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The proper initiation and occurrence of DNA synthesis depends on the formation and

rearrangements of nucleoprotein complexes within the origin of DNA replication. In

this review article, we present the current knowledge on the molecular mechanism of

replication complex assembly at the origin of bacterial chromosome and plasmid replicon

containing direct repeats (iterons) within the origin sequence. We describe recent findings

on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively,

and their sequence-specific interactions with double- and single-stranded DNA. Also, we

discuss the current understanding of the activities of DnaA and Rep proteins required

for replisome assembly that is fundamental to the duplication and stability of genetic

information in bacterial cells.
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INTRODUCTION

The replication of genetic material is one of the most fundamental processes that influence
the proper functioning of each living cell. The synthesis of new DNA molecule, in case
of both bacterial chromosomes and plasmids, starts at a well-defined place called origin
and can be divided into the following steps: (1) origin recognition by replication initiation
proteins and open complex formation (2) helicase loading, activation and primer synthesis
(3) replisome assembly and DNA synthesis. Although these main steps during the DNA
replication process are common, when considering replication of bacterial chromosomes
and iteron plasmids replicated by theta mechanism, some differences can be observed
(Table 1).

A DNA replication process of chromosome and plasmid DNA starts when Origin Binding
Proteins (OBP) recognize and bind specific motifs located within origin region. Despite the
differences in structure of bacterial and plasmid initiators, DnaA and Rep proteins, respectively,
they have the same function. Binding of initiators results in a modulation of nearby DNA
topology and opening of double-stranded helix structure in DNA unwinding element (DUE).
A single-stranded DUE region becomes a place where helicase is loaded. In the next step the
replisome is assembled and holoenzyme of DNA Polymerase III can play its role during DNA
synthesis.

Despite many years of research on DNA replication, new aspects of this process are
still being discovered. Recently, the novel activities of replication initiator proteins have
been shown. However, especially in case of plasmid DNA replication, there are many
questions concerning the replication initiation and replisome assembly that still need to be
answered.
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TABLE 1 | Comparison of general features of iteron plasmid and chromosomal DNA replication initiation.

Bacterial chromosome Iteron plasmids

Replication initiator DnaA Rep, DnaA

Binding sites for initiator Strong and weak DnaA-boxes DnaA-boxes for DnaA

Iterons for Rep

Weak binding sites ?

DNA binding domain of initiator DNA binding domain (DBD) AAA+ domain Winged Helix domain (WH)

Nucleotide binding by initiator + Rep protein ?

DnaA protein ?

Oligomer formation by initiator protein + Rep oligomers ?

Rep-DnaA oligomers ?

Binding of initiator to dsDNA + Rep protein +

DnaA protein + (in Pseudomonas spp. DnaA is dispensable)

Binding of initiator to ssDNA + Rep protein +

DnaA protein ?

Assistance of architectural proteins: IHF, HU More efficient oriC-dependent DNA replication More efficient plasmid origin-dependent DNA replication

HU is required for replication of some plasmids

Interaction of initiator with helicase DnaB + Rep +

DnaA +

ORIGIN RECOGNITION AND OPEN
COMPLEX FORMATION BY REPLICATION
INITIATION PROTEINS

Origin Recognition and Open Complex
Formation by Chromosomal Initiator at
Chromosomal Origin
The very first step of replication initiation process is the
recognition of specific motifs located within the origin region
of DNA molecule (Figure 1) by replication initiation proteins
(Figure 2, Stage I). The bacterial chromosome replication

initiator DnaA protein consists of four domains, which play

distinct roles (Sutton and Kaguni, 1997, Figure 3A). The best
characterized DnaA is the Escherichia coli protein (EcDnaA),

although structural data is limited only to domain I (resolved

by NMR-analysis; Abe et al., 2007b) and IV (resolved in a
nucleoprotein complex by crystallography; Fujikawa et al., 2003).

Information concerning the structure of DnaA initiator is

supplemented by structure of domains I and II of Mycoplasma

genitalium DnaA (MgDnaA; Lowery et al., 2007), domains I

and II of Helicobacter pylori DnaA (HpDnaA) in a complex

with HobA protein (Natrajan et al., 2009), domains III and
IV of Aquifex aeolicus DnaA (AaDnaA; Erzberger et al., 2002,

2006), domain III of Thermatoga maritima DnaA (TmDnaA;

Ozaki et al., 2008), and domain IV ofMycobacterium tuberculosis

(MtDnaA; Tsodikov and Biswas, 2011). Domain I of EcDnaA,
located at the N-terminus of the protein, was shown to be

involved in oligomerization of DnaA (Weigel et al., 1999;

Simmons et al., 2003; Abe et al., 2007a), helicase loading

(Sutton et al., 1998; Seitz et al., 2000), and interaction with
DiaA (Keyamura et al., 2007), HU (Chodavarapu et al., 2008a),
Dps (Chodavarapu et al., 2008b), and ribosomal protein L2
(Chodavarapu et al., 2011). The interaction with DiaA homologe,
HobA protein, was shown for domains I and II of HpDnaA
(Natrajan et al., 2007, 2009; Zawilak-Pawlik et al., 2007). In
Bacillus subtilis, domain I of DnaA (BsDnaA) interacts with
SirA, the sporulation-related protein (Rahn-Lee et al., 2011).
However, the binding partner proteins can vary among DnaA
orthologs, and replication initiator from one bacterium can
interact with different partners compared to other orthologs,
e.g., interaction of Thermoanerobacter tengcongensis DnaA with
NusG protein, is not observed for BsDnaA (Liu et al., 2008).
The second domain, forming a flexible linker, although it is not
essential (Messer et al., 1999; Nozaki and Ogawa, 2008), was
proposed to be involved in optimal helicase DnaB recruitment
(Molt et al., 2009). The domain II, links domain I with domain
III, which contains a common core structure of AAA+ proteins
family members (Neuwald et al., 1999). Recent data showed
that residues within this domain are engaged in interaction of
DnaA (TmDnaA, EcDnaA, AaDnaA) with single-stranded DNA
(ssDNA; Ozaki et al., 2008; Duderstadt et al., 2011). At the
C-terminus of DnaA, domain IV (DNA Binding Domain, DBD)
can be distinguished, which is responsible, via a helix-turn-
helix motif (HTH), for interaction with double-stranded DNA
(dsDNA) containing specific motifs named DnaA-boxes (Roth
and Messer, 1995; Fujikawa et al., 2003). Interaction with these
sequences is the very first step of the replication initiation process.
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FIGURE 1 | The minimal origins of DNA replication of (A) E. coli

chromosome and (B) RK2 plasmid. (A) The genetic organization of E. coli

oriC comprises 13-mers within the DNA Unwinding Element (DUE) and

DnaA-boxes as well as binding sites of IHF and Fis proteins. Asterisks (*)

below the oriC indicate strong DnaA-boxes. (B) The genetic organization of

RK2 plasmid oriV consisting of DnaA-boxes, Iterons, and DUE. Black arrows

mark 13-mers.

