users ex-
tract biological information. Here, we used the enrichment score in the DAVID Functional
Annotation Clustering Tool. The tool collects and integrates annotation terms from 14 pub-
lic annotation categories (including gene ontology and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways). The functional annotation clustering report groups/displays
similar annotations together, which clarifies the biology. The group enrichment score—the
geometric mean (in-log scale) of the members’ p-values in a corresponding annotation
cluster—is used to rank their biological significance.

2.6. Module Stability

To test the stability of the modules constructed by WGCNA and the k-module al-
gorithm, we randomly divided the total dataset into two sets and each half was inde-
pendently processed using both algorithms. Then, we observed the module preser-
vation between each partition of the dataset for the different algorithms through the
colour coding of − log(p) in the figures in Section 3.5, where p is the Fisher’s exact test
p-value for the overlap between two modules. The Fisher’s exact test that was used
to detect significant overlap between modules was the one-sided version. The depth
of the red color represents the size of the p-value: the darker the red, the smaller the
p-value and the more significant the overlap. Module stability was documented using R
code [6] found at https://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/
Rpackages/WGCNA/Tutorials/Consensus-RelateToFemMods.pdf.

The approach above, considering such as something like two-fold cross-validation,
may be influenced by randomness. To reduce the influence of randomness, we presented a
method, five-fold cross-validation, by further randomly splitting each dataset into k = 5
folds and calculating the number of modules with preservation significance greater than
50 among the modules in all pair of sets.

2.7. Datasets

A total of six datasets were primarily used in this study. Of these, two were from
microarray datasets and the other four were from RNA-Seq datasets. The two microar-
ray datasets were collected from a large panel of mice, one from control and treated
macrophages, and the other from livers. Genes involved in the regulation of inflam-
matory responses and gene–environment interactions were identified in macrophages
from a set of mouse inbred strains, termed the hybrid mouse diversity panel (HMDP),
while confounding factors such as environmental variation were minimized, making
these datasets ideal for network biology and module identification. Macrophages were
exposed to oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (Ox-
PAPC) or control treatment conditions [24–26]. Here, we analyzed the control and OxPAPC
treatment data (329 samples), which were normalized using the robust multi-array av-
erage (RMA) method. The liver dataset was taken from the contributors Bennett and
Ghazalpour. Expression profiles were obtained from 99 strains of inbred and recombi-
nant inbred mice. Most were assayed in triplicate [27,28]. The GPL8759 Affymetrix HT
Mouse Genome 430A Array platform was used, and the data were normalized using the
RMA method, comprising 288 samples in total. The microarray data and liver expres-
sion profile are available at http://www.ncbi.nlm.nih.gov/geo/ under accession numbers
GSE38705 and GSE16780, respectively. Gene expression RNA-Seq of breast cancer and pan-
creatic cancer was performed using The Cancer Genome Atlas (TCGA) Research Network
(https://www.cancer.gov/tcga). This dataset shows gene-level transcription estimates as
log2(x + 1) and transformed RNA-Seq by expectation-maximization (RSEM)-normalized

http://david.abcc.ncifcrf.gov/
https://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/Consensus-RelateToFemMods.pdf
https://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/Consensus-RelateToFemMods.pdf
http://www.ncbi.nlm.nih.gov/geo/
https://www.cancer.gov/tcga
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counts. Another two gene expression RNA-Seqs of grape and Arabidopsis are available at
https://atted.jp/. This dataset was transformed into RNA-Seq by Matataki-normalization.

Distance correlation is still a relatively expensive computation. One major limitation
of the calculation of the distance correlation coefficient is its large computation time,
O( 1

2 n2 ×m2), where n is the number of genes and m is the number of samples. To calculate
the distance correlation coefficient in a reasonable amount of time, it is important to limit
the genes selected to the smallest informative set. For the six datasets, we calculated the
coefficient of variation (CV) for the gene expression profiles and reduced our datasets to
relevant genes by first selecting profiles with above-average intensity. Then, we reduced the
microarray dataset to relevant genes by selecting probes with greater than 5% coefficients
of variation, yielding 3611 genes for the macrophage dataset. Similarly, for the liver dataset,
we selected 3089 genes for analysis. For the breast cancer dataset, we selected CV values
greater than 10%, and finally obtained 3475 genes and 637 samples. For the pancreatic
cancer dataset, the selection of probes with a CV greater than 10% resulted in 3029 genes
and 183 samples. For the grape dataset, we selected CV values above 2.5% and finally
obtained 3664 genes and 258 samples. For the Arabidopsis dataset, we sampled 500 samples
at random and the selection of probes with a CV greater than 12% resulted in 2915 genes.
The lists of the selected genes for all datasets are provided in Supplementary Material 2.

