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According to the classical paradigm, CCR7 is a homing chemokine receptor that grants
normal lymphocytes access to secondary lymphoid tissues such as lymph nodes or
spleen. As such, in most lymphoproliferative disorders, CCR7 expression correlates with
nodal or spleen involvement. Nonetheless, recent evidence suggests that CCR7 is more
than a facilitator of lymphatic spread of tumor cells. Here, we review published data to
catalogue CCR7 expression across blood cancers and appraise which classical and novel
roles are attributed to this receptor in the pathogenesis of specific hematologic
neoplasms. We outline why novel therapeutic strategies targeting CCR7 might provide
clinical benefits to patients with CCR7-positive hematopoietic tumors.
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1 INTRODUCTION

Lymph nodes (LN) function as major immunological hubs, being essential for immune homeostasis
and the generation of effective immune responses (1). LNs are also fundamental sites-of-origin in
disease development and progression as well as in treatment failure of several hematological
malignancies. Growing evidence suggests that cell trafficking orchestrated by the C-C chemokine
receptor 7 (CCR7) plays a critical role in the pathophysiology of several leukemias and lymphomas.
This receptor assists malignant cells in access to niches that provide proliferating cues and enable
escape from therapy-induced death, hence, promoting disease progression and resistance. In this
review we provide a summary of insights towards a better understanding in which blood cancers,
particularly B-cell, T-cell, and myeloid-cell malignancies, CCR7 mediates which pathogenetic
functions. We further appraise how this chemokine receptor is of great potential for the
development of rational and effective therapies in some of these conditions.
2 CCR7: A SINGLE RECEPTOR LINKING INNATE AND THE
ADAPTIVE IMMUNITY IN THE LN

The homeostatic chemokine receptor CCR7 (also known as Epstein–Barr virus-induced gene 1
(EBI1), Burkitt’s lymphoma receptor 2 (BLR2), or CD197) is a G-protein coupled receptor (GPCR)
(2–4). CCR7 is expressed by various immune cells including double negative (DN) and single
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positive (SP) thymocytes, naï ve, central memory, and regulatory
T-cells (TN, TCM, TREG) as well as naïve B-cells, CD56+CD16-

regulatory NK cells, and semi-mature and fully mature dendritic
cells (DC) (5–7). Generally, T-cell subsets and mature B-cells
constitutively express CCR7 whereas NK cells and DC acquire
CCR7 expression upon pathogen encounter (5). In homeostasis
CCR7 specifically drives cell homing into LN and other
secondary lymphoid organs (SLO) (8–10). This single GPCR
orchestrates efficient interactions between different CCR7-
expressing cell types that belong to both the innate and the
adaptive functional axis of immunity and which immigrated to
the LN from different peripheral environments. As part of this,
CCR7 directs central aspects of immune cell migration into the
LN: cell trafficking, firm arrest at the endothelium, extravasation,
positioning within SLO, activation, differentiation, survival, and
egress. All these processes mediated by CCR7 take place upon
binding to either of its two cognate ligands, the chemokines
CCL19 (also known as ELC or MIP-3b) and CCL21 (also known
as SLC or 6CK), which are constitutively expressed by stroma
cells in SLO and which are present on lymphatic vessels, high-
endothelial venules (HEVs), and fibroblastic reticular cells (FBR)
of the T-cell zones (5, 6, 11). Different signaling pathways
downstream of CCR7 and several mechanisms differentially
ignited by CCL19 or CCL21 signaling determine the overall
outcome of CCR7 engagement in each cell type. A detailed
review on those mechanisms is provided by Hauser et al. (11).
3 CCR7 EXPRESSION AND FUNCTIONS IN
DISTINCT BLOOD CANCERS

Most of CCR7’s roles in homeostasis (e.g. cell trafficking, interstitial
migration, or survival) are particularly relevant for leukemias and
lymphomas, which very often express CCR7 because of their
lymphoid origin and/or maturation stage. In this section we will
appraise the current knowledge on CCR7 biology in several B-cell
and T-cell cancers and in selected myeloid neoplasms. In addition,
we will review the evidence that associates expression profiles of
CCR7 with functionality and pathological findings such as LN
infiltration or spread to the central nervous system (CNS).

3.1 B-Cell Malignancies
B-cell malignancies consist of distinct diseases that can arise
throughout the developmental lifespan of a B-cell. From pro-B-
cells in thebonemarrow(BM), throughcirculatingmaturememory
B-cells, each stage of B-cell development is prone to oncogenic
alterations and transformation. The corresponding entities carry
characteristic protein profiles, including differential expression of
CCR7. In some diseases, expression can differ between malignant
cells and the corresponding normal ontogenetic counterpart. In
others, tumor-associated CCR7 expression can be unaltered, but
may trigger different cellular functions.

3.1.1 B-Cell Acute Lymphoblastic Leukemia (B-ALL)
B-ALL is the most common childhood malignancy and
represents the leading cause of cancer-related deaths in
Frontiers in Oncology | www.frontiersin.org 2
children and young adults (12). B-ALL arises from a
monoclonal or oligoclonal expansion of malignant B-cell
precursors in the BM. Normally, CCR7 is not expressed by
precursor B-cells (6, 13) and scant information is available on
CCR7 expression and function in childhood and adult B-ALL.
Indeed, reports are somehow controversial since gene expression
profiles showed both unchanged (14, 15) or upregulated CCR7
mRNA (especially in pediatric B-ALL) (16, 17). Similarly, some
protein studies performed in a low number of cases showed no
CCR7 in B-ALL (18, 19) while, in others series, expression was
detected in specific subtypes of B-ALL, mainly in pediatric
Burkitt´s-like B-ALL and in one third of pediatric pro-B, early-
pre-B, and pre-B ALL (20). In most cases, the surface levels of
CCR7 tested by flow cytometry were low-to-moderate. In our
hands, adult B-ALL showed detectable CCR7 in only a minor
tumor cell fraction of 10-40% (13, 21).

Related to differential CCR7 functionality, isolated early pre-
B-ALL cells showed spontaneous migration towards CCL19 (20)
whereas normal pre-B and pro-B-cells showed chemotactic
responses to this ligand only after a previous exposure to
soluble recombinant CD40 ligand (CD40L). In fact,
engagement of CD40 seems a common mechanism to up-
regulate CCR7 in lymphoblastic cells from patients
potentiating the migration towards CCL19 (22, 23).
Interestingly, this phenomenon seems highly specific to CCR7
since pre-incubation with CD40L did not affect chemotaxis
mediated by other chemokine receptors (e.g. CXCR4) (20).
Nonetheless, robust expression data confirm that, in general,
CCR7 is absent or found at variably low levels in B-ALL
suggesting a rather low impact in mediating migration of this
malignancy into LN or other lymphoid niches. This is in
accordance with the low incidence of lymphadenopathy in
B-ALL. However, CCR7 may provide competitive advantages
to the minor fraction of leukemic cells that express this receptor,
potentially enabling them to escape to non-lymphoid protective
tissues. Indeed, a recent study on a cohort of 160 B-ALL could
associate expression of CCR7 and of zeta-chain-associated
protein kinase 70 (ZAP-70) protein with enhanced migration
(24). These authors also showed that CCR7 expression at
diagnosis correlated with cerebral manifestation, which led to
the hypothesis that CCR7 is involved in preferred CNS homing
in the first phases of the disease. Notably, similar mechanisms
have been previously proposed for T-ALL (25). We will address
the more established contribution of the CCR7/CCL19 axis in
CNS infiltration and survival of T-ALL cells below.

Once at their protective niches, the minor fraction of homed
CCR7-expressing B-ALL cells could utilize CCR7 also as a
mediator of survival signals. In this context, synergisms
between CCR7/CCL19 and CXCR5/CXCL13 were shown to
mediate resistance of B-ALL cells to tumor necrosis factor
alpha (TNF-a)-mediated apoptosis through activation of
paternally expressed gene 10 (PEG10) (26, 27). Moreover, both
ligands also synergistically regulated CD40-CD40L crosstalk
between B-ALL cells and CD8+ T-cells leading to a PEG10-
mediated enhanced production of IL-10 in CD40-activated
leukemic cells, which impaired tumor-specific cytotoxic T-cell
October 2021 | Volume 11 | Article 736758
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(CTL) responses (28). Similarly, CD40-acivated B-ALL cells can
deplete IL-12 from the local milieu and block the differentiation
process of CCR7-expressing naïve T-cells towards active TH1
effectors (22). Therefore, CCR7 is likely involved in the creation
of tolerogenic niches and its expression might confer escape of
B-ALL cells from immune surveillance.

3.1.2 Chronic Lymphocytic Leukemia (CLL)
CLL is the most common leukemia inWestern countries (29). It is
characterized by the clonal proliferation and accumulation of
mature, typically CD5-positive B-cells within the peripheral blood
(PB), BM, LN, and spleen. Typically, blood circulating CLL cells are
arrested in theG0/G1 cell-cycle phase,whereas leukemic cellswithin
LNproliferate and receive protective anti-apoptotic signals (30, 31).
CCR7 overexpression, as mRNA (14, 32–34) and as surface protein
(in comparison to normal pan-B-cells and CD5+CD19+ B-cells), is
consistently found in virtually all CLL, irrespective whether
sampled from PB, BM, or LN (13, 19, 21, 35–48). In agreement,
migration in response to CCR7 ligands is enhanced in CLL cells as
compared to its normal cell counterparts (13, 35, 40, 46) and both
expression and functionality have been associated with nodal
disease involvement (13, 27, 35, 36, 38, 46, 47).

In CLL, genetic factors or polymorphisms involved in the
overexpression of CCR7 remain uncovered but one single-
nucleotide polymorphism (SNP) in the CCR7 gene was
strongly associated with the risk of acquiring CLL. Out of 6
tested SNPs (including rs11574665, rs2023906, rs2290065,
rs3136685, rs3136687, and rs588019) (49, 50), the major G
allele in the SNP rs3136687, which is located at the first intron
and is in linkage disequilibrium with rs11574665, was associated
with a higher risk towards CLL whereas the minor A allele
resulted in a protective effect (49). The authors found no
differences in CCR7 expression for such allelic variants. This
lack of association between CCR7 polymorphisms and receptor
over-expression suggests that other proteins might ultimately
determine different signaling pathways controlling CCR7 gene
transcription and/or surface protein expression. Accordingly,
activating mutations at Notch1 intracellular domain were
shown to repress the dual specificity protein phosphatase 22
(DUSP22) tumor suppressor gene that encodes a phosphatase
that dephosphorylates STAT3 (51). Because of this, STAT3 is
constitutively activated resulting in increased CCR7 levels in CLL
cells. Another STAT family member, STAT-4, which is
profoundly reduced in CLL cells (52), was implicated in in vivo
down-regulation of CCR7 in T-cells (53). Different B-cell
receptor (BCR) signaling pathways have been implicated as
well in the aberrant up-regulation of CCR7. For instance, after
BCR engagement, the ZAP-70 protein has been shown to up-
regulate CCR7 through an extracellular signal-regulated kinase
1/2 (ERK1/2)-dependent mechanism (42). Similarly, the
transcription factors NFATC1 (nuclear factor of activated
T-cells), NF-kB (nuclear factor kappa B), and AP-1 (activator
protein 1) are known to regulate CCR7 expression in CLL
following activation via the BCR or other receptors (54–56).