In bacterial chromosome origin, regions that are composed
of a variable number of DnaA-boxes, can be identified (Ozaki
and Katayama, 2009; Rajewska et al., 2012; Wolanski et al.,
2014; Leonard and Grimwade, 2015). In the origin of E. coli
chromosome (oriC), five 9-bp in length DnaA-boxes (R1–R5)
were originally identified (Fuller et al., 1984; Matsui et al., 1985);
in contrast, the origin of Caulobacter crescentus chromosome
(Cori) possesses only two DnaA-boxes (named G-boxes; Shaheen
et al., 2009). The studies with the use of in vivo and in
vitro dimethylsulphate (DMS) footprinting as well as DNase I
footprinting method showed that other, non–R DnaA binding
sites are present in oriC, i.e., I (Grimwade et al., 2000; McGarry
et al., 2004), C (Rozgaja et al., 2011), and τ sites (Kawakami et al.,
2005). Such non-canonical sequences recognized by bacterial
initiator were also found in oriC of C. crescentus (termed
W-boxes; Taylor et al., 2011). The affinity of DnaA binding to
R-boxes and non-R DnaA binding sites is different. Interestingly,
binding of inititor to the DnaA-boxes in Cori of C. crescentus,
both G-boxes and W-boxes, is lower compared to DnaA binding
to the R-boxes in oriC of E. coli (Taylor et al., 2011), which
might be characteristic for bacteria with a complex regulation of
development. The DnaA binding sites, bound by initiator with
affinity comparable only to interaction between DnaA and weak
DnaA-boxes in E. coli oriC, were found in the origin of H. pylori
(Zawilak-Pawlik et al., 2007; Charbon and Løbner-Olesen, 2011).
In E. coli oriC three (named R1, R2, and R4) out of five DnaA-
boxes are the widely separated, high affinity DnaA-boxes. They
were found to be almost constantly bound by EcDnaA protein
(Samitt et al., 1989; Nievera et al., 2006). The occupancy of only
these three sites is insufficient for spontaneous origin opening
and it was proposed that interaction of EcDnaA protein at high
affinity binding sites may regulate conformation of the origin
DNA (Kaur et al., 2014). Between the peripheral R1 and R4 sites,
there are two arrays of low affinity binding sites, τ1 R5 τ2 I1 I2
and C3 C2 I3 C1, separated by one of high affinity—R2 (Rozgaja
et al., 2011). EcDnaAmolecules bound to the high affinity DnaA-
boxes, termed bacterial Origin Recognition Complex (bORC),
act as anchors and are required to assist in occupying weak

sites by the EcDnaA protomers (Rozgaja et al., 2011; Kaur
et al., 2014), and formation of replication-active pre-replication
complex (pre-RC; Figure 2, Stage II). The binding affinity to
particular sequences and replication activity of EcDnaA protein
depend on nucleotide-bound state of protein. Although ADP-
EcDnaA binds the high affinity DnaA-boxes and also R5 and
C1 low affinity ones, the ATP-EcDnaA form is thought to be
the replication-active one (Sekimizu et al., 1987; Leonard and
Grimwade, 2011). ATP-EcDnaA form of initiator binds efficiently
both high and low affinity binding sites (McGarry et al., 2004;
Kawakami et al., 2005). Based on molecular docking, binding
of ATP, instead of ADP, is presumed to cause changes in the
EcDnaA protein conformation, thus leading to the formation
of large oligomeric complex within the origin region (Saxena
et al., 2015). The crystallographic data, when nonhydrolyzable
ATP analog AMP-PCP was used, showed the formation of open-
ended, right-handed helical filament ofAaDnaA (Erzberger et al.,
2006). Based on biochemical and genetic approaches it was found
that there is an interaction between domain III (AAA+ domain)
of one DnaA (EcDnaA or AaDnaA) molecule and domain IV
(DBD domain) of partner subunit (Duderstadt et al., 2010). It was
proposed that during pORC and pre-RC complexes formation
of the DBD domain is extended and the HTH motif is exposed,
which results in the efficient binding of high and low affinity
binding sites (Duderstadt et al., 2010). Occupation of the EcDnaA
binding sites was shown to be sequential and polarized and
DnaA protomers are released preferentially from the peripheral
high affinity R1 and R4 boxes, through arrays of low affinity
binding sites to the middle high affinity one—R2 (Rozgaja et al.,
2011). The formation of DnaA oligomer within the oriC results
in DNA destabilization in the DUE region (Speck and Messer,
2001; McGarry et al., 2004; Leonard and Grimwade, 2005, 2011;
Duderstadt et al., 2010). Although two arrays of low affinity
binding sites separated by high affinity sequences are occupied by
EcDnaA protomers for efficient double-stranded DNA opening,
binding of EcDnaA to a part of origin (containing only R1 high
affinity box and τ1 R5 τ2 I1 I2 low affinity binding sites array)
was shown to be active in DUE unwinding (Ozaki and Katayama,
2012). It was proposed that distinct DnaA multimers are formed
on the left half (containing binding sites from R1 to I2) and the
right half (containing binding sites from R2 to R4) of oriC (Ozaki
and Katayama, 2012; Ozaki et al., 2012a).