3. Results and Discussion
3.1. k-Module Algorithm Assigns the Gene to the Module with the Highest Mean Connectivity

In this paper, we considered three algorithms: the standard WGCNA, WGCNA
with the k-eigengene, and WGCNA with the k-module as the additional processing step.
For convenience, we simply denote them as WGCNA, k-eigengene, and k-module in the
following text, respectively. For the six datasets, the selected soft thresholding power is
shown in Supplementary Material 3 (Table S1). The goal of the k-module method is to
construct clusters with highly inter-connected genes. The proportion of genes assigned
to the module with the highest mean connectivity is shown in Supplementary Material 4
(Table S2). The k-module algorithm aims to assign all genes to the module with the highest
mean connectivity. The goal of the k-module method is global, so all modules are involved
in the measurement. Hierarchical clustering does not have a global goal. The goal of the
k-eigengene algorithm is global; different from the k-module method, it assigns genes to
the module with the highest correlation between gene and eigengene. So, for the WGCNA
and k-eigengene algorithms, some genes were not assigned to the module with the highest
mean connectivity.

In this section, we simultaneously used the silhouette coefficient and the Dunn index
to evaluate the quality of the WGCNA, k-eigengene, and k-module clustering results.
As shown in Figure 2, the evaluation results were different for the six datasets. The cluster-
ing results of the k-module had the highest silhouette coefficient score in the macrophage
and pancreatic cancer datasets, and the highest Dunn index in the macrophage, liver,
pancreatic cancer, and Arabidopsis datasets. In other words, the k-module algorithm ob-
tained the highest evaluation values in most of the datasets. For the breast cancer dataset,
the WGCNA algorithm alone assigned 99.02% of the genes to the most highly connected
module. The optimization effect of the k-module algorithm with WGCNA was lower,
and fewer genes moved in the module. The k-module algorithm changed 2.42% of the
gene labels. Although the evaluation score of the k-module algorithm was the lowest in
the breast cancer dataset, the clustering results were similar to those of WGCNA.

https://atted.jp/
https://atted.jp/
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Figure 2. Silhouette coefficient score (a) and Dunn validity index (b) of WGCNA, k-eigengene, and k-module algorithms.
The evaluation value obtained by the k-module algorithm was the highest in most of the datasets.

3.2. Computational Complexity and Number of Iterations

To discuss the computational complexity, we divided WGCNA with the k-module
as an additional processing step into three sequential observations: (1) calculating the
similarity co-expression matrix with the distance correlation, the computational complexity
is O( 1

2 n2 ×m2), where n is the number of genes and m is the number of samples. (2) The
computational complexity of standard WGCNA is O(n2) [1,15]. (3) The computational
complexity of k-module algorithms is O(n× k× ite), where k is the number of clusters
(modules) and ite is the number of iterations.

The standard WGCNA method yielded different numbers of modules with different
datasets. The number of modules and the gene count of each module are shown in
Supplementary Material 5 (Table S3). Generally, the k-module and k-eigengene algorithms
did not change the number of modules. For the k-module method, an extreme case where
a small module may have all its genes reassigned to other modules is theoretically possible,
but we did not observe this situation in any of our experiments. We designed a stopping
criterion for the k-module algorithm based on the minimum number of misplaced genes
being set to 0. However, we note that a situation may exist where the algorithm may
fall into an infinite loop without reaching the desired state (i.e., changing the same genes
from one module to another and back again) [15]. The k-module algorithm tries to reach
the desired value for misplaced genes, but always within a limited number of iterations.
We did not observe the mentioned infinite loop situation in any of our experiments with
the k-module algorithm. For the k-eigengene algorithm, an infinite loop occurred when we
used it to process half of the macrophage dataset in the Section 3.5. For the six datasets,
the numbers of iterations of the two algorithms are shown in Table 1. Compared with the
k-eigengene algorithm, the k-module algorithm had fewer iterations and the algorithm
complexity was significantly lower for most of the datasets.

Table 1. The numbers of iterations of the k-eigengene and k-module algorithms. The k-module
algorithm has fewer iterations in most of the datasets.