In CLL, the normal LN architecture is effaced by the
malignant infiltrate (57). Different studies confirm CCR7 as the
Frontiers in Oncology | www.frontiersin.org 3
main receptor involved in nodal entry of CLL cells.
Mechanistically, binding to CCL21 on the surface of HEVs
activates a4b1 (CD49d/CD29; VLA-4) and aLb2 (CD11a/
CD18; LFA-1) (35, 58), which respectively bind to ICAM-1
and VCAM-1. Whether b1 and b2 integrins are equally
relevant in CCR7-mediated homing of CLL cells is still
unknown. By one hand, Till et al. showed spontaneous active
conformation (without chemokine-induced clustering) of LFA-1
on CLL cells (59). On the other hand, circulating CLL cells
usually express low levels of these integrins (60). Therefore, few
CLL cells are able to arrest in ICAM-1 expressing endothelium in
vitro and to migrate to lymph nodes of NOD/SCID mice in vivo
(60). However, a significantly higher expression of both types of
integrins (thus facilitated access to LN) is detected in CLL cells
derived from high-risk patients with unfavorable cytogenetic
abnormalities such as deletion 17p, deletion 11q and, specially,
with trisomy 12 (47, 61, 62). Recently, Legler et al. have shown on
trisomy-12 carrying OSU-CLL cells that CCR7-mediated inside-
out signaling to the b1 integrinVLA-4 and the b2 integrin LFA-1
is controlled by Src and ZAP-70 kinases (58, 63). This process is
critical for static and dynamic cell adhesions to endothelium and
subsequent migration, but did not seem to impact the speed of
migration velocity, and was dispensable for chemokine-mediated
crawling and diapedesis. Further studies are needed to know
which are the molecular mechanisms driving the latter processes.

Activation of integrins promotes the production and release
of MMP-9 (64) and the subsequent transmigration of CLL cells
through the endothelial cell wall into the LN [transendothelial
migration (TEM)]. This ability of CLL cells to eventually
accumulate at these sites may be determined by the genetic
background of CLL. The more aggressive immunoglobulin heavy
variable chain (IGHV) gene unmutated CLL subset displays
higher CCR7 expression (35, 36, 43, 46, 65). In support, the
presence of adverse factors such as IGHV unmutated status or
expression of CD38 or ZAP-70 was shown to be associated with
increased responsiveness of CLL cells to CCR7 ligands in both
chemotactic and TEM assays (38, 47, 60, 66, 67).

There is data that indicate CCR7 to drive interstitial migration
within the lymphoid tissue and to facilitate the positioning of
leukemic cells close to accessory CD40L+CD4+ TH cells, follicular
DC (FDC), and stromal cells (e.g. stromal-like cells and nurse-like
cells), which are all known to promote the survival and growth of
the malignant clone (9, 38, 68, 69). This crosstalk with accessory
cells can induce the release of high levels of CCL19 and CCL21,
which among others, has two functional consequences. First, it
causes the establishment of a self-enhancing loop that recruits
more CCR7-expressing tumor and accessory cells favoring the
creation of a protective and tolerogenic microenvironment.
Secondly, CCR7 ligands directly promote survival of CLL cells.
In these scenarios CCL19 and CCL21 can act as single factors that
activate mitogen-activated protein kinase (MAPK) and
phosphatidylinositol-3-kinase (PI3K)-AKT signaling (40, 70) or
in a cooperative fashion with CXCL13 which contributes to
resistance of CLL cells (but not normal CD5+ B-cells) to TNF-
a-mediated apoptosis through up-regulation of PEG10 which in
turn stabilizes caspases-3 and -8 (26, 27).
October 2021 | Volume 11 | Article 736758
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Finally, besides its role in homing and survival within SLO,
CCR7 along with sphingosine-1-phosphate receptor 1 (S1P1) are
crucial molecules in the egress of lymphocytes from lymphoid
organs to PB. As shown in CCR7-deficient mice, cells lacking
CCR7 left LN quicker than wild-type cells. In contrast,
overexpression of CCR7 retarded emigration from LN to PB
(71). Evidence implicates the characteristic high CCR7
expression in CLL alongside the low expression of the egress
receptor S1P1 to contribute to nodal retention (43, 46, 72),
driving a scenario of lymphadenopathy that favors homing and
accumulation in SLO. Remarkably, driving leukemic cells out of
LN into PB induces death by deprivation of milieu-derived
signals and is one of the modes of action (MOA) of a very
efficient treatment option in CLL, ibrutinib, the first approved
Bruton´s tyrosine kinase (BTK) inhibitor with activities on
multiple other kinases (73). Recent work suggests ibrutinib to
down-modulate CCR7 expression and function in CLL (e.g.
integrin activation and receptor recycling) and by that to
restore the balance between CCR7 and S1P1 and to enforce
nodal egress of leukemic cells (44, 46).

3.1.3 Mantle Cell Lymphoma (MCL)
MCL is a B-cell tumor that originates from the clonal expansion
of a naïve CD5+ B-cell localized in the mantle cell zone
surrounding the germinal center (GC) in secondary follicles of
the LN (74). Lymphadenopathy and BM infiltration are the most
common clinical manifestations, followed by splenomegaly and
PB lymphocytosis. Gastrointestinal and CNS involvement have
been reported as well (75–77). This preferential pattern of
dissemination can be attributed to the high surface expression
of CCR7 by MCL cells as per flow cytometry, second to those
levels observed in CLL (13, 21, 78, 79). In most of these studies,
MCL cells from LN, PB, BM, and pleural effusions expressed
higher levels of CCR7 than their proposed normal counterparts.
The underlying causes of this overexpression are largely
unknown. Comparative transcript analysis between MCL and
normal B-cells have shown CCR7 mRNA to be significantly up-
regulated in lymphoma cells (32). The fact that CCR7 was not
among the top differentially regulated RNAs in MCL (80)
suggests that additional mechanisms such as altered protein
turn-over (46) are responsible for overexpression of surface
CCR7 in MCL. Nevertheless, MCL and normal B-cells differ in
their migratory behavior towards CCR7 ligands. In chemotaxis
assays, MCL cells, but not their normal counterparts, migrated in
response to CCL19, which was selectively potentiated by pre-
exposure to CXCL12 (78). These results suggested CCR7-driven
migration to be of relevance in the dissemination pattern seen in
MCL patients. We corroborated this hypothesis in pre-clinical in
vivo models in which the inhibition of CCR7 by anti-CCR7
antibodies abrogated infiltration of CCR7-expressing MCL cell
lines into LN, spleen, lung, or CNS, all of them tissues in which
CCR7 ligands are found (21). Moreover, this neutralization of
the CCR7 axis also induced a strong reduction in viability of
lymphoma cells within tumor masses, confirming that in MCL
CCR7 overexpression is not only involved in orchestrating
migration, but also in directly promotion of survival.
Frontiers in Oncology | www.frontiersin.org 4
3.1.4 Follicular Lymphoma (FL)
FL is the second most common type of non-Hodgkin´s
lymphoma (NHL) and despite its indolent nature, it is
essentially incurable (81). FL encompasses lymphomas
emerging from a GC B-cell, which can vary in presentation
from indolent to aggressive courses (82). Similar to normal GC
lymphocytes, which physiologically down-regulate CCR7 and
up-regulate CXCR5 (83), FL cells express low to moderate levels
of CCR7. Moreover, the proportions of CCR7-expressing cells
were reported to be low and, in some patients, no expression of
CCR7 was detected at all (13, 19, 21, 79). In agreement, mRNA
levels in FL cells did not differ from those of their normal
counterparts (32, 84–87). The genetic variants of CCR7
rs2023906, rs2290065, rs3136685, and rs588019, were not
associated with differential expression or with clinical course in
FL (50). The fact that CCR7 is not prominently found in most FL
suggests that it has a limited role in the pathophysiology of this
lymphoma, which is supported by recent evidence. In fact,
comparative analyses of LN from FL versus reactive LN
revealed that CCL21 and CXCL12 were neither over- nor
differentially expressed, whereas FL-LN nearly lacked
expression of CCL19. In addition, in FL lymphoid tissues in
which both CCR7 ligands were detected, they were preferentially
found in HEVs and in lymphatic vessels of T-cell zones, but on
average at 3-fold lower levels than in reactive LN (88).
Conceivably, the reduced abundance of CCL19/CCL21 in LN
of FL is lymphoma instructed and contributes to evasion from
anti-tumor immunity. Accordingly, FL progression may be
associated with reduced numbers of perifollicular CCR7+

gamma-delta T-lymphocytes due to a shortage of attracting
CCR7 ligands (88).

3.1.5 Burkitt`s Lymphoma (BL)
CCR7 was first characterized in EBV infected BL cell lines, hence
the initially coined term Epstein-Barr-induced 1 (EBI-1) for
CCR7 (4). CCR7 upregulation was shown to rely on the viral
transactivator EBV nuclear antigen 2 (EBNA-2), which after
binding to centromere-binding factor 1 (CBF-1, also known as
RBP-jk), a highly conserved cellular DNA binding repressor,
gains access to regulatory regions of CCR7 target genes and
activates transcription in infected (previously EBV‐negative) BL4
BL cells (4, 89). Information on CCR7 expression in primary BL
material is scarce. No upregulated mRNA levels were seen in 22
patient samples (32, 84) and, to our knowledge, only one work
studied CCR7 expression by flow cytometry in another 9 patients
(79). The receptor was found in all cases, but in a fraction of ~53%
of tumor cells per sample with no disclosed results on receptor
surface levels. Interestingly, in the NC37 BL cell line, in vitro
chemotaxis and TEM was modulated by a cooperative activity of
CXCL12 with CCL19 or CCL21, suggesting that the CCR7 axis is
involved in BL cell homing to LN (90). Accordingly, in the
syngeneic Em-Myc mouse model of BL, CCR7 was found
necessary for lymphoma cells to home to LN (9). These results
also indicated that CCR7 guides tumor cells to distinct
microanatomic sites in spleen and LN, especially to their T-cell
zones. Cross-talk with resident stromal and accessory cells at
October 2021 | Volume 11 | Article 736758
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these sites contributed to the creation and preservation of pro-
tumor niches that conferred a survival advantage to CCR7-
positive lymphoma cells over CCR7-deficient lymphoma cells
(9). In a proposed model, stromal cells (e.g. fibroblastic reticular
cells, FRC, and HEV endothelial cells) secrete CCL21 through
which CCR7-expressing lymphoma cells home through HEV into
the LN (or spleen) and migrate towards FRC in the T-cell region.
Upon interaction with FRC, lymphoma cells secrete lymphotoxin
through which they stimulate lymphotoxin-b-receptor expressing
FRC. In turn, BL cells receive survival signals, presumably
including Indian hedgehog (Ihh) secreted by FRC and CD40
stimulation through CD40 ligand-expressing CD4+ T-cells
located in the T-zones. The importance of this cross-talk was
demonstrated by showing that genetic deletion of CCR7 impaired
lymphoma growth (9). Therefore, this model not only established
the basis for a better understanding of the pathogenic role of
CCR7 in BL, but also in many other blood cancers with a high
dependence on the nodal or splenic microenvironments.