The DUE melting is the consequence of DnaA binding to
arrays of DnaA-boxes (Figures 1A, 2, Stage II). The location of
particular binding sites suggests that DnaA, bound to sequences
of the high affinity DnaA-boxes (R1, R2, R4), could cause the
bending of DNA molecule via interaction through domain I of
already bound three protomers (Rozgaja et al., 2011; Kaur et al.,
2014; Leonard and Grimwade, 2015). The model of constrained
loop formed by EcDnaA bound to the high affinity binding sites
was proposed (Kaur et al., 2014). The bending of oriC containing
DNA molecule is supported by accessory histone-like proteins
HU and integration host factor (IHF). A binding site for IHF was
found within the oriC region (Polaczek, 1990) and it was shown
that IHF can enhance the unwinding of DNA by DnaA (Hwang
and Kornberg, 1992; Ryan et al., 2002). It was demonstrated that
HU has the same effect on DUE destabilization (Hwang and

Frontiers in Molecular Biosciences | www.frontiersin.org 3 August 2016 | Volume 3 | Article 39

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Wegrzyn et al. Replisome Assembly

FIGURE 2 | The process of bacterial chromosome and plasmid DNA replication initiation and replisome assembly. The scheme presents replication

initiation and replisome assembly at chromosomal E. coli origin, oriC (left), and RK2 plasmid origin, oriV (right). The DNA replication initiation starts with binding a

replication initiator(s) DnaA and TrfA to the DnaA boxes and Iterons, respectively (Stage I). Origin Recognition Complex (ORC) formation induces local destabilization

and pre-Replication Complex (pre-RC) formation and melting of the DNA Unwinding Element (DUE) region (Stage II). Then, assisted by replication initiators and the

DnaC helicase loader, the DnaB helicase is recruited and loaded onto the single-stranded DUE (Stage III). In case of plasmid DNA replication the requirement for DnaA

and DnaC is optional as it depends on the host organism. Association of DnaG primase triggers the release of helicase loader, helicase activation and primers

synthesis (Stage IV). Next, the holoenzyme of DNA Polymerase III, which comprises clamp loader, DNA Polymerase III core (Pol III core), and β-clamp is assembled

and conducts DNA synthesis (Stage V). Lagging strand synthesis was omitted for simplicity. Proteins involved in described stages of DNA replication initiation and

replisome assembly processes are depicted in the scheme. IHF and Fis were omitted in this scheme.

Kornberg, 1992), although its mechanism of action is different
(Ryan et al., 2002). Data obtained with ELISA (Enzyme Linked
Immunosorbent Assay) showed that HU interacts with domain I
of EcDnaA, which was proposed as an interaction which stabilizes
the DnaA oligomer (Chodavarapu et al., 2008a). The Fis protein,
identified originally as factor for inversion stimulation in site-
specific DNA recombination, was also shown to have an influence
on DNA unwinding (Wold et al., 1996). Specific binding sites for
Fis were identified in oriC (Gille et al., 1991). Although Fis, in

contrast to IHF, negatively regulates DNA replication initiation,
when the origin lacks some DnaA binding sites resulting in
altered non-functional conformation of origin, both Fis and
IHF can work together to correct these alterations (Kaur et al.,
2014). This joint action is achieved by inducing bends in oriC
and establishing functional origin conformation (Kaur et al.,
2014).

The formation of DnaA oligomer with synergistic action of
architectural proteins can introduce torsional strain into DUE,
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FIGURE 3 | Structures of replication initiation proteins: (A) bacterial

DnaA protein and (B) RepE protein from plasmid F. (A) Crystal structure

of Domain I (shown in violet) of EcDnaA protein was obtained from the PDB

database (2E0G). Domain III (shown in blue) and Domain IV (shown in red)

were modeled using SWISS-MODEL server (http://swissmodel.expasy.org)

basing on crystal structure of Domain IV obtained from PDB database (1J1V).

The presented structure of EcDnaA does not include Domain II. (B) Crystal

structure of RepE protein, comprising Winged Helix domain 1 (WH1), and

Winged Helix domain 2 (WH2) (shown in yellow and green, respectively), were

obtained from the PDB database (1REP).

facilitating the melting of the double-stranded DNA helix. The
binding of DnaA to DUE region was also thought to introduce
DNA melting, and ATP-DnaA-boxes were distinguished within
the oriC DUE sequence (Speck andMesser, 2001). Recent studies
showed direct binding of EcDnaA and AaDnaA protein to
formed single-stranded DNA within the DUE (Ozaki et al., 2008;
Duderstadt et al., 2010, 2011; Cheng et al., 2015). Studies with
DnaA mutants (Ozaki et al., 2008; Duderstadt et al., 2010), as
well as crystallography (Duderstadt et al., 2011), showed that this
interaction occurs through residues located within the AAA+
domain III of bacterial initiator. The AaDnaA protomers form
a helical filament on ssDNA (Duderstadt et al., 2011), however,
it differs from the filament formed on the dsDNA (Erzberger
et al., 2006; Duderstadt et al., 2010). It was proposed that
protomers in this oligomer are more compact when compared
to the extended DnaA molecules in dsDNA-DnaA complex
(Duderstadt et al., 2010, 2011). The binding of ssDNA concerns
just one T-rich strand of DUE and depends on sequence of
13-nucleotide sequences, which can be distinguished within the
DUE. In oriC three 13-mers are present (Bramhill and Kornberg,
1988a) and the binding of EcDnaA occurs at least two 13-mers.
EcDnaA does not form a complex with ssDNA containing just
one 13-mer (Ozaki et al., 2008). Formation of this nucleoprotein
complex is achieved only by ATP-DnaA protein (Ozaki et al.,
2008) and one AaDnaA protomer binds three nucleotides of
ssDNA (Duderstadt et al., 2011; Cheng et al., 2015). Studies
with the use of single-molecule fluorescence assays showed that

the formation of this nucleoprotein complex is highly dynamic
and that AaDnaA molecules assemble on ssDNA in the 3′ to 5′

direction (Cheng et al., 2015). The presence of dsDNA region
containing DnaA-boxes, adjacent to ssDNA DUE, stabilizes the
DnaA (EcDnaA and AaDnaA) filament on ssDNA (Ozaki and
Katayama, 2012; Cheng et al., 2015). Recently published data
revealed presence of a new origin element, termed DnaA-trio,
composed of repeated trinucleotide motif that stabilizes DnaA
filaments on the ssDNA (Richardson et al., 2016). What is
important, binding single strand of DUE region is required for
origin activity (Ozaki et al., 2008, 2012a,b; Duderstadt et al.,
2011).