Dataset k-Eigengene k-Module

macrophage 33 18
liver 59 15
breast cancer 8 9
pancreatic cancer 17 11
grape 24 13
Arabidopsis 42 14
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In principle, we used a PC (single-core CPU with i7 core) to calculate the distance
correlation coefficients between the more than 3000 genes collected from approximately
300 samples. The process required approximately 9 h, which was acceptable. The standard
WGCNA, k-eigengene, and k-module algorithms could thus obtain clustering results in a
few minutes.

3.3. The k-Module Algorithm Readjusts a Small Number of Decisions

The dynamic tree cut method succeeded at identifying branches that could not have
been identified using the static cut method. Prior studies provided indirect evidence that the
resulting clusters are biologically meaningful [11]. The purpose of the k-module algorithm
was to readjust the results of hierarchical clustering. Generally, since few decisions needed
to be readjusted in hierarchical clustering, the number of gene labels corrected by the
optimized algorithm will not be large. The change rate of gene labels obtained by the
k-eigengene and k-module algorithms is shown in Table 2.

Table 2. The change rate of gene labels obtained by the k-eigengene and k-module algorithms.
The k-module changes a small number of the gene labels.

Dataset k-Eigengene k-Module

macrophage 45.58% 23.73%
liver 43.44% 17.19%
breast cancer 15.74% 2.42%
pancreatic cancer 27.73% 13.73%
grape 36.68% 7.80%
Arabidopsis 34.74% 26.38%

In Table 2, for the six datasets, the rates of change in gene labels by the k-eigengene
algorithm were higher. Especially for the macrophage and liver datasets, the k-eigengene
algorithm changed nearly half of all labels, whereas the rate of gene changes in the k-
module algorithm was around 20%. Thus, the k-module algorithm readjusted a small
number of decisions. For the breast cancer dataset, WGCNA assigned 99.02% of the
genes into the module with the highest mean connectivity; thus, it was reasonable for the
k-module algorithm to change only 2.42% of gene labels.

3.4. Gene Enrichment Comparison

Co-expressed genes tend to be involved in the same biological processes [29].
The network modules often have a biological interpretation in the sense that the mod-
ules are highly enriched in genes with a common functional annotation [30]. Ideal mod-
ules should be highly enriched for specific gene categories [18]. In this paper, we used
DAVID [22,23] for enrichment analysis and took the enrichment score in the DAVID Func-
tional Annotation Clustering Tool. The overall enrichment score for the module was
based on the expression analysis systematic explorer (EASE) score of each term member:
the higher the score, the more enriched the module. Next, we measured the enrichment
of the co-expression network using the average DAVID enrichment score for all modules.
As the enrichment score is an important evaluation of the modules’ rationality, we dis-
cuss the enrichment scores of the gene co-expression networks constructed by WGCNA,
the k-eigengene, and the k-module algorithms. The average DAVID enrichment scores of
modules obtained by WGCNA, the k-eigengene, and the k-module algorithms are shown
in Figure 3. The gene number and DAVID enrichment score of each module can be found
in Supplementary Material 5 (Table S3).
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Figure 3. Average Database for Annotation, Visualization, and Integrated Discovery (DAVID) enrichment score of modules
obtained by WGCNA, k-eigengene, and k-module algorithms. The enrichment score obtained by the k-module algorithm
was the highest in most of the datasets.

In Figure 3, for the macrophage, breast cancer, and grape datasets, the enrichment
scores of the three algorithms were significantly different. The k-module algorithm had
the highest enrichment score. For the liver dataset, the k-module algorithm also had the
highest enrichment score, while the difference in the enrichment scores between these three
methods was small. For the pancreatic cancer and Arabidopsis datasets, the enrichment
score of the k-eigengene algorithm was higher than that of k-module, where the score of
the k-eigengene algorithm was the highest in the pancreatic cancer dataset. If the eigen-
genes contained less module information, they would be unsuitable for use as centroids.
Therefore, in the pancreatic cancer and Arabidopsis datasets, the eigengenes may contain
more information about the module. To verify this conclusion, for each dataset, we counted
the average proportion of variance captured by the eigengenes (the first principal compo-
nent) in each module; the results are shown in Figure 4. As shown in Figure 4, the average
proportion of variance captured by the eigengenes in the pancreatic cancer and Arabidopsis
datasets was about 0.5, and for the other four datasets, its average proportion of variance
was not more than 0.4. Therefore, the eigengenes contained more information about mod-
ules in the pancreatic cancer dataset, and this may be the reason for the higher enrichment
score of the k-eigengene algorithm in the two datasets.