3.1.6 Subsets of Diffuse Large B-Cell
Lymphoma (DLBCL)
DLBCL, the most common type of malignant lymphoma,
accounts for ~30% of adult NHL (91). DLBCL can arise at
multiple anatomical sites and comprises two major groups:
activated B-cell like (ABC) and GC B-cell like (GCB) DLBCL.
Therefore, it is not surprising that chemokine receptor (CKR)
expression varies between these subtypes and in association with
disease location (91, 92). Up to 62% of DLBCL express CCR7,
both in analyses of flow cytometry and immunohistochemistry
(IHC), with a preferential mRNA and protein expression in the
non-GCB subtypes, especially in patients with both LN and BM
involvement (79, 85, 93, 94). In EBV-positive DLBCL of the
elderly, in primary effusion lymphoma, in gastric extranodal
DLBCL, and in transformation of gastric mucosa-associated
lymphoid tissue (MALT) lymphomas to gastric extranodal
DLBCL, up-regulation of CCR7 mRNA, among other CKR,
was reported (32, 91, 94–96). Notably, in EBV-associated
DLBCL recurrent mutations in the CCR7 gene are found in
11% of patients (94). These alterations seem exclusive to this
subtype and could enable homing of tumor cells to SLOs where
the virus in turn propagates infection or establishes latency,
thereby driving lymphomagenesis (97). In other related primary
lymphomas such as intravascular large B-cell lymphoma and
mediastinal large B-cell lymphoma a characteristic decrease in
immunodetected CCR7 was described (32, 98, 99). As these types
typically show sparing of LN manifestation, this corroborates the
role of CCR7 in nodal homing. The genetic polymorphisms in
CCR7 that were disclosed in FL did not associate with the risk of
acquiring DLBCL (50). CCR7 expression, both at mRNA and
protein levels, was an independent prognostic factor for disease
progression, advanced clinical stages, shorter median survival
times, and poorer survival rates in GC and ABC DLBCL (93,
100). First functional data on CCR7 in DLBCL indicate that
receptor expression facilitates CCR7‐mediated in vitromigration
in EBV‐positive DLBCL cell lines with functional analyses on
primary samples still missing (91).
Frontiers in Oncology | www.frontiersin.org 5
3.1.7 Primary Central Nervous System
Lymphomas (PCNSL)
Immunohistochemical staining of PCNSL and secondary CNS
lymphoma (sCNSL) showed these disorders to present CKR
profiles that were different from those of systemic DLBCL.
CCR7 was detected in the malignant B-cells of specimens of
PCNSL (101) and in CNS relapses of DLBCL (102). However,
and opposed to lymphomas with peripheral involvement, CCR7
was present in the cytoplasm rather than at the cell surface
indicating that the receptor may not respond to its
corresponding ligands in the same conventional fashion (101).
It is tempting to associate this loss of surface CCR7 with the
absence of nodal involvement, which defines PCNSL (103).
However, one should also take into account that the restricted
intracellular CCR7 expression pattern may in part be a
consequence of a milieu that is highly enriched in CCR7
ligands, especially in CCL19, the most potent inducer of CCR7
endocytosis (11). In agreement, a recent study addressing the
role of gliosis in lymphoma cell retention in the CNS found that
astrocyte-derived CCL19 was required for gliosis-promoted
CNSL via enhancing parenchymal retention of lymphoma
cells (104).

3.1.8 Marginal Zone Lymphoma (MZL)
MZL comprises three entities that arise from the marginal zone
surrounding the follicular GC of the LN: extranodal MZL or
MALT lymphoma, splenic MZL, and nodal MZL. Analyses on
MALT lymphoma samples showed more than 50% of malignant
cells to express CCR7 (79). In extragastric MALT lymphoma or
malignant transformation from Helycobacter pylori-associated
gastritis to MALT lymphoma, up-regulation of CCR7 mRNA,
among other CKRs, was a common finding (91, 95, 96). In
splenic MZL, no changes were seen at the mRNA level (87)
whereas flow cytometry revealed significantly reduced expression
of CCR7 as compared to normal B-cells (13, 19, 21, 79). The low
CCR7 expression in extranodal or splenic MZL suggest a minor
role of this receptor in their pathobiology. This in turn might
explain the minimal lymphadenopathy seen in these types of
MZL (13) and reports on CCR7 expression in nodal MZL are still
missing. Accordingly, one study in salivary gland MALT
lymphoma samples selectively implicated the chemokine
CCL21 in the organization of ectopic reactive lymphoid tissue
whereas no significant expression of the ligand was detected in
the malignant lymphoid aggregate (105). The authors concluded
that CCR7 plays no major role in the infiltration of the
epithelium or in the regulation of malignant cell survival.

3.1.9 Hairy Cell Leukemia (HCL)
HCL is an indolent, rare disease that accounts for approximately
2% of leukemias and is typically defined by the B-raf kinase
mutation pV600E (106). Cell surface expression of CCR7 is low
(or absent) in HCL cells when compared to normal B-cells (13,
19, 21, 107). Similarly, CCR7 transcription in HCL samples is
reduced (32). This would explain why nodal dissemination is not
a key feature in this disease.
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3.1.10 Lymphoplasmacytic Lymphoma (LPL) and
Multiple Myeloma (MM)
LPL and its subgroup Waldenstroem´s macroglobulinemia
(WM) are rare and indolent lymphomas that arise from
terminally differentiated B-cells that physiologically do not
express CCR7 (82). Analyses on very few clinical samples did
not shed light on the expression profile of CCR7 in LPL, as some
cases did express the receptor (21) while others did not (13).
Available evidence does not link CCR7 to an altered genetic
profile in plasma cell leukemia (PCL) (108). Normal plasma cells
and those of MM do not typically express surface CCR7, and if
expressed, it is found in a minor proportion of cells as
demonstrated in samples from BM or extramedullary sites
(PB and pleural effusions) (13, 21, 109, 110). Curiously, in
non-Hispanic Caucasian subjects the genetic CCR7 variant
s3136685 was reported to be associated with an elevated risk
for MM (110). Since this genotype was not associated with MM
in further permutation-based tests and since previous evidence
did not link CCR7 to MM (108, 111), these findings should be
interpreted with caution and further investigation is required to
clarify this issue. Finally, gene expression profiles of monoclonal
gammopathy of undetermined significance (MGUS) and of
smoldering myeloma seem to discard a prominent role of
CCR7 in these conditions as well (108, 111, 112).

3.1.11 Hodgkin Lymphoma (HL)
HL is a unique type of B-cell lymphoma characterized by the
presence of a minority (<1%) of neoplastic cells in a background
of infiltrating reactive cells (113). The microenvironment is
considered to be shaped by the malignant cells and provides
survival signals and protection against anti-tumor immune
responses (114). Based on differences in histopathology, HL is
classified in two subgroups: the classical form (cHL) that
accounts for 95% of all HL cases and the nodular lymphocyte
predominant variant (NLPHL) that represents only 5% of all
cases (113). Tumor cells in cHL are termed Reed/Sternberg (RS)
cells, which generally express CD30, whereas tumor cells in
NLPHL are called lymphocytic and histiocytic (L&H) cells and
lack CD30.

CCR7 expression has been observed in cHL-derived tumor
cell lines and in primary tissue. In the majority of cell lines
expression was moderate-high and CCR7 was functional in
inducing migration towards both of its ligands (115). In
patient samples, IHC revealed a differential expression of
CCR7 between cHL and NLPHL. The classical form, located in
the interfollicular zones, showed strong CCR7 expression
whereas NLPHL, regularly associated to follicles, was shown to
be CCR7 negative (115). Accordingly, mRNA levels were highly
expressed in cHL when compared to NLPHL and normal B-cells
(84, 116). Moreover, CCL19/CCL21 were found in tumor
infiltrates of cHL, whereas the tumor nodules in NLPHD
almost completely lacked these chemokines (115).

In cHL, CCR7 upregulation might be a consequence of two,
or more, altered pathways that are partially interconnected. For
example, the CCR7 gene contains binding sites in its promoter
region for the transcription factors AP‐1 and NF‐kB (3), and
both axes have been shown to be constitutively active in cHL and
Frontiers in Oncology | www.frontiersin.org 6
to upregulate CCR7, individually or cooperatively (3, 117).
Notably, the combined constitutive activation of AP‐1 and
NF‐kB mimics a state of chronic inflammation that involves
the production of cytokines by RS cells. Whether CCR7
up-regulation is part of the prominent NF‐kB program in cHL,
as it is the case for CD30 expression (115, 118), remains to
be investigated.

At the functional level, constitutively active WNT signaling in
cHL is important in CCR7-mediated migration and generation
of protumorigeneic milieus. Binding of the WNT protein to the
low-density lipoprotein receptor-related protein 5/6 (LRP5/6)
regulates CCL19-guided chemotaxis through the b-catenin and
lymphocyte enhancer-binding factor-1 (LEF-1) pathways (119).
WNT signaling is commonly involved in metastasis and
angiogenesis in various tumors (120). In tumor cells of cHL
canonical WNT/b-catenin/LEF-1 signaling is also required to
secrete vascular endothelial growth factor A (VEGF-A), and by
that, to attract endothelial cells as well as to enhance their
migration, sprouting and tube formation. Therefore, canonical
WNT signaling is a regulator of the endothelium-lymphoma
interplay. WNT is a prerequisite for secretion of VGEF-A by cHL
cells which stimulates biogenesis of vascular endothelium which
in turn presents CCR7 ligands that direct movement of cHL cells
towards vascular niches. Thus homing and interstitial movement
of tumor cells within the affected LN is facilitated by constitutive
WNT. Moreover, CCR7’s ligand, CCL21, was shown to be absent
on RS cells, but was detected on the majority of small vessels
(including HEV) with a luminal membranous localization (121).

The CCR7 axis not only seems to play a pathogenic role by
recruiting cHL tumor cells, it is also implicated in recruiting pro-
tumorigenic CCR7-expressing immune cells from the
circulation. Within infiltrating immune cells in cHL, CCR7
(and the related homing markers CD62 and lymphocyte
function-associated antigen 1, LFA1) were demonstrated to be
expressed on a large proportion (~33%) of reactive T-cells, which
showed receptor-mediated chemotaxis that was similar to PBMC
from healthy donors (121). Notably, in cHL the infiltrate is
commonly enriched by CCR7+ TREG and activated T-cells (122–
126). In contrast, in NLPHL these T-cell subsets are less
abundant and are found outside the tumor area (115, 127).
Together, these findings suggest different immune escape
mechanisms in both subtypes of HL that may be related to the
different expression profiles of CCR7 in tumor-associated cells
and of CCR7 ligands in the surrounding tissue.

3.2 CCR7 in T-Cell Malignancies
As described for B-cell malignancies, T-cell neoplasms consist of
multiple entities that are thought to arise from particular stages
of T-cell development. For instance, T-cell acute lymphoblastic
leukemia (T-ALL) originates from thymic stages of T-cell
evolution while peripheral (post-thymic) T-cell neoplasms
show features of mature T-cells with distinct phenotypes of
differentiation, e.g. T-cell prolymphocytic leukemia (T-PLL)
mostly resembling TCM or unconventional transitional stages
between TN and TCM; adult T-cell leukemia/lymphoma (ATLL)
resembling TREG; Mycosis fungoides (MF) resembling TEM;
Sézary syndrome (SS) resembling TCM; or T-cell large granular
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lymphocytic leukemia (T-LGL) resembling activated cytotoxic
T-ce l ls (113 , 128–130) . Based on this phenotypic
characterization, CCR7 expression would follow its
physiological T-lineage pattern and be highest in those diseases
resembling a DN or SP thymocyte, TN, TREG, or TCM and to show
LN or CNS involvement. A low number of studies limits the
knowledge on the role of CCR7 in some of these disorders.
However, in light of the restricted armamentarium of available
efficient therapies for T-cell malignancies, such insights are
highly desired. In this section we will address our current
knowledge on CCR7 biology in several T-cell cancers and will
try to associate reported expression profiles with CCR7
functionality and pathological findings.