Origin Recognition and Open Complex
Formation by Plasmid Initiator at Origin of
Iteron Plasmids
Similarly as during bacterial chromosome replication, the first
step in open complex formation in many theta-replicating
plasmids, especially in iteron-containing plasmids, is the binding
of plasmid replication initiator, Rep protein, to specific sequences
within origin region (Figure 2, Stage I). Rep proteins are
structurally different from bacterial DnaA protein and consist
of winged-helix (WH) domains (Figure 3B, Komori et al., 1999;
Díaz-López et al., 2003; Sharma et al., 2004; Swan et al., 2006;
Nakamura et al., 2007a,b; Pierechod et al., 2009). The crystal
structures of nucleoprotein complexes of π protein from plasmid
R6K (Swan et al., 2006), RepE protein from plasmid F (Komori
et al., 1999; Nakamura et al., 2007b), and a DNA binding domain
of Rep protein from ColE2–P9 plasmid (Itou et al., 2015) as
well as N-terminal domain of RepA protein from plasmid pPS10
(Giraldo et al., 2003) were obtained. Furthermore, homological
models for plasmid Rep proteins: RepA from P1 (Sharma et al.,
2004), RepA from pSC101 (Sharma et al., 2004), and TrfA from
RK2 (Pierechod et al., 2009) were shown. Plasmid Reps are
composed of two WH domains, of which one is responsible for
oligomerization and the role of a second one is the protein’s
interaction with DNA (Giraldo et al., 1998; Nakamura et al.,
2004; Pierechod et al., 2009). Plasmid replication initiators are
present as dimers in solution, however, an exception is known
i.e., RepE protein from pAMβ1 plasmid is present as a monomer
(Le Chatelier et al., 2001). Although the Rep dimers interact
with DNA (Filutowicz et al., 1985; Ingmer et al., 1995; Komori
et al., 1999), they are replication-active in the monomeric form
(Kawasaki et al., 1990; Wickner et al., 1992; Sozhamannan and
Chattoraj, 1993; Konieczny and Helinski, 1997). Conformational
activation of plasmid replication initiators is carried out by
chaperon proteins (Kawasaki et al., 1990; Wickner et al.,
1992, 1994; Sozhamannan and Chattoraj, 1993; Konieczny and
Helinski, 1997). In contrast to bacterial replication initiator
DnaA, the domain responsible for binding of nucleotide was not
identified in Reps’ structures. There is also no evidence showing
if Rep proteins can form helical filaments on DNA similar to that
formed by theAaDnaA protein. For some Reps, e.g., TrfA protein
from RK2 plasmid, two forms of protein, different in length,
occur: the shorter 33 kDa (TrfA-33) and longer 44 kDa (TrfA-
44). There are different requirements for each particular form
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depending on the host bacterium. In E. coli both forms of TrfA
can initiate the plasmid replication, whereas in Pseudomonas
aeruginosa only the longer form is active (Caspi et al., 2001; Jiang
et al., 2003; Konieczny, 2003; Yano et al., 2013, 2016).

During plasmid replication initiation, monomers of Reps bind
to specific repeated sequences, named iterons, present within
origin region (Figures 1B, 2, Stage I). The number of iterons
varies among plasmid origins, from two iterons in plasmids
ColE2 and ColE3 (Yasueda et al., 1989), three iterons in pSC101
(Churchward et al., 1984), and some plasmids from IncQ
incompatibility group (Loftie-Eaton and Rawlings, 2012), four
iterons in origin of plasmid F and pPS10, up to five (origin of
plasmids RK2 and P1) or even seven such sequences in oriG of
plasmid R6K (Rajewska et al., 2012). Iterons are short sequences,
in length ranging from 17-bp in RK2 plasmid (Stalker et al.,
1981), 19-bp in plasmids F (Murotsu et al., 1981), and P1 (Abeles
et al., 1984), to 22-bp in R6K (Filutowicz et al., 1987), and pPS10
(Nieto et al., 1992). But in some plasmids the iteron sequences
which are present in one origin can differ in length and apart from
short sequences, significantly longer iterons [up to even 76-bp
in plasmid R478 from IncHI2 incompatibility group (Page et al.,
2001)] can be present. The binding of Rep proteins to iterons is
sequence-specific and mutations in these motifs disrupt binding
of plasmid initiation protein. Changes in a sequence of iterons
abolished binding of π protein within the oriG of plasmid R6K
and thus replication activity in vivo (McEachern et al., 1985).
Negative effects on replication was also observed for mutants
in a sequence of P1 plasmid iterons (Brendler et al., 1997). The
sequences separating particular iterons are also important for
Rep nucleoprotein complexes formation and proper replication
activity of origin. It was shown in case of the RK2 plasmid that
in vitro the TrfA protein has a high preference for binding to
DNA containing at least two out of five binding sites, when
compared to the formation of nucleoprotein complex with DNA
containing just one iteron (Perri et al., 1991). The requirement
for the presence of more than just one iteron sequence for
TrfA binding was also shown in vivo (Perri and Helinski, 1993).
Rep proteins bind to iterons in a cooperative manner (Perri
and Helinski, 1993; Xia et al., 1993; Bowers et al., 2007) and
the cooperativity of binding depends on the spatial location
of iterons, since separation of two iterons by a half helical
turn abolished cooperativity (Bowers et al., 2007). These results
suggest the possibility of formation of higher order nucleoprotein
structure on plasmid iterons bound by Reps. It was shown that
WH domains of Reps contact three nucleotides in DNA. In π

protein from R6K plasmid, WH1 domain contacts wGwnCnT
motif, and WH2 domian contacts GAG sequence (Swan et al.,
2006). Similarly, the WH2 domain of RepE monomer also
contacts three nucleotides of top (GTG sequence) and three
nucleotide of bottom strand (GtCA sequence) of double-stranded
molecule containing iteron sequence (Nakamura et al., 2007b).
However, unlike for the bacterial DnaA protein, to date there are
no evidence showing that strong and weak binding sites for Reps
are present within plasmid origins. There were just predictions of
potential binding sites, other than iterons, for π protein in R6K
plasmid and suggestions on potential role of such sites (Rakowski
and Filutowicz, 2013). Certainly like DnaA, Rep proteins can

bind within single-stranded region of melted DUE, and this
binding is sequence-specific, since binding concerns a particular
strand. Nucleoprotein complexes formation with the ssDNA
DUE was detected for TrfA (bound with A-rich strand) and
RepE (bound with T-rich strand) proteins (Wegrzyn et al., 2014).
Within the DUE of plasmid origins, repeated sequence, similar to
13-mers distinguishable in oriC, can be found. There are four 13-
nucleotide sequences in plasmid RK2 DUE region (Doran et al.,
1998) and all of them are required for TrfA-ssDNADUE complex
formation. Lack of even one 13-mer hinders plasmid replication
(Wegrzyn et al., 2014). Also, even a point mutation within this
region affects plasmid replication since the lack of DUE melting
was observed for some of the changed sequences (Kowalczyk
et al., 2005; Rajewska et al., 2008).