In most cases, the enrichment score of the modules obtained by the k-module algo-
rithm was higher, so these modules had more significant biological significance and were
more reasonable. When the average proportion of variance captured by the eigengenes
was high, the k-eigengene algorithm was a useful alternative.
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Figure 4. The average proportion of variance captured by eigengenes obtained by the k-eigengene al-
gorithm. The proportion of variance in the pancreatic cancer and Arabidopsis datasets was the highest.

3.5. Stability Analysis

To determine the stability of the modules obtained by WGCNA, the k-eigengene,
and the k-module algorithms, we randomly divided the liver data into two parts, and each
half was independently processed using the three algorithms. To observe the module
preservation between each partition of the liver dataset for the three algorithms, we exam-
ined the preservation significance, as shown in Figure 5. The numbers in Figure 5 indicate
gene counts in the interaction of the corresponding modules. As the grey module consisted
of genes not assigned to any module, it did not overlap with other modules.

WGCNA yielded different numbers of modules (eight vs. nine) for the two halves
of the liver dataset. The k-eigengene and k-module algorithms were the optimization of
WGCNA, and the numbers of modules were the same as in WGCNA. There were six mod-
ules with preservation significance greater than 50 in WGCNA (Figure 5a), four modules
in the k-eigengene algorithm (Figure 5b), and seven modules in the k-module algorithm
(Figure 5c). For the liver dataset, the k-module algorithm was more stable than the WGCNA
and k-eigengene algorithms in terms of preservation significance.

We counted the number of modules with preservation significance greater than 50
among the modules in five other datasets, and the stability analysis results are provided in
Supplementary Material 6 (Figure S1). The k-module algorithm was also the most stable in
the macrophage and grape datasets. In the breast cancer dataset, the three algorithms had
the same stability due to WGCNA assigning most of the genes into the module with the
highest mean connectivity; the optimization algorithms only changed a few gene labels.
In the pancreatic cancer dataset, the WGCNA and k-module algorithms had the same
stability and they were more stable than the k-eigengene algorithm. In the Arabidopsis
dataset, the k-eigengene algorithm was significantly the most stable.
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Figure 5. Module preservation between even partitioning of the liver dataset for WGCNA (a), k-
eigengene (b) and k-module (c). All cells with a color depth below −log10(0.05) are shown as light
blue, while the other cells maintain a color gradient from white to red. The modules with preservation
significance greater than 50 have the numbers printed in bold and italic. The k-module algorithm has
reasonable module preservation statistics.
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The data of the two halves were different in each test because of the randomness of
the division. Thus, variation in the modules in each test led to slight differences between
each stability analysis result. To reduce the influence of randomness, we used five-fold
cross-validation, and the average values and ranges of the numbers of modules with
preservation significance greater than 50 among the modules in each of the two sets are
shown in Table 3. Since there were too few samples in the pancreatic cancer dataset for five-
fold cross-validation, sometimes SFT could not be achieved. So, we simply maintained their
two-fold split, but generated 10 random (but distinct) two-way splits. As shown in Table 3,
decreasing the samples may lead to the reduction in stability. For example, the numbers
of modules with high preservation significance in the liver dataset decreased to 3.6, 3.2,
and 3.9 from 6, 4, and 7 for WGCNA, k-eigengene, and k-module methods, respectively.
In the macrophage, liver, grape, and pancreatic cancer datasets, the k-module method
had a greater value than WGCNA and k-eigengene methods. In the Arabidopsis dataset,
the k-eigengene method had a prominently highest value. From Figure 4, the average
proportion of variance captured by eigengenes obtained by the k-eigengene algorithm in
the Arabidopsis dataset was the highest. Therefore, the high average proportion of variance
may lead to high stability.

Table 3. The average values and ranges of the numbers of modules with preservation significance
greater than 50 among the modules in each of the two sets.