3.2.1 T-Cell Acute Lymphoblastic Leukemia (T-ALL)
T-ALL mainly afflicts children and adolescents. It presents with
increased white blood ce l l counts and often with
hepatosplenomegaly. At relapse, there is an increased incidence
of CNS manifestations (131, 132). A seminal report showed
CCR7 to be a functional receptor that is highly expressed in 4 of 5
T-ALL cell lines and in PB tumor cells of 8 of 11 T-ALL patients
(25). A recent study in a larger cohort of 130 patients (24) and
unpublished data from our laboratory confirm these results. In
T-ALL, CCR7 expression is controlled by the activity of the
oncogene Notch1. Significantly up-regulated CCR7 was found in
human T-ALL cells that harbor Notch1-activating mutations
while receptor expression was repressed by Notch1-specific g-
secretase inhibitors (DBZ or compound E), both at mRNA and at
protein levels (25). Mechanistically, Notch receptor engagement
initiated the PI3K/mammalian target of rapamycin complex 2
(mTORC2) pathway, which transmitted through NF-kB to
regulate expression of the CCR7 gene in leukemic cells (25,
133). Notably, in pre-clinical in vivo T-ALL models generated by
overexpression of the intracellular cleaved form of Notch1
(ICN1), CCR7 overexpression led to enhanced chemotaxis and
invasion into different tissues, especially to leptomeningeal
spaces of brain and spinal cord, in which endothelial cells were
shown to produce CCL19 (25). This CCR7-driven homing into
CNS facilitated leukemic cell survival and was associated with
reduced animal survival. Similarly, CCL19 promoted T-ALL cell
invasion of spleen in syngeneic in vivo models and shortened
host survival (134). Inside cerebral or spleen parenchyma, cross-
talk between stromal cells and leukemic cells mediates the
production of higher levels of tissue CCL19 (25, 134, 135). In
CNS, these positive loops and the concomitant alteration of
drainage from cerebrospinal fluid facilitated lymphoblastic
meningeal infiltration (25). Nonetheless, it is likely that CCR7
is not the sole mediator of this process as meningeal infiltration is
also detected in ICN1-induced T-ALL with CCR7-deficient
hematopoietic progenitors (135). A recent study suggested that
CNS infiltration in xenograft models is regulated by ZAP-70
which positively correlated with the overexpression of both
CCR7 and CXCR4 and with migratory abilities towards CCL19
and CXCL12 (24). This study also confirmed, in a large cohort of
130 T-ALL patients, the positive correlation between ZAP-70
and CCR7 expression and, importantly, high CCR7 expression in
tumor cells from BM biopsies at diagnosis was associated with a
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significant 11-fold increased risk of CNS involvement (24).
Together, despite some T-ALL patients showing low or absent
expression of CCR7 in their tumor cells from BM (135), the
herein presented evidence supports CCR7 as a key element
responsible of high-risk features such as CNS infiltration.

3.2.2 T-Cell Prolymphocytic Leukemia (T-PLL)
Although being the most frequent mature T-cell leukemia in
Western countries, T-PLL represents only ~3% of all T-cell
malignancies (136–138). Its clinical course is typically
aggressive with poor responses to conventional chemotherapies
resulting in a median overall survival (OS) of usually <2-3 years
(139, 140). An inevitably rapid proliferation of mostly CD4+

prolymphocytes involves the PB, BM, spleen, liver, LN as well as
skin and effusions (136, 137, 141). Not uncommon are CNS
involvements (136, 137, 142). This pattern of dissemination
suggests chemokine receptors to play an important role in
T-PLL, however, little is known about their relevance and the
role of their ligands in the pathophysiology of T-PLL (143).
Although previous evidence did not show overexpression of
CCR7 mRNA in six primary T-PLL samples (144), a recent
study by our groups focused on CCR7 in T-PLL biology and its
interventional potential (130). We assayed CCR7 surface levels at
diagnosis by flow cytometry in 109 patients and found that
receptor overexpression in malignant cells is seen in a very high
proportion of cases (86.5%). CCR7 expression profiles were also
instrumental in assigning T-PLL to stages of memory T-cell
differentiation (130, 145). The proportion of CCR7-expressing
T-PLL cells in PB at diagnosis was associated with a shorter OS
and a higher risk of death within an 8-year follow-up period
(130). CCR7 was a fully functional receptor upon CCL19 and
CCL21 binding and its downstream signaling pathways activated
PI3K and ERK (130), two axes that have shown to be relevant in
T-PLL pathogenesis (145–147). We further showed that receptor
activation triggered chemotaxis, invasion trough biological
matrices or endothelial cells, and T-PLL cell survival (130). In
in vivo pre-clinical studies, we confirmed CCR7 to play critical
roles in enabling tumor cells to access tumor microenvironments
in CNS and lymphoid organs, especially in LN (130). In
agreement, prominent HEV are often infiltrated by neoplastic
cells in T-PLL (148), which suggests CCL21 as a major route for
homing into lymphoid tissues and in mediating the
dissemination of T-PLL cells to different organs. Our results
demonstrated CCR7 to promote a rapid niche colonization as
well as survival and proliferation in these environments.

3.2.3 Adult T-Cell Leukemia/Lymphoma (ATLL)
ATLL is an aggressive peripheral T-cell malignancy associated
with human T-cell leukemia virus, type 1 (HTLV-1) infection
and predominantly occurs in HTLV-1 endemic areas such as
South-Western Japan, the Caribbean Islands, Central and South
America, intertropical Africa, and the Middle East (149, 150).
The prognosis of ATLL is very poor with a 4-year OS rate of 11%,
16%, 36%, and 52%, in the subtypes of acute, lymphoma,
chronic, and smoldering ATLL, respectively (151, 152). In the
majority of cases, ATLL cells express CD4 and CD25 and often
lack CD7 (152–154). Forkhead box P3 (FoxP3) expression is
October 2021 | Volume 11 | Article 736758

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cuesta-Mateos et al. CCR7 in Onco-Hematology
detected and led to concepts of ATLL cells to resemble TREG

(155) which, however, remains a subject of debate (156). The
malignant cells of ATLL express surface CCR7 (157) and up-
regulated CCR7 transcripts are associated with the aggressive
acute ATLL subset, which distinguishes these cases from the less
aggressive chronic ATLL (158, 159). Studies in larger cohorts
confirmed upregulated CCR7 mRNA and protein, especially in
patients with acute, progressive, or treatment refractory acute
disease. These reports also associated higher CCR7 expression
levels with a poor prognosis and nodal involvement (154, 160,
161) . Accordingly , ATLL cel ls from patients with
lymphadenopathy and splenomegaly showed enhanced ability
to adhere to surfaces coated with intercellular adhesion molecule
1 (ICAM-1) and to migrate towards CCL19 or CCL21 (157).
Recent whole-exome sequencing studies revealed gain-of-
function mutations in the receptor (162, 163). The CCR7 gene
was recurrently and significantly affected in 11% of ATLL with a
majority of cases harboring mutations that led to truncated
protein forms at the C-terminal cytoplasmic domain, which
regulates multiple biological processes. Of special interest were
the mutations at CCR7 Trp355, which prevented receptor turn-
over and internalization upon ligand stimulation resulting in
increased surface receptor expression. These mutations led to an
enhanced ligand-induced chemotaxis and PI3K/AKT signaling
(162, 163). More recently, CCR7 gene mutations were mutually
associated with mutations at phospholipase C gamma 1 (PLCG1)
and caspase recruitment domain family member 11 (CARD11)
genes, which are frequent alterations in TCR/NF-ĸB signaling
(164). The pathological implications of this coexistence in ATLL
remain unaddressed.

3.2.4 Mycosis Fungoides (MF)
MF is the most common type of cutaneous T-cell lymphoma
(CTCL), in which a protracted clonal expansion of atypical
dermatotropic CD3+CD4+ T-lymphocytes underlies a chronic
cutaneous manifestation (165). The majority of patients with
early-stage (i.e. limited patch/plaque) disease have a normal life
expectancy, while in advanced (i.e. ubiquitous, tumor, nodal)
stages survival is drastically reduced, which in addition to a
marked symptomatology requires multimodal treatments (166–
168). Available data emphasize a complementary, prominent
pro-tumorigenic role of distinct factors present within the skin or
LN milieus of CTCL, such as chemokines (CCL21 or CXCL12)
(169), cytokines (IL-13) (170) or antigens able to entertain
chronic T-cell receptor stimulation (171).

Expression of CCR7 has been considered a marker of
advanced MF and a component involved in the spread of
cutaneous lesions to lymphoid tissues. Indeed, single-cell RNA
sequencing of skin biopsies from one patient with aggressive
disease showed that malignant clones in PB and LN displayed a
transcriptional program reminiscent of a more central CCR7+

memory-like phenotype, while retaining tissue-homing receptors
(i.e. CLA, CCR10) (172). Nonetheless, evidence of CCR7 protein
expression in MF samples is scarce. Kallinich et al. analyzed
expression of several CKRs in MF (165). They studied CCR7
expression in skin biopsies from six patients with early disease
and six patients at the tumor stage. Using IHC, they found no
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expression of CCR7 in any tested sample, however, two skin
samples of advanced disease showed strong and uniform
expression of CCR7 on tumor cells by flow cytometry. A more
recent study reported CCR7 expression in 62% (13/21) of
specimens as per IHC, and indicated that CCR7 expression
strongly correlated with subcutaneous extension of lymphoma
cells (173). The CCR7-expressing MF cell line MyLa shows
enhanced in vitro migration towards CCL21 in an mTOR-
dependent manner (161) and through up-regulation of
metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) (174), a long noncoding RNA that is also associated
with migration of several solid tumor types (175). These authors
also concluded that CCR7 promotes subcutaneous involvement
of MF. In agreement, total RNAs from skin biopsies of epidermis
versus those from involved dermis of MF associated the presence
of tumor cells in the dermis with the CCR7/CCL21 axis (161).
Accompanying IHC analyses confirmed that expression of CCR7
was high in infiltrating lymphoma cells. It also demonstrated
CCL21 in the cytoplasm of epidermal keratinocytes and to be
diffusely distributed in the dermal extracellular matrix.