The Rep protein encoded by plasmids, can be accompanied
by host DnaA initiator during open complex formation and
DUE melting within a plasmid origin (Figure 2, Stage II). DnaA
binding sites have been found in replication origin of many
plasmids including plasmids P1 (Abeles et al., 1984, 1990; Abeles,
1986), F (Kline et al., 1986; Murakami et al., 1987; Kawasaki
et al., 1996), RK2 (Doran et al., 1998; Caspi et al., 2000), pSC101
(Sutton and Kaguni, 1995). The number of DnaA-box sequences
differs among plasmid origins, the position and orientation of
these binding sites are as important as position and orientation
of the iterons (Doran et al., 1998, 1999). The inversion of one
out of four DnaA boxes in origin of RK2 plasmid abolished
plasmid DNA replication, despite the fact that three remaining
DnaA boxes were bound by the host initiator (Doran et al.,
1999). Although the DnaA protein is not required for replication
initiation for some plasmids, e.g., R1, binding of DnaA increased
the plasmid replication efficiency (Bernander et al., 1991, 1992)
and mutations within a binding site for DnaA decreased the R1
plasmid replication (Ortega-Jiménez et al., 1992). In bacteria,
ATP-DnaA form is essential for chromosomal DNA replication
(Sekimizu et al., 1987; Leonard and Grimwade, 2005, 2011).
Interestingly, studies with ATP-binding mutant of DnaA, which
was inactive in oriC replication, showed that bacterial initiator
lacking an ability to bind a nucleotide was effective in open
complex formation within plasmid R6K oriG (Lu et al., 1998).
Also in the presence of ATPGS, a non-hydrolyzable analog of ATP,
the pattern of bands in KMnO4 footprinting assay with DnaA
and TrfA proteins and plasmid RK2 DNA showed no significant
differences, when compared to opening reaction containing ATP
(Konieczny et al., 1997). Thus, the DnaA is suspected to play a
different role in plasmid replication initiation, compared to its
role in chromosome replication. A direct interaction between
plasmid and host replication initiators was shown (Lu et al., 1998;
Maestro et al., 2003) and the interaction was detected in the
N-terminus of π (between 1 and 116 aa) protein of R6K plasmid
(Lu et al., 1998) and RepA protein of pSC101 (Sharma et al., 2001)
and domain I and IV of host initiator (Sharma et al., 2001). The
mutations in RepA protein from pPS10 plasmid were introduced,
which enhanced the interaction of RepA with DnaA protein and
resulted in changes in host range of pPS10 plasmid (Maestro
et al., 2003).

Similarly to bacterial chromosome replication initiation, the
binding of DnaA protein to DnaA-boxes within plasmid origins

Frontiers in Molecular Biosciences | www.frontiersin.org 6 August 2016 | Volume 3 | Article 39

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Wegrzyn et al. Replisome Assembly

can be enhanced by the presence of architectural proteins IHF,
andHU (Shah et al., 1995; Fekete et al., 2006). The binding of IHF
to its binding site in oriG region significantly enhanced binding of
bacterial DnaA to R6K plasmid origin (Lu et al., 1998). In pSC101
plasmid binding IHF to its cognate binding site is required for
plasmid replication initiation andmutations within this sequence
disrupts plasmid replication (Stenzel et al., 1987). For plasmid
P1 the binding of IHF to its site, located downstream of one
out of two arrays of DnaA-boxes (the second array is located
upstream of DUE) is required only when the nearby DUE array
of DnaA-boxes is not active and the second DnaA-boxes array
serves as a secondary origin compensating the function of the first
one (Fekete et al., 2006). The P1-mini derivative was just slightly
unstable in IHF E. colimutant (Ogura et al., 1990). Themutations
in gene for IHF protein did not affect plasmids F (Ogura et al.,
1990) and RK2 (Shah et al., 1995) replication. In contrast, the
lack of HU protein in vitro results in significant decrease in
mini-F plasmid DNA synthesis (Zzaman et al., 2004) and in
vivo KMnO4 reactivity of P1 plasmid origin (Park et al., 1998)
as well as abolishment of plasmid F replication in vivo (Ogura
et al., 1990). During plasmid RK2 replication initiation, HU could
functionally replace DnaA protein, although it could not enhance
DUE melting as efficiently as DnaA (Konieczny et al., 1997).
It was proposed that one of the DnaA functions could be the
stabilization of originmelting induced by Rep protein. The other
DnaA role during replication initiation is its function in helicase
loading. Interestingly, for some plasmids, e.g., RK2, DnaA assists
Rep during plasmid replication initiation only in particular hosts,
while in others DnaA is dispensable [DnaA P. aeruginosa is
dispensable for RK2 plasmid replication initiation, but required
in E. coli (Caspi et al., 2001; Konieczny, 2003)].