Dataset WGCNA k-Eigengene k-Module

macrophage 5.0 (4–6) 5.7 (4–7) 5.8 (5–7)
liver 3.6 (3–4) 3.2 (3–4) 3.9 (3–5)
breast cancer 7.7 (6–9) 8.5 (7–10) 8.4 (7–9)
pancreatic cancer 10.1 (9–11) 10.2 (7–12) 10.6 (9–11)
grape 5.1 (3–7) 5.8 (3–10) 6.0 (3–8)
Arabidopsis 9.5 (8–13) 11.9 (8–15) 9.4 (7–12)

3.6. Corresponding Results Based on Pearson Correlation Coefficients

Since the distance correlation coefficients work for both linear and nonlinear depen-
dencies between two vectors, the correlation between the gene expression profiles was
calculated using the distance correlation in this study. However, Pearson correlation
coefficients are popular in computing the similarity matrix. Therefore, we provide the
corresponding Pearson correlation coefficient results in Supplementary Material 7.

From the figures and tables, the different correlation coefficients indicate the differ-
ences in the clustering results, but the k-module and k-eigengene algorithms perform
very similarly regardless of the correlation coefficient used. When the Pearson coefficient
was used, the silhouette coefficient value of the k-module algorithm was not the highest
in most cases, but when compared in terms of the Dunn index and enrichment analysis,
the k-module algorithm performed better; these results are similar to those of distance
correlation. When compared in terms of module stability, k-eigengene performed similar
to the k-module algorithm when the Pearson correlation coefficient was used. The average
proportion of variance captured by the eigengenes obtained by the k-eigengene algorithm
in the Arabidopsis dataset was the highest; the stability of the k-eigengene algorithm was
significantly better than that of the other two methods.

4. Conclusions

In this paper, we presented a new approach to improve the results of standard
WGCNA. This approach provides two major improvements upon previous works. The first
is the use of distance correlation to calculate the correlations between the gene expression
profiles. The second is the novel k-module algorithm, which optimizes the clustering
modules obtained by WGCNA.
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The validity of the algorithm was verified using microarray and RNA-Seq data.
The k-module algorithm re-adjusts the results of hierarchical clustering and retains the
advantages of the dynamic tree cut method. The number of modules obtained by the dy-
namic tree cut method did not change, and only a small number of module labels of genes
changed. The k-module algorithm can assign all genes to the module in which a gene has a
high mean connectivity to the other genes. It has fewer iterations, which results in lower
complexity. Finally, we verified that the modules obtained by the k-module algorithm had
higher enrichment scores and strong stability.

Compared with the k-eigengene algorithm, the k-module algorithm performs well
without limiting the specific types of networks, separating up and downregulated genes
into different modules. The performance of the two optimization algorithms is different
on different datasets. For the macrophage and liver datasets, the average proportion
of variance captured by the eigengenes was lower; the performance of the k-module
method with respect to enrichment and stability analysis was the best. For the pancreatic
cancer dataset, the average enrichment score of the k-eigengene algorithm was the highest.
For the Arabidopsis dataset, the k-eigengene method had prominently higher stability.
The pancreatic cancer and Arabidopsis datasets had a high average proportion of variance
captured by the eigengenes. In practice, we suggest that the k-eigengene algorithm should
be selected when the average proportion of variance captured by the eigengene in each
module is high (about 50%), and the k-module could be applied to other situations.

The k-module algorithm improves the computational strategy and expands the general
applicability of WCGNA. As an improvement in hierarchical clustering, the method can be
applied not only to gene co-expression networks, but also to any other general clustering
algorithms based on similarity matrices or network generation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
5/12/1/87/s1, R Code: R Code of the k-module algorithm. Gene ID: The gene ID of six datasets.
Table S1: Soft thresholding power. Table S2: The proportion of genes assigned to the module with
the highest mean connectivity. Table S3: The gene number and DAVID enrichment score in each
module. Figure S1: Module preservation between even partitioning of each datasets. Results based
on Pearson: Tables and figures based on Pearson coefficient.
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Abbreviations
The following abbreviations are used in this manuscript:

WGCNA Weighted gene co-expression network analysis
DAVID Database for Annotation, Visualization, and Integrated Discovery
SFT scale-free topology
KEGG Kyoto Encyclopedia of Genes and Genomes
HMDP Hybrid mouse diversity panel
OxPAPC Oxidized 1-palmitoyl-2-arachidonoyl-sn-phosphatidylcholine
RMA Robust multi-array average
TCGA The Cancer Genome Atlas
RSEM RNA-Seq by expectation-maximization
CV Coefficient of variation
EASE Expression analysis systematic explorer
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