3.2.5 Sézary Syndrome (SS)
SS is a mature systemic T-cell malignancy in which skin-homing
T-lymphocytes also accumulate in PB and LN. Patients are
highly symptomatic (e.g. pruritus, staphylococcal infections)
and prognosis is poor with a median of survival of 63 months
(166, 167). Despite increasingly better knowledge on disease
biology, currently applied therapies show short-lived responses
(168). By convention, SS has been regarded as a systemic variant
of MF based on identical cytologic and immunophenotypic
features. In addition, long-standing MF may subsequently
develop into a secondary SS-like disease that exhibits
circulating neoplastic cells, indistinguishable from those of
primary de-novo SS. Nonetheless, several studies provide clues
to consider SS and MF as two separate entities. First, patients
with primary SS typically experience a more aggressive disease
course, characterized by frequent involvement of LN (166–168).
Second, MF and SS tumor cells show different molecular and
CKR profiles (176–178). SS is thought to arise from expansions
o f ma tu r e l ong - l i v ed CD4+CD7 - T - c e l l s w i th a
CD45RO+CD27+CD62L+ TCM phenotype accompanied by a
consistently high CCR7 mRNA and protein expression,
whereas CCR7 expression in the predominantly TEM cells from
cutaneous MF lesions is controversial (165, 178–182).
Admittedly, biases by the different sources of sampling, e.g.
skin preferentially for MF versus blood and LN for SS might
attribute to the observed differences.

Although CCR7 gene expression could not be significantly
correlated with lymphoid organ involvement or patient survival
in SS (179), it appears plausible that production of CCL19 and
CCL21 by stromal and endothelial cells in lymphoid tissues
contributes to the lymphotropism of SS cells. In support, the
chemokine CXCL13, mainly produced in lymphoid tissues,
promotes a synergistic CCR7-mediated migration that was of
higher efficiency in SS cells than in normal T-cells (183).
Additionally, CCR7 activation enhanced invasion by
modulating adhesion and secretion of metalloproteases in
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clinical samples and in SS cell lines (183, 184). CCR7-induced
integrin activation and metalloprotease secretion are processes
that in other CCR7-expressing blood cancers are known to be
required for CCR7-mediated TEM and for homing (35, 130).

Epidermotropism and tumor growth within the skin
environment of SS are features that had been attributed to
CCR7 function, but the exact mechanisms are poorly
characterized. A first report found no function for CCR7 in
promoting in vitro survival or proliferation of primary SS tumor
cells (183). Another study on a cohort of 43 SS cases found
contradictory results (169). This more recent investigation
demonstrated that overexpressed CCL21 (and CXCL12) in
skin tissue induced activation of PI3K/AKT/mTORC1
signaling in skin-resident SS cells. SS samples frequently show
a recurrent loss of the phosphatase PTEN (phosphatase and
tensin homolog) and the liver kinase B1 (LKB1) (169), two
proteins that under normal conditions attenuate upstream
activation of mTORC1 in low energy conditions (185).
Therefore, these defects might result in a constitutive TORC1
activation that promotes protein translation and a metabolic
shift from oxidative phosphorylation (mainly observed in
quiescent/memory lymphocytes) toward aerobic glycolysis
(typically observed in activated lymphocytes) (185). This
increase in glucose demand (also known as Warburg effect)
might be energetically beneficial during the recruitment of SS
cells to skin and/or LN by CCL21, with the latter being able to
further enhance mTORC1 activation and by that SS cell growth
(169). Indeed, among other, in part stronger stimuli such as IL-2/
IL-7, CCL21-mTORC1 also promoted up-regulation of the Ki67
proliferative protein in SS-derived cell lines and in primary SS
cells (169).

3.2.6 T-Cell Large Granular Lymphocytic
Leukemia (T-LGL)
T-LGL is characterized by the chronic low-level expansion of
mostly CD8+ T-cells in blood, BM, and spleen. Nodal disease is
infrequent. T-LGL cells express pan-T-antigens, programmed
cell death 1 (PD-1), some NK-cell associated molecules, cytotoxic
granules (containing perforin and granzymes) and lack the CD28
co-stimulatory receptor. Detection of CD45RA and further
markers of T-cell differentiation suggest a terminally
differentiated effector memory (TEM-RA) phenotype (128, 186–
188). TEM-RA cells are featured by the absence of CCR7, and
accordingly, most T-LGL cases in these studies did not show
tumor cell expression of CCR7.

3.2.7 Other T-Cell Malignancies
In other types of T-cell neoplasms such as peripheral T-cell
lymphoma not otherwise specified (PTCL-NOS), extra-nodal
NK/T-cell lymphoma (ENKTL), anaplastic large cell lymphoma
(ALCL), and angioimmunoblastic T-cell lymphoma (AITL)
expression of CCR7 remains poorly studied and controversial
(including the source of expression, namely tumor cells versus
local bystander cells). Two studies in a total of 41 ALCL patient
samples and in 7 ALCL cell lines found the anaplastic-lymphoma
kinase (ALK)-negative ALCL variant to overexpress CCR7 genes
(compared toALK-positiveorprimary cutaneousALCL) (116, 189)
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while another series on LN biopsies associated ALCL to a
CD4+CD45RO+CD27- TEM phenotype that lacks CCR7 (190). In
contrast, PTCL-NOS showed CCR7 expression as part of its TCM

signature (190). However, gene expression profiles showed no
upregulation of CCR7 transcripts in PTCL-NOS as compared to
normalT-cells; as also observed forAITL (191).A subsequent study
reported expressionofCCR7by IHC inanoverall of83%of samples
that contained PTCL-NOS, ENKTL, ALCL, andAILT, but without
disclosed resolution for the proportions of CCR7 positive cases per
entity (184). Despite this shortcoming, this work corroborated the
expression of CCR7 in a high proportion of mature T-cell
malignancies and, importantly, significantly associated CCR7
staining with lymphatic or hematogeneous dissemination as well
as with clinical stage. As in B-cell malignancies, constitutive
activation of the transcription factor AP-1 is a proposed
mechanism underlying CCR7 overexpression and CCR7-
mediated cell survival in some of these conditions, particularly
ALCL (117).

In other, very rare T-cell lymphomas, studies on CCR7 have
been sporadically reported. In a case of primary cutaneous
aggress ive epidermotropic CD8+ T-ce l l lymphoma
transformation from an indolent to an aggressive phase was
accompanied by a shift to CCR7 expression (177). A case of
enteropathy-associated T-cell lymphoma (EATL) showed no
lymphoma-cell associated CCR7 (178), fitting its cytotoxic T-cell
nature, similar to CCR7-negative T-LGL.

3.2.8 Natural Killer (NK) Cell-Type
Lymphoproliferative Diseases
NK-cell cancers can be subdivided into aggressive NK cell
leukemia (ANKL) and indolent chronic NK cell lymphocytosis
(CNKL), both characterized by leukemic infiltration into
multiple organs (192). In a cohort composed of PB samples of
nine ANKL and six CNKL cases several CKR were investigated
by flow cytometry (193). In both types of leukemia, CCR7 was
detected in a small proportion of tumorous NK-cells (<25%), a
lower proportion than the relative number of CCR7-positive
NK-cells the authors found in six healthy controls. Together,
these results suggested that CCR7 might not play an important
role in the pathophysiology of ANKL or CNKL.

3.3 CCR7 in Myeloid-Cell Malignancies
Description of CCR7 in myeloid-cell derived cancers is anecdotal
and, as opposed to lymphoid disorders, myeloid neoplasms seem
to be mainly characterized by downregulated CCR7, although
this aspect still remains controversial.

3.3.1 Myelodysplastic Syndrome (MDS)
MDS constitutes a heterogeneous group of clonal hematopoietic
stem cell diseases that share ineffective hematopoiesis, increased
risk of developing acute myeloid leukemia (AML), and
augmented prevalence of immune deregulation. To our
knowledge no studies have addressed the expression or
functions of CCR7 in myeloid cells from MDS patients. A
comparative study of a cohort of 33 MDS, a condition with a
known prominent inflammasome, patients with healthy controls
found that in MDS CD8+ T-cells exhibited decreased levels of
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CCR7 and a concomitant upregulation of CCR3, CCR5, or
CX3CR1 (194). Hence, a central pathogenic relevance of CCR7
and other CKR in MDS still has to be shown.

3.3.2 Acute Myeloid Leukemia (AML)
AML is a heterogeneous group of aggressive proliferations with
variable genetic make-up and differential responses to therapy
(195). In clinical practice, CCR7 is sporadically detected by flow
cytometry in AML samples from PB and BM in a small
proportion of tumor cells (unpublished data). In agreement,
CCR7 mRNA is not highly abundant in AML in several
transcriptome analyses (14, 16, 196, 197). Only one study
reported CCR7 transcript over-expression (~3-fold) in 148
human AML samples as compared to 12 samples of normal
cord blood-derived CD34+CD45RA- cells (198). Protein
expression to confirm high membrane levels of CCR7 was not
studied. Potential associations of CCR7 mRNA with the most
frequent genetic aberrations were also not investigated (198).

3.3.3 Blastic Plasmacytoid Dendritic
Cell Neoplasm (BPDCN)
BPDCN is a rare and clinically aggressive hematologic tumor
derived from cells of immature PDC differentiation (199). The
clinical course of BPDCN shows progressive systemic expansion,
partially attributed to the local production of chemokine ligands
of CKR expressed by the tumor cells (CXCR3, CXCR4, CCR6,
CCR7) (200). Beyond expression data, no clues are available on
the pathogenic roles of CCR7 in BPDCN.

3.3.4 Langerhans Cell Histiocytosis (LCH)
In LCH pathological CD207+ DC show constitutively activated
MAPK pathway signaling. In in vivo and in vitro models, the
B-raf V600E activating mutation impaired the Raf/ERK-
mediated CCR7-induced migration of DC (201). This in turn
caused their retention in the tissue lesions and, by promoting
expression of BCL2-like protein 1 (BCL2L1), this resulted in
enhanced resistance to apoptosis.

3.3.5 Myeloproliferative Disorders
Chronic myeloid leukemia (CML) is a clonal disease
characterized by premature release of aberrant cells from the
BM alongside their substantial accumulation in PB, spleen, and
BM (202). In CML, the presence of the Philadelphia chromosome
and its oncogenic product, the fusion oncoprotein BCR/ABL, is
directly linked to multiple pathways involved in cell survival,
growth promotion, and disease progression (203, 204). Similarly
to LCH, an impaired adhesion and motility towards CCR7 was
first reported for CML cells (14, 205) though this effect remains
controversial since more recent reports showed in vitro and in
vivo how a positive activation loop between BCR-ABL and the
signal-transducing adaptor protein-2 (STAP-2) led to enhanced
ERK signaling resulting in overexpression of CCR7, LN
enlargement, and hepatosplenomegaly (203, 204). Whether
these contradictory outcomes are a result of differential in vitro
versus in vivo settings, or a consequence of artifacts associated to
the use of cell lines versus primary tumor cells, needs clarification.
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4 PATHOPHYSIOLOGICAL ROLE OF CCR7
IN HEMATOLOGIC MALIGNANCIES

Chemokines obey Stephen Paget’s ‘seed and soil’ paradigm,
proposing that the microenvironments of different organs are
different from each other, and that certain tumor cells have
specific attraction to the milieu of specific organs (206). As
reviewed above, CCR7 is a single receptor driving immune
cells into LN, and for this reason this receptor assumes a
central role in the pathogenesis of many leukemia and
lymphomas, which very often express CCR7 due to their
lymphoid or myeloid origin (Table 1).