HELICASE LOADING, ACTIVATION, AND
DNA UNWINDING

In bacteria the loading of DnaB helicase onto ssDNA of DUE is
achieved by the action of replication initiation protein, DnaA, as
well as the helicase loading factor, DnaC protein (Figure 2, Stage
III). DnaB helicase is a two-tiered ring-shaped hexamer (Bailey
et al., 2007b; Wang et al., 2008; Lo et al., 2009). Each monomer
consists of N-terminal and C-terminal domain connected via
linker helix (LH) region (Miron et al., 1992; Ingmer and Cohen,
1993; Komori et al., 1999). The N-terminal domain of helicase’s
monomers were shown to interact with ssDNA (observed in a
crystal structure ofGeobacillus kaustophilus helicase in a complex
with ssDNA; Lo et al., 2009) which stabilizes the hexameric
structure of DnaB (Biswas et al., 1994). The C-terminal domain,
that contains RecA-like fold, is responsible for ATP binding
and hydrolysis, interaction with DNA (Bailey et al., 2007a), and
binding of DnaC loader factor (Lu et al., 1996). The helicase is
positioned onto the ssDNA DUE in a single orientation with
respect to the polarity of the sugar-phosphate backbone of DNA
and the nucleic acid, bound primarily to one DnaB monomer
(Jezewska et al., 1998a,b), passes through the cross-channel of
helicase hexamer (Jezewska et al., 1998a). The hexamer of DnaB,
when no ATP hydrolysis occurs, is bound to 20 (±3) nucleotides
(Jezewska et al., 1996).

The binding of nucleotide as well as particular partner protein
and DNA promotes helicase to adopt specific conformation.
The X-ray crystal structure of A. aeolicus helicase revealed
large conformational rearrangements, observed in N-terminal
domain and the presence of at least two highly-distinct
conformations: widened with broad central channel and a
highly-constricted with a narrow pore (Strycharska et al., 2013).
These conformations were also observed for E. coli DnaB,
when analyzed in solution with the use of small-angle X-ray
scattering (SAXS; Strycharska et al., 2013). Structural analysis
with the use of negative-stain electron microscopy (EM) and
SAXS of DnaB protein in complex with its loader, DnaC, showed
that the hexamer of helicase interacts with helical arrangement
of six DnaC monomers (Kobori and Kornberg, 1982; Arias-
Palomo et al., 2013). However, it was argued that the active
form of the DnaB-DnaC complex exists in 6:3 stoichiometry,
which was studied by quantitative analysis of pre-priming
complex (Makowska-Grzyska and Kaguni, 2010). Furthermore,
the imbalance in level of DnaB and DnaC was shown to impair
DNA replication (Allen and Kornberg, 1991; Brüning et al.,
2016).

The concept of DnaC as a protein that loads DnaB helicase
onto ssDNA of DUE, has been early established (Wickner and
Hurwitz, 1975; Funnell et al., 1987; Bell and Kaguni, 2013).
To further explain its exact function, the following models
have been proposed: (1) DnaC breaks the helicase ring (Davey
and O’Donnell, 2003; Arias-Palomo et al., 2013), (2) DnaC
traps DnaB helicase as an open ring (Chodavarapu et al.,
2016). Those hypotheses were tested by the SAXS method and
deuterium exchange coupled to mass spectrometry, respectively.
The ATPase activity of DnaC, a member of AAA+ proteins
family, is not required for helicase hexamer opening and its
loading by DnaC, hence the DnaB-binding domain of loader is
sufficient for this process (Arias-Palomo et al., 2013). Yet the ATP
hydrolysis by DnaC was proposed to occur during DnaB helicase
activation, which results in DNA unwinding (Felczak et al., 2016).

Regarding the DnaC key contribution to helicase loading
and activation in E. coli, it is particularly interesting to discuss
replicons that are independent of helicase loader. The helicase
loaders were identified only in few species and it is possible
that in some bacteria the yet unidentified helicase loaders
are present. The lack of DnaC orthologs can also arise from
ability of self-loading by helicase (Costa et al., 2013) or it is
possible that another protein of already assigned role, substitutes
the DnaC function. Those hypotheses can be supported by
complementation of dnaC temperature-sensitive mutant of
E. coli by helicase from H. pylori (Soni et al., 2003). The
dispensability for helicase loader was also shown during RK2
plasmid replication in Pseudomonas species (Jiang et al., 2003).
In Pseudomonas sp. the helicase loading at plasmid RK2 origin
is performed by the longer form of plasmid Rep protein, TrfA-
44, which interacts with Pseudomonas helicase (Caspi et al., 2001;
Jiang et al., 2003; Zhong et al., 2003). The shorter form of this
plasmid initiator, TrfA-33, is not sufficient for helicase loading in
P. aeruginosa. In Pseudomonas putida TrfA-33 can load helicase
but only in the presence of DnaA (Caspi et al., 2001; Jiang et al.,
2003). On the contrary, the DnaC helicase loader, together with
DnaA, and Rep protein (either short or long form), is absolutely
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required for helicase loading at plasmid RK2 origin in E. coli
(Caspi et al., 2001). It was shown that via interaction of DnaA
with DnaBC, the helicase is first localized in DnaA-boxes and
then via DnaA-DnaB and Rep-DnaB interactions translocated
to ssDNA DUE (Pacek et al., 2001; Rajewska et al., 2008).
Probably the Rep-DnaA interaction is also important in these
processes. Apart from the proper protein-protein interaction, an
efficiency of helicase translocation from DnaA-box position to
DUE depends on the sequence of DUE region. It was shown
via electron microscopy and in vitro experiments that even
point mutations within the DUE of RK2 plasmid origin results
in a decrease in helicase translocation and thus helicase DNA
unwinding activity (Rajewska et al., 2008).

It was proposed that, upon DnaB-DnaC binding to ssDNA,
DnaC dissociates, thus allowing DnaB to unwind double helix,
and further to bind DnaG primase (Wahle et al., 1989,
Figure 2, Stage IV). However, Makowska-Grzyska and Kaguni
demonstrated, by performing molecular filtration of pre-priming
complex at E. coli oriC, that the DnaG primase binds DnaB,
synthesizes primer and in consequence, induces the release of
DnaC from DnaB (Makowska-Grzyska and Kaguni, 2010). In
E. coli, in further steps DnaG primase is associated with DnaB
helicase and synthesizes primers on lagging strand (McHenry,
2011). Plasmid ColE2-P9 does not require DnaG primase
in replication initiation (Takechi et al., 1995). Itoh group
demonstrated that ColE2 origin and Rep protein as well as E. coli
host DNA Polymerase I and SSB are sufficient for in vitro DNA
synthesis (Itoh and Horii, 1989). Further studies revealed that the
ColE2-Rep protein has joined functions, i.e., replication initiator
and plasmid-specific primase (Takechi and Itoh, 1995).