In lymphoid malignancies, the role of CCR7 in hallmark
deregulations of cancer such as enhanced migration or death
resistance, can be associated to functional differences between
CCR7-expressing normal and malignant cells. In some cases,
gain-of-function in CCR7 is a consequence of an upregulated
transcription and/or protein translation (Figure 1). For example,
tonic signaling through the BCR or CD40 activates transcription
factors such as NFATC1, NF-kB, and AP-1, which target the
CCR7 gene, a mechanism found in CLL and B-ALL (22, 23, 42,
54–56, 208, 211). Similarly, CD30 down-stream signaling seems
to increase CCR7 gene transcription in cHL and ALCL likely
through NF-kB and AP-1 (3, 115, 117). Moreover, constitutive
activation of the Notch1 oncoprotein increases CCR7 expression
in T-ALL through the mTORC2/NF-kB cascade (25, 133), or in
CLL through down-modulation of the DUSP22 phosphatase
levels and the subsequent increase in STAT3 activation (51). In
other instances, CCR7 up-regulation is promoted by a viral
machinery that suppresses CCR7 gene repressor factors like
CBF-1. This is described for the viral transactivator EBNA-2 in
BL and DLBCL (89, 91) and it could be hypothesized that a
similar mechanism governs HTLV-1-induced transformation in
ATLL. Notably, downregulation of CCR7 expression and
reduction of associated chemotaxis during viral infections,
have been reported (11, 212). The EBV (213), the murine
lymphocytic choriomeningitis virus (LCMV) (214), the human
immunodeficiency virus type 1(HIV-1) (215), or the influenza
virus (216) are examples of CCR7-downmodulating viruses. In
other cases, e.g. during HIV-1 infection, primary CD4+ T-cells
showed and enhancement of CCR7-mediated motility, leading to
efficient propagation of HIV-1 (217, 218). Based on this, one
might be tempted to associate these changes of the CKR
expression profile to particular needs of each virus’ cycle.
Therefore, discrepancies between outcomes in CCR7
expression after viral infections might be also a consequence of
distinct cell-to-cell aspects such as the time elapsed after cell
infection, the cell development stage at which the infection takes
place, or baseline CCR7 expression by host cell. For example, the
impact of in vitro EBV infection on CCR7 expression was very
different between tonsillar or PB B-cells, being milder (if at all) in
the last cell type (213). Moreover, the presence of additional
tumorigeneic events in the infected tumor cells may synergize
with the viral machinery to induce CCR7 gene expression (219,
220). In agreement, expression of CKR and chemokines in
immortalized cell lines differs from that of EBV-infected PB
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B-cells (89, 213) and different growth requirements, such as the
oestrogens, are known to positively regulate viral factors like
EBNA2, which subsequently activate CCR7 gene expression
(4, 213).

Finally, CCR7 up-regulation may be also promoted by
mutations in the C-terminal cytoplasmic region of CCR7 or
dysregulation of its endocytic machinery both affect receptor
Frontiers in Oncology | www.frontiersin.org 11
turn-over. For example, in ATLL or CLL cells impaired
internalization upon ligand stimulation results in increased
surface receptor expression (43, 46, 162, 163). Whatever the
underlying reasons for the upregulation of CCR7, in the majority
of diseases that are reviewed here, all these events lead to
increased numbers of functional receptors at the surface of the
tumor cells, which endows them with an increased migratory
TABLE 1 | Summary of blood cancers with reported CCR7 expression studies (following 2016 WHO classification of blood neoplasms) (207).

CCR7

GEP Protein

Lymphoid
neoplasms

Precursor lymphoid
neoplasms

B-ALL and B-lymphoblastic lymphoma -/+ -/+
T-ALL and T-lymphoblastic lymphoma + +

Mature B-cell neoplasms Chronic lymphocytic leukemia/small lymphocytic lymphoma + +
Monoclonal B-cell lymphocytosis na +
Splenic marginal zone lymphoma – –

Hairy cell leukemia – –

Lymphoplasmacytic lymphoma/Waldenström macroglobulinemia na -/+
Monoclonal gammopathy of undetermined significance – na
Plasma cell myeloma – -/+
Plasma cell myeloma variants Smoldering myeloma – na

Non-secretory myeloma na –

Plasma cell leukemia – na
Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT
lymphoma)

-/+ +

Nodal marginal zone lymphoma na na
Follicular lymphoma -/+ -/+
Primary cutaneous follicle center lymphoma -/+ na
Mantle cell lymphoma + +
Diffuse large B-cell lymphoma GCB type -/+ -/+

ABC type + +
T-cell/histiocyte-rich large B-cell lymphoma -/+ na
Primary diffuse large B-cell lymphoma of the central nervous system na +
EBV-positive diffuse large B-cell lymphoma -/+ na
Primary effusion lymphoma + na
Burkitt lymphoma -/+ +

Mature T- and NK-cell
neoplasms

T-cell prolymphocytic leukemia + +
T-cell large granular lymphocytic leukemia na –

Chronic lymphoproliferative disorder of NK cells na –

Aggressive NK-cell leukemia na –

Adult T-cell leukemia/lymphoma + +
Extranodal NK-/T-cell lymphoma na -/+
Mycosis fungoides + +
Sézary syndrome + +
Primary cutaneous CD30+ T-cell
lymphoproliferative disorders

Primary cutaneous anaplastic large cell lymphoma -/+ na

Primary cutaneous peripheral T-cell
lymphomas, rare subtypes

Pimary cutaneous CD8+ aggressive
epidermotropic cytotoxic T-cell lymphoma

na –

Peripheral T-cell lymphoma, not otherwise specified -/+ +
Angioimmunoblastic T-cell lymphoma -/+ -/+
Anaplastic large-cell lymphoma ALK-positive -/+ -/+

ALK-negative + +
Hodgkin lymphoma Nodular lymphocyte predominant Hodgkin lymphoma -/+ –

Classical Hodgkin lymphoma + +
Histiocytic and DC
neoplasms

Tumors derived from
Langerhans cells

Langerhans cell histiocytosis – –

Myeloid neoplasms Myelodysplastic syndromes na na
Acute myeloid leukemia and
related neoplasms

-/+ -/+

Blastic plasmacytoid dendritic
cell neoplasm

na +

Myeloproliferative neoplasms Chronic myeloid leukemia – –
October 2021 | Volume 11 |
 Article
ABC, activated B-cell like; ALK, anaplastic-lymphoma kinase; DC, dendritic cells; EBV, Epstein-Barr virus; GCB, germinal center B-cell like; GEP, gene expression profile; na, not available.
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capacity (13, 20, 35, 40, 46, 99, 115, 173). CCR7-mediated
migratory abilities can be selectively potentiated in leukemia/
lymphoma cells (as opposed to their normal counterparts) by
pre-exposure or co-incubation with other homeostatic
chemokines like CXCL12 or CXCL13, as demonstrated in
MCL, BL, or SS (78, 90, 183). Although in many entities the
molecular mechanisms of CCR7 upregulation remain unknown,
it is consistently found across various diseases, e.g. B-ALL,
T-ALL, or CLL. Therein, its overexpression is associated with
the presence of adverse prognostic factors, e.g. ZAP-70, which
seem to directly cooperate with CCR7 towards facilitation of
homing to survival niches such as LN or CNS (24, 38, 47). In fact,
in CLL ZAP-70 has been shown to govern integrin activation
upon CCR7 stimulation, in a G-protein independent fashion and
through oligomerization of four CCR7 molecules (58, 63).
Nevertheless, some associations of CCR7 expression with
markers of disease subsets, hence aggressiveness or outcome,
might be of indirect nature and just represent indicators of
Frontiers in Oncology | www.frontiersin.org 12
different inherent cellular programs (e.g. higher migratory
potential), as suggested for the histogenetic subsets of CLL
with unmutated IGHV and/or with trisomy 12 that show
higher responsiveness to CCR7 ligands (35, 36, 38, 46, 47, 66).

Generally, in most blood cancers, CCR7 expression correlates
with nodal or spleen involvement. In the conditions of B-ALL,
MCL, T-ALL, or T-PLL it is also associated with infiltration of
the CNS and in CTCL it correlates with the degree of
epidermotropism (21, 24, 25, 130, 134, 161, 169, 221, 222).
Therefore, it is consistently proposed that overexpression of
CCR7 confers an invasive phenotype that contributes to
lymphatic and hematogenous spread and promotes homing
into target tissues (Figure 2). This CCR7+ transmigrating
phenotype is further characterized by activation of a4b1 and
aLb2 integrins that facilitate adhesion of malignant cells to HEV
or stromal proteins, and that promote the secretion of matrix
metalloproteases MMP-2 and/or MMP-9, which degrade
extracellular matrix (35, 58, 64, 130, 157, 183, 184). Both
FIGURE 1 | Causes and modes that underlie CCR7 overexpression in blood cancers. Overview of proposed signaling cascades with reported data. (A) CCR7
upregulation may be promoted by EBV. In BL and DLBCL cells, following viral endocytosis, the virion and packaged proteins are released into the cytoplasm. The
viral transactivator EBNA-2 binds to and inhibits the CCR7 gene repressor factor CBF-1 (also known as RBP-Jk) thus promoting CCR7 gene transcription (4, 89,
91). (B) In B-cell malignancies (CLL, B-ALL) tonic signaling through the BCR activates transcription factors such as NFATC1, NF-kB, and AP-1, which target the
CCR7 gene (42, 54, 56). (C) When engaged by CD40L, the receptor CD40 recruits tumor necrosis factor receptor-associated proteins (TRAF) to the membrane,
which initiate different signaling pathways leading to activation of NFkB or AP-1 (22, 23, 208, 209). (D) In cHL and ALCL, binding of CD30L (CD153) or sCD30 to
CD30 can result in trimerization and signal mediation through TRAF proteins to stimulate the NFkB pathway resulting in CCR7 gene expression (3, 210). In addition,
CD30 can signal through MAPK pathways, including ERK1/2 and the nuclear transcription factor AP-1, all leading to enhanced CCR7 transcription (3, 115, 117).
(E) In T-ALL cells, release of intracellular Notch1 (ICN1) from membrane-tethered heterodimeric Notch1 protein upregulates PI3K/mTORC2/NF-kB pathways and
activation of the CCR7 gene (25, 133). In CLL cells, activating mutations in Notch1 intracellular domain favor the downmodulation of DUSP22 phosphatase thus
facilitating the accumulation of activated STAT3 which mediates CCR7 gene transcription (51). (F) Mutations in the C-terminal amino acid Trp355, located in the
cytoplasmic region of CCR7, impair internalization upon ligand stimulation resulting in increased expression of the surface receptor in ATLL cells (162, 163).
(G) Dysregulation of the endocytic machinery of CCR7, e.g. in CLL, impacts receptor turn-over and increases CCR7 membrane expression. Deficiency of the
cytoplasmic p66Shc protein causes enhanced activity of the PP2B/calcineurin phosphatase on the endosomal CCR7 pool, which enhances its recycling back to the
plasma membrane (43, 46).
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FIGURE 2 | Pathophysiological roles of CCR7 in blood cancers. Shown are different tissues and ways in which the receptor contributes to disease progression.
(A) Following CCL21 gradients, CCR7-expressing tumor and accessory cells enter into target tissues through high endothelial venules (HEV, in LN and other SLO),
afferent lymphatic vessels (in LN), or endothelial cells (BM, spleen, skin, CNS) (8–10, 24, 25, 104, 130, 134). CCL21 on the surface of endothelial cells (EC) activates
a4b1 and aLb2 integrins thus facilitating transmigration (35, 58, 64, 130, 157). (B) Subsequently, activated CCR7 promotes invasive phenotypes that secrete
metalloproteinases 2 and 9 (MMP-2/9) and promotes extracellular matrix (ECM) degradation (64, 130, 183, 184). (C) Within the tissue, CCR7 drives interstitial
migration of tumor cells to distinct sites such as T-zones or B-zones in spleen and LN (9), or to lymphoid-like (tertiary) structures in skin or CNS (104, 169). Some
tumor cells have inherent abilities to migrate towards CCL19/CCL21 gradients whereas others need cooperative signaling by other chemokines (e.g. CXCL12 or
CXCL13) or a previous stimulus, such as exposure to CD40L, to initiate this process (20, 22, 23, 78, 90, 183, 209). (D) CCR7-driven interstitial migration assists
tumor cells in their right positioning adjacent to accessory cells such as CD40L+CD4+ TH cells, DC, and stromal cells (SC) which foster growth and resistance to
spontaneous or drug-induced cell death (9, 68). Cross-talk with accessory cells induces the release of CCL19 and CCL21 (9, 25, 134) directly promoting survival
and proliferation of tumor cells via MAP-kinase and PI3K signaling pathways (9, 40, 70, 223). CCL19 can also act in cooperation with CXCL13 to confer resistance
to TNF-a-mediated apoptosis via up-regulation of PEG10 (26, 27). Other pro-tumor factors delivered by accessory cells include the Indian hedgehog (Ihh) secreted
by fibroblastic reticular cells (FRC) and CD40 stimulation through CD40 ligand-expressing CD4+ TH cells (9). In turn, malignant cells secrete factors that stimulate and
protect accessory cells. One of these factors is lymphotoxin through which tumor cells stimulate lymphotoxin-b-receptor (LbR) expressing FRC (9). Finally, in these
niches enhanced production of CCR7 ligands establishes a self-enhancing loop that recruits more tumor and accessory CCR7-expressing cells favoring the
continuation of pro-tumor microenvironments (9, 25, 134, 161, 169, 221). (E) CCR7 ligands may attract CCR7+ immunosuppressive cells such as TREG and myeloid-
derived suppressor cells (MDSC) (224, 225). These suppressor cells inhibit anti-tumor effector cells (e.g. CTL) through cell-cell interactions or by creating a tolerant
milieu enriched in suppressor cytokines like IL-10 and tumor growth factor beta (TGF-b) (22, 28, 225, 226). Similarly, CCL19 and CXCL13 may synergistically
regulate CD40-CD40L cross-talk between cancer cells and CD8+ T-cells leading to a PEG10-mediated enhanced production of IL-10 in CD40-activated tumor cells
that inhibits tumor-specific CTL (28). Together, these CCR7-induced mechanisms facilitate permissive milieus within tumor target tissues. (F) CCR7 also prolongs the
time of residence of CCR7-expressing cells in lymphoid tissues (i.e. LN) thus favoring proliferative cycles and providing niches of escape from systemic therapies. In
the steady state, internalization of CCR7 activates the transcription and surface expression of S1P1, facilitating the egress of lymph-node-homed immune cells
through efferent lymphatic vessels (71). Tumor-associated overexpression of CCR7 impairs S1P1 upregulation thus retaining tumor cells within the LNs, reducing the
egress and causing lymphadenopathy (43, 46, 72). (G) In CNS, astrocyte-derived CCL19 attracts tumor cells and enhances their parenchymal retention thus
contributing to gliosis (24, 25, 104). Inside cerebral or spleen parenchyma, cross-talk between stromal cells and leukemic cells mediates the production of higher
levels of tissue CCL19 (25, 134) facilitating the infiltration of tumor cells. (H) In the skin, CCL21 in the cytoplasm of epidermal keratinocytes and to be diffusely
distributed in the dermal extracellular matrix may lead tumor cells to milieus enriched in growth factors such as CXCL12, IL-13 or antigens able to entertain chronic
T-cell receptor stimulation (169).
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events result in transmigration of tumor cells into protective
niches at which, particularly in T-zones, CCR7 contributes to
disease progression in four major ways:

1) In ‘homing’ tumor cells, CCR7 drives interstitial migration
within the tissue and assists in optimal positioning, e.g. adjacent
to accessory cells such as CD40L+CD4+ TH cells, DC, and
stromal cells, which foster growth and resistance to
spontaneous or drug-induced cell death. As described, this
positioning can be controlled by local factors including
gradients of CCR7 ligands (9, 69, 104, 121), CD40-CD40L
interactions (9, 68), BCR/ZAP-70 signal transduction (38, 42),
or canonical WNT signaling (119).

2) Crosstalk with accessory cells can induce the release of high
levels of the chemokines CCL19 and CCL21, which engage and
activate CCR7 to provide pro-survival signals (9, 25, 134). In
addition, stromal cells can produce CCR7 ligands in a
constitutive manner (35, 46, 121, 161, 169, 223). Whatever the
source of CCR7 ligands, they promote survival, e.g. by acting as
trophic factors that induce MAPK and PI3K-AKT signaling (9,
25, 40, 70, 134, 223). They can also act in cooperation with
CXCL13, which contributes to resistance to TNFa-mediated
apoptosis preferentially in malignant over normal B-cells, via
upregulation of PEG10 and stabilization of caspases-3 and -8 (26,
27). In some entities, e.g. MCL, T-PLL, or SS, CCR7 ligands have
also shown to trigger proliferation (21, 130, 169).

3) Besides promoting influx, CCR7 (together with S1P1) also
contributes to LN enlargement by regulating egress from
lymphoid tissues, hence accumulation. It prolongs the time of
residence of CCR7-expressing cells in lymphoid tissues, by that
favoring proliferative cycles and providing niches of escape from
systemic therapies. In CLL, the characteristic high expression of
CCR7 can be attributed to abnormalities in the surface
membrane recycling machinery as a consequence of
abnormally low production of the cytoplasmatic p66Shc
protein (43, 46). Deficiency of the cytoplasmic p66Shc protein
causes enhanced activity of the PP2B/calcineurin phosphatase on
the endosomal CCR7 pool, which enhances its recycling back to
the plasma membrane. Likewise, ATLL cells carry mutations in
the C-terminal cytoplasmic domain of CCR7 that impairs proper
recycling (162, 163).

4) CCR7 participates in the creation of permissive tumor
microenvironments within tumorous target tissues (SLOs, CNS,
or skin). As part of the involved tissue interactions between
tumor cells and stromal or other accessory cells, an increased
production of CCR7 ligands is stimulated (9, 25, 134). For
example, cooperative CCR7/WNT signaling is needed for
secretion of VGEF-A by cHL cells, which leads to de novo
generation of vascular endothelium which, in turn, presents
CCR7 ligands that direct movement of cHL towards vascular
niches (119). Similarly, BL cells can secrete lymphotoxin through
which they stimulate lymphotoxin-b-receptor expressing gp38+

FRC that secrete the survival factors Ihh and CCL21 (9). These
patterns and higher amounts of chemokines establish a feed-
forward loop that not only recruits additional CCR7-expressing
malignant cells, but also further supportive bystander cells (9, 25,
105, 134, 161, 221). Moreover, in B-ALL CCR7 ligands potentiate
Frontiers in Oncology | www.frontiersin.org 14
secretion of immunosuppressive IL-10 by tumor cells leading to
impaired specific anti-tumor CTL responses (28). CCR7 can also
recruit regulatory cells that hamper anti-tumor immunity. For
example, an increase of functional TREG has been established for
patients with blood cancers (226). Expansion of TREG is needed
to generate and sustain a tolerogenic TME (227). Indeed, higher
numbers of TREG associate with progressive disease in cHL, CLL,
MGUS, MM, or DLBCL (228–232).
5 BIASED SIGNALING OF CCR7 LIGANDS
IN BLOOD CANCERS

In the field of GPCRs, knowledge on the diversity in signaling
pathways has promoted the concept of “biased signaling”, which
involves a context-specific preference for one intracellular
signaling pathway over another (233). This concept can be
considered as either receptor bias (the same ligand has
different actions through different receptors), ligand bias (more
than one or naturally modified ligands act on the same receptor
and induce different outcomes), or tissue bias (the cellular effect
depends on the tissue/cell type) (234). How biased signaling
enables different downstream pathways that eventually will
determine the overall outcome of CCR7 engagement in
different immune cell types has been recently, and deeply,
reviewed by Hauser et al. (11). The role(s) of biased signaling
of CCR7 in the pathophysiology of blood cancers is not clear,
although a scarce number of studies comparing CCR7 activation
in healthy versus malignant cells indicate that a differential
regulation is plausible. For example, in CLL we demonstrated
that PI3K and ROCK, but not MAPK, were involved in
migration of CLL cells toward CCL19 and CCL21, whereas
normal B-cells relied more on PI3K, ROCK, and p38-SAPK
pathways (40). Moreover, while CLL cells showed an enhanced,
similar migratory response to both CCR7 ligands, normal B-cells
showed a moderate response, and preferentially towards CCL21
(13, 35, 40, 46). Likewise, CLL and normal B-cells showed a
different signaling to migrate through the endothelium (35, 235).
Finally, it is worth mentioning that in the last years CCR7 has
been shown to form heterodimers with CXCR4 (217). This
process affects CCR7 signaling and might explain a poorly
understood, but important, mechanism of chemokine biology
that allows synergistic and/or inhibitory outputs produced by
simultaneous activation or inhibition of multiple CKRs.
Interestingly, CCR7/CXCR4 dimers may enhance tumor B-cell
homing to LN by potentiating the TEM upon simultaneous
exposure to CXCL12, CCL19, and CCL21 (90) while in healthy,
mature B-cells CCR7 acts as a selective allosteric modulator that
inactivates CXCR4 thus impairing retention in the BM (236).
Together, these findings support the existence of a functional and
phenotypic diversity as a result of a biased signaling of CCR7 in
homeostasis and blood cancers. Nonetheless, other studies show
identical mechanisms in both healthy and neoplastic cells. For
example, CCL19-specific translation of S1P1 is mediated by ERK-
5/Krüppel-like factor-2 in the HuT78 SS cell line and healthy
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primary T-cells (237). Therefore, additional comparative studies
addressing biased signaling in both healthy and tumor tissues are
mandatory to better understand the pathophysiological roles of
these regulatory mechanisms in CCR7 and other CKRs.
6 CCR7 AS A THERAPEUTIC TARGET IN
BLOOD CANCERS

The circumstantial and direct evidence presented in this review
suggests that the tumor-associated CCR7-ligand interaction is an
actionable vulnerability. At CCR7-ligand permissive sites, e.g.
LN or brain, malignant cells evade spontaneous or drug-induced
apoptosis as well as escape immune cell control or proliferate, all
in a CCR7-mediated manner. Therefore, interfering in CCR7-
signalling promises to be of therapeutic potential in many CCR7
expressing and CCR7 promoted blood cancers. Nonetheless,
targeting CCR7 in cancer has the potential downsite of
activating and/or potentiating alternative pathways that would
eventually allow homing of tumor cells to protective niches. For
instance, to adhere to HEVs of peripheral and mesenteric LNs
T-cells rely on CCR7 and partially on CXCL12/CXCR4 whereas
normal B-cells can exploit the CXCR4 and CXCL13/CXCR5 axes
to induce integrin-mediated arrest on HEVs and homing to the
LN (238–243). To avoid this scenario, it is desirable that anti-
CCR7 drugs feature a double MOA including both,
neutralization of the target and tumoricidal capacities. In this
regard, we and others have demonstrated that approaches based
on we and others have demonstrated that approaches based on
blocking (non-activating) monoclonal antibodies (mAbs) that
target CCR7 or its ligands, are highly effective in in vitro and in
vivo preclinical models, including B-ALL (24), CLL (37, 40, 45),
MCL (21), T-ALL (24, 25), or T-PLL (130). In these studies, such
anti-CCR7 therapies reduced tumor cell migration and
infiltration into CCR7-specific environments and additionally
impaired survival/proliferation. Overall, the combined
neutralizing and killing activities of anti-CCR7 mAbs led to
retarded tumor implantation, reduced tumor burden, and
significantly extended host survival in in vivo models.