Once activated, DnaB unwinds one nucleotide per one
catalytic step in ATP-dependent manner (Lohman and Bjornson,
1996, Figure 2, Stage IV). It was shown that at 25◦C the DnaB
unwinds around 291 bp per second (Galletto et al., 2004) and
it moves from 5′ to 3′ direction along the ssDNA (LeBowitz
and McMacken, 1986). Because the replication of bacterial
chromosome is bidirectional two helicases are loaded: one is
loaded by DnaC on the top strand invaded by DnaA molecules
and the other on the bottom strand. It was proposed that the
helicase delivery to ssDNA DUE bottom A-rich strand occurs by
direct interaction between DnaB and DnaA proteins (Mott et al.,
2008; Soultanas, 2012). The Phe-46 of DnaA was shown to be
important for this interaction (Keyamura et al., 2009). The order
of helicase loading to a particular strand of DUE is not random
but defined; first helicase is loaded onto the bottom/lower strand
then the second onto the top/upper one (Weigel and Seitz, 2002).
Such order of helicase loading probably supplies head-to-head
orientation of unwound region of oriC and prevents back-to-
back loading of the helicase. The basal level of DnaB activity in
oriC is achieved when DnaA forms an oligomer in ssDNA DUE
and dsDNA containing DnaA-boxes from R1 to I2 (called DAR-
DF and DAR-LL). For the full activity of helicase the formation
of DnaA filament on other DnaA-boxes (from R2 to R4; called
DAR-RL and DAR-RE) is needed (Ozaki and Katayama, 2012).

The interaction between plasmid initiator Rep and helicase
is an important factor for helicase activity on plasmid origin
(Figure 2, Stage IV). It was shown for E. coli F plasmid that
its initiator, RepE protein, cannot form a stable complex with

Pseudomonas helicase and thus it does not replicate efficiently
in Pseudomonas cells (Zhong et al., 2005). Interaction between
plasmid Rep and host DnaB was also detected via ELISA and
protein affinity chromatography for π protein of R6K (Ratnakar
et al., 1996) and mutations within π were identified which
decreased helicase binding and resulted in impaired plasmid
DNA replication (Swan et al., 2006). A similar effect was observed
for mutants of RepA protein form plasmid pSC101, invalid in
the interaction with helicase (Datta et al., 1999). Although the
Rep-DnaB interaction is required for helicase loading, the right
balance in the strength of the interaction must be maintained. It
was shown that too tight binding of Rep to DnaB is undesirable
and the mutations within Rep, acquired by adaptation under
antibiotic selection that decreased binding to helicase, result in
the decrease in fitness cost and increase in plasmid copy number
(Yano et al., 2016).

REPLISOME ASSEMBLY

Once DnaB helicase is loaded, DNA is unwound and primer is
synthesized, the contribution of replication initiators becomes
more enigmatic. Subsequent stages of DNA replication require
building the replisome, i.e., the multiprotein replication
machinery that synthesizes DNA (O’Donnell et al., 2013,
Figure 2, Stage V). The replisome in bacteria is composed of
DnaB helicase, DnaG primase, single-stranded DNA binding
protein (SSB), and the holoenzyme of DNA Polymerase III (hPol
III) (divided in three subcomplexes: Pol III core, clamp loader
and β-clamp; O’Donnell, 2006). Reyes-Lamothe et al., suggested
that both DnaA replication initiator and DnaC helicase loader
are crucial for replisome assembly in E. coli (Reyes-Lamothe
et al., 2008). This conclusion was drawn from studies that
tracked the replisome components in living cells during the
stages of DNA replication. However, it does not exclude the
possibility that the role of replication initiator is limited to DUE
destabilization and helicase loading, hence, indirect effects may
be observed. Most studies regarding the mechanism of replisome
assembly are performed using simplified experimental setup, e.g.,
primed ssDNA and replisome components, where replication
initiators are omitted (Yuzhakov et al., 1996, 1999; Downey and
McHenry, 2010; Cho et al., 2014).

Clamp Loader and Its Activity
Following the primer synthesis, clamp loader complex loads the
ring-shaped β-clamp (discussed below in details), that encircles
dsDNA, tethers DNA polymerase, and slides along dsDNA, thus
significantly increasing speed (up to 100-fold), and processivity
(up to 5000-fold) of DNA replication (Kelch et al., 2012). The
E. coli clamp loader is composed of γ, τ, δ, δ’, χ , and ψ

subunits, albeit only γ, δ, δ’ are crucial for β-clamp loading
(reviewed in details in Kelch, 2016). The γ subunit is a truncated
version of τ subunit, encoded by dnaX gene, and arises from
translational frameshift (Flower and McHenry, 1990). Both γ

and τ subunits have AAA+ domain, however, γ subunit lacks
τ subunit domain responsible for DnaB helicase and Pol III
core binding (Tsuchihashi and Kornberg, 1989; O’Donnell and
Studwell, 1990; Flowers et al., 2003). Before clamp loader binds
DNA, it adopts appropriate, ATP-driven conformational state
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that increases its affinity for the β-clamp (Podobnik et al., 2003).
It is under debate whether the ring structure of β-clamp is actively
opened or captured in open conformation. The T4 bacteriophage
trimeric clamp is the least stable sliding clamp and it was found
to dissociate from DNA by monomerization, thus no force in
opening of the ring is required (Soumillion et al., 1998). The
dimeric clamps (bacterial, e.g., E. coli) are regarded as stable,
hence more active ring-opening mechanism is expected to be in
demand. On the basis of a crystal structure of single subunit of E.
coli clamp loader (namely δ subunit) in complex with β-clamp,
it was proposed that δ subunit is a molecular wrench, that
induces rearrangements of β-clamp at dimerization interface,
albeit without ATP hydrolysis (Jeruzalmi et al., 2001). With the
use of real-time fluorescence-based clamp binding and opening
assays, it was shown that clamp loader binds closed β-clamp in
solution, prior to β-clamp opening (Paschall et al., 2011). Yet, the
deuterium exchange coupled to Mass Spectrometry experiments
revealed thatmost sliding clamps are dynamic at theirmonomers’
interfaces (Fang et al., 2011, 2014). Therefore, it is also probable
that β-clamp is trapped in an open conformation by clamp
loader.