Taken together, there is ample data on target expression and
mechanistic rationales as well as sufficient proof of principle and
feasibility data that strongly encourage the therapeutic
application of anti-CCR7 therapies in blood cancers.
Consequently, first clinical-grade anti-CCR7 antibodies have
been developed during the last years. Novartis is enrolling
patients into a phase-I trial with JBH492 an antibody-drug
conjugate (ADC) targeting CCR7 (NCT042140704). Moreover,
Catapult Therapeutics presented first pre-clinical results of an
antagonist mAb called CAP-100 that will be evaluated in first-in-
human clinical trials in 2021 (NCT04704323) (244). In preclinical
settings, both compounds have shown to be highly effective as a
single agent and at least CAP-100 revealed the potential for
combinations with current standard-of-care drugs (245). Owing
to their particular MOA, antagonisticanti-CCR7 mAbs may be
likely combined with other standard-of-care drugs to obtain
Frontiers in Oncology | www.frontiersin.org 15
additive or synergistic effects while reducing the likelihood of
treatment resistances. For example, by blocking ligand-receptor
interactions, anti-CCR7 therapies may displace tumor cells out of
protective niches, forcing them to accumulate in blood where
they may become more accessible to other cytotoxic drugs such
antibodies against established targets (e.g. CD20, CD30, CCR4,
etc), or chemotherapeutics (e.g. fludarabine), or small molecule
inhibitors (e.g. BCL2 inhibitors). Along with the BTK inhibitor
ibrutinib or with the PI3Kd inhibitor idelalisib, anti-CCR7 mAbs
would additively or synergistically target CCR7-mediated
adhesion to lymphoid stroma or endothelium, thus favoring an
enhanced cell egress from lymphoid tissues into circulation (44,
46, 48, 246). In fact, we have recently demonstrated that CCR7
expression and functionality is not impaired during ibrutinib
treatment in CLL patients and that the anti-CCR7 CAP-100 and
ibrutinib show complementary activities (245). Moreover, while
the antibody would block recirculation and loops of LN homing,
ibrutinib would also interfere with CXCR4- and CXCR5-
mediated signaling and with the production of chemokines
(CXCL12, CXCL13, CCL19) by myeloid stroma cells (44, 247),
thus acting against potential redundant chemotactic pathways.
Finally, it is worth mentioning that immune checkpoint
blockade and CAR-T-cells have revolutionized the field of
cancer therapy during the last decades. Whether anti-CCR7
therapy may complement such treatments is uncertain since for
avoiding negative interactions it seems necessary that therapeutic
T-cells to express an effector or effector memory CCR7-
negative phenotype.

Given the various roles in tumor development and
progression, adhesion molecules are promising targets to block
the access of tumor cells to tumor-permissive niches like the LN
(248, 249). For instance, LFA-1 and VLA-4 are involved in the
development of hematological malignancies and tumor cells
require their expression to migrate into lymphoid tissues (250,
251). Therefore, it is plausible to speculate that targeting these
leukocyte adhesion molecules might be an alternative way to
target the CCR7 axis. Like anti-CCR7 assets do, targeting cell
adhesion exerts direct effects to the tumor cell (e.g. reduction of
motility, invasiveness, and proliferation) that may impair
homing to SLO (252, 253). In addition, cell adhesion molecules
are common downstream players activated by several CKRs,
including CCR7 (254), hence, their inhibition would potentially
inhibit CCR7 along with several other receptors, thus
overcoming the redundancy of CKRs (255). Yanguas et al.
showed in murine melanoma models that an increased number
of intra-tumorally injected tumor-specific T-cells migrated into
the draining LN when treated with anti-ICAM-1 or anti-LFA-1
mAbs (256). This indicates that specific approaches, such as anti-
CCR7 mAbs, are needed to block LN homing. Moreover, since
integrins play diverse roles in immunity and anti-tumor
responses, targeting the function of these molecules in vivo
may be a difficult task in cancer therapy (254, 257, 258).
Accordingly, multiple clinical trials that involve the targeting
of aV or b1 integrins have shown disappointing results with low
therapeutic efficacies (249), while anti-LFA-1 strategies have
been associated with an increased risk of malignancies,
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infections, and rare, but severe, systemic adverse events such as
immune-mediated thrombocytopenia and hemolytic anemia
(259, 260). To overcome these deleterious effects, novel
approaches aiming to target the integrin and/or ligands on
tumor cells or tumor vessels, but not in immune cells, are
needed. Bispecific antibodies simultaneously directed against
LFA-1 and a tumor specific antigen may contribute to
specifically block LFA-1-mediated tumor cell adhesion without
affecting immune responses, as shown in mice (261). Since
targeting CCR7 shares both overlapping and differentiating
MOAs with such therapies that target adhesion, combining
both of these strategies could provide clinical benefits and
needs to be further investigated.
7 SAFETY OF NOVEL THERAPIES
TARGETING CCR7 IN BLOOD CANCERS

Currently, two clinical trials aim to validate anti-CCR7
approaches in hematologic diseases with an urgent need for
more rationally based and efficient therapies. These studies will
also allow us to learn the real risks that are associated with
blocking CCR7 and/or depleting CCR7-expressing immune cell
subsets as this receptor is critical for activation steps in the
adaptive immune system and for the homeostasis of TREG,
which limit self-reactive events and autoimmunity (262). In one
hand, several mouse models revealed that deficiency of CCR7
signaling was not a life-threatening condition, as it was
associated with a moderate impact on immunity by retarded,
but preserved, T-cell and B-cell responses (8, 240, 263–265),
especially against infections with replicating antigens (266–
269). However, in different vaccinations approaches (e.g. HIV,
HSV, or HCV) adjuvant CCL19 was relevant for augmenting
the trafficking of T-cells and DC (270–272). Therefore, anti-
CCR7 therapy may reduce priming of antigen-specific T-cells
and the production of Abs in a virus-dependent manner. From
pre-clinical models, we know that the use of anti-CCR7 mAbs
selectively inhibited and/or depleted tumor cells while sparing
healthy counterparts (37, 45, 244, 273, 274). Notably, CD4+ TN

and TCM cells were preferentially impacted while other CCR7-
expressing subsets such as DC or B-cells were not. Lower target
density in non-tumor cells or lower affinity of these antibodies
for CCR7 expressed in these cell types could explain these
observations which also suggests that anti-CCR7 therapy might
impair new immunization processes dependent on TN cells, but
not memory effector responses against infections (273–275). In
this regard, CCR7-negative TEFF and TEM rather than CCR7-
expressing TN or TCM are necessary for effective anti-tumour
responses (276). Moreover, naïve tumor-specific CD8+ T-cells,
which seem less susceptible to anti-CCR7 therapy (244, 273,
274), can also become activated and gain effector-cell
phenotypes directly at the tumor site, suggesting that cross-
presenting DC are also able to prime CD8+ T-cells within the
tumor (277). These results indicate that DC migration into LN
may not even be completely necessary for DC-mediated anti-
tumor responses.
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Targeting CCR7 could also affect B-cell homing during
antigen-dependent and independent B-cell differentiation;
however, CCR7-deficient mice show splenic B-cell responses
upon bacterial challenge (240). In addition, normal B-cells are
less dependent on CCR7 than leukemic cells for the arrest on
HEVs and for homing (71, 238, 278) while BM B-cell precursors
and plasma cells lack CCR7 (13), suggesting that CCR7 therapy
would not suppress B-cell lymphopoiesis nor immunoglobulin
secretory function (8, 240).

Related to unwanted autoimmune side-effects, lack of CCR7
signaling in TREG hampered central and peripheral tolerance
(224, 279–282) and led to generalized multi-organ
autoimmunity. Whether anti-CCR7 therapies will resemble
phenotypes in CCR7-deficient animals will remain unknown
until first evidence in patients becomes available. Until then,
clinical results with the therapeutic antibody mogamulizumab
(which removes CCR4+ T-cell subsets, including TREG) (283)
allow us to speculate that anti-CCR7 can be safe and well-
tolerated. In line with this, anti-CCR7 therapy in pre-clinical
syngeneic mouse models of cancer, autoimmunity, GVHD, or
inflammation did not uncover treatment-associated side effects
(225, 273, 275) and CAP-100 toxicology studies in NHP did not
reveal overt toxicities or autoimmune disease, all indicating
superior tolerability of this novel therapy (244). In the coming
months, first data in patients receiving a chronic administration
of an anti-CCR7 mAb will be available and, hopefully, results
from clinical studies will shed light into the safety and utility of
targeting CCR7, and more importantly, will validate anti-CCR7
approaches in hematologic diseases with an urgent need for more
rationally based and efficient therapies.
8 CONCLUSIONS

Classically, the pathogenic role of CCR7 as a cancer-associated
receptor in hematology has been attributed to its unique ability to
drive tumor cells into the LN and other SLO. Accordingly, CCR7
expression has been strongly linked to bulky disease in these
lymphoid tissues. Nonetheless, this canonical (and somehow
narrow) view of CCR7 as a migratory receptor is changing thanks
to recent evidence that supports additional pathogenic functions of
CCR7. Beyond cancer cell lymphotropism, we have disclosed that
CCR7 expression is also associated to neurotropism and
epidermotropism, to interstitial migration within tumor tissues,
to juxta-positioning to accessory cells, and to cell survival and
proliferation. Moreover, CCR7 also guides different accessory cell
types that are needed to create and preserve pro-tumor niches and
to protect cancer cells from spontaneous or drug-induced
apoptosis. Likewise, immunosuppressive cells take advantage of
CCR7 to locate themselves close to innate or adaptative anti-tumor
immune cells, thus facilitating their tolerogenic or their inhibitory
participation in the TME.

However, our knowledge on CCR7 biology in blood cancers is
still scant and additional efforts are needed to solve relevant
questions such as around the major mechanisms regulating
CCR7 (over)expression, how CCR7 contributes to tumor
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growth during the first tumorigeneic events, or what the exact
contributions of CCR7 in accessory cells in early cancer events or
during different stages of target tissue colonization are.

CCR7 is currently postulated as a potential therapeutic
target for some blood cancers and novel antibody(conjugate)-
based strategies targeting CCR7 are being evaluated in early-
phase clinical trials. It is also tempting to speculate that
modulation of CCR7 expression and signaling in therapeutic
lymphocytes might allow manipulation of the performance (e.g.
migratory potential, longevity) of T- or NK-cells carrying
chimeric-antigen receptors. If such direct or indirect
modulation of tumor-cell or milieu-derived CCR7-signaling
stands out as a promising approach it is likely that in the
coming years an extensive collection of novel evidence will help
to better understand its biology and to refine CCR7-based
translational applications.
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