The crystal structure of clamp loader complex was solved
from T4 bacteriophage (Kelch et al., 2011), E. coli (Simonetta
et al., 2009), and its eukaryotic homolog, Replication Factor C
(RFC), from Saccharomyces cerevisiae (Bowman et al., 2004).
Each of the clamp loader complex reveals pentameric structure.
Since AAA + ATPases usually adopt circular hexamers, it was
proposed that sixth subunit was lost during the evolution (Indiani
and O’Donnell, 2006). Indeed, the gap between the first and
fifth clamp loader subunits is favorable, because it provides the
mechanism of specific accommodation of the primer-template
junction structure (Kelch, 2016). It was suggested that clamp
loader recognizes minor groove and thus it binds at the
3′ primer-template junction specifically. However, the crystal
structure of the clamp loader:DNA complex revealed that clamp
loader contacts template DNA exclusively (Bowman et al., 2005;
Simonetta et al., 2009). Despite the fact that the DNA synthesis
may be initiated only from 3′ OH primer end, the clamp loader
can assemble in vitro at either 3′ or 5′ primer terminus forming a
stable complex (Park and O’Donnell, 2009). While clamp loader
binds only DNA template, β-clamp interacts with both RNA
primer, and DNA template within the RNA-DNA hybrid and
it was shown that the β-clamp distinguishes between the 5′

and 3′ primer end (Park and O’Donnell, 2009). Consistently,
it was demonstrated that SSB hampers clamp loading on the
5′end of primer (Hayner et al., 2014). The ATPase activity of the
clamp loader is lower when it is assembled at the 5′ terminus,
comparing to the ATPase activity of clamp loader located at 3′

terminus (Park and O’Donnell, 2009). ATP hydrolysis triggers
β-clamp closing on DNA and the release of clamp loader from
β-clamp:DNA nucleoprotein complex (Pietroni and von Hippel,
2008). Thereby, the 3′ primed end loading preference also
arises from the higher rate of clamp closure and clamp loader
dissociation (Park and O’Donnell, 2009). The β-clamp must be
closed in the ATP hydrolysis-dependent manner, to release clamp
loader (Hayner et al., 2014). Clamp loader must free the β-clamp
to allow the Pol III core to bind, since they accommodate the

same binding site within the β-clamp, namely the hydrophobic
cleft.

β-Clamp—Hub for Protein Interactions
β-clamp crystal structures were obtained from various organisms
i.e., E. coli (Oakley et al., 2003; Burnouf et al., 2004), P. aeruginosa
(Wolff et al., 2014), Streptococcus pyogenes (Argiriadi et al., 2006),
M. tuberculosis (Gui et al., 2011; Kukshal et al., 2012; Wolff et al.,
2014), B. subtillis (Wolff et al., 2014), T. maritima (structure
1VPK), Eubacterium rectale (structure 3T0P), Streptococcus
pneumoniae (Argiriadi et al., 2006). The crystal structures
of β-clamp homologs—Proliferating Cell Nuclear Antigen
(PCNA)—are also available from Eukaryotes and Archea (to
name a few:Homo sapiens (Punchihewa et al., 2012), S. cerevisiae
(Krishna et al., 1994), Sulfolobus solfaraticus (Williams et al.,
2006). All of them adopt ring shaped homodimer (e.g., E. coli) or
homotrimer (human PCNA, Pyrococcus furiosus PCNA), albeit
the exception is PCNA of Archea, S. solfataricus, which exists as
a heterotrimer (Dionne et al., 2003). β-clamp monomers bind
in a head to tail manner (Kelman and O’Donnell, 1995). The
β-clamp and PCNA structure is conserved among all kingdoms
of life, in contrast to amino acid sequence (Jeruzalmi et al.,
2001). However, the amino acid sequence of region termed
hydrophobic cleft was found to be highly conserved (Jeruzalmi
et al., 2001). The hydrophobic cleft is a site for interaction with
β-clamp binding partners (Jeruzalmi et al., 2001). β-clamp forms
a protein interaction hub and serves as a platform for multiple
protein interactions crucial in various cellular processes, i.e.,
DNA elongation in every living organism (Hedglin et al., 2013),
regulation of DNA replication in E. coli, B. subtilis, C. crescentus
(Katayama et al., 2010), DNA repair in E. coli (Rangarajan et al.,
1999), toxin-mediated replication fork collapse in C. crescentus
(Aakre et al., 2013). All described β-clamp interaction partner
proteins share similar motif, the Clamp Binding Motif (CBM;
Dalrymple et al., 2001).

β-Clamp Loading at Origin of Iteron
Plasmid
Interestingly, clamp binding motif was also identified in plasmid
replication initiators, including RK2 plasmid initiator-TrfA
(Kongsuwan et al., 2006; Dalrymple et al., 2007). It was shown
that TrfA protein lacking the leucine 137 and phenyloalanine
138 within the clamp binding motif is unable to bind β-clamp
(Kongsuwan et al., 2006). The TrfA 1LF mutant facilitated the
determination of biological relevance of this interaction. The
complex of TrfA and β-clamp was found to be the key feature
for replisome assembly and thereby for oriV-dependent DNA
replication of both supercoiled dsDNA plasmid and ssDNA
plasmid in vitro, albeit the clamp loader complex is still crucial
(Wawrzycka et al., 2015). Hence, the question arises—how do the
Rep and clamp loader cooperate to load the β-clamp at plasmid
origin? Three hypothetical models to explain the mechanism of
Rep-mediated β-clamp loading could be considered (Figure 4).
In the “β-clamp hand-off model” TrfA binds to the bottom
strand of ssDNA close to the 3′ end of synthesized primer,
recruits β-clamp, and hands it off to the clamp loader complex
(Figure 4A). Then, the δ subunit of clamp loader opens the

Frontiers in Molecular Biosciences | www.frontiersin.org 9 August 2016 | Volume 3 | Article 39

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Wegrzyn et al. Replisome Assembly

β-clamp and clamp loader positions it onto primer-template
junction, as it is thought to occur during replisome assembly at
E. coli oriC. This model is consistent with the results of the in
vitro DNA replication experiments performed with the use of
ssDNA, containing sequence of RK2 plasmid oriV (Wawrzycka
et al., 2015). It was demonstrated that TrfA interacts with
specific strand of ssDNA of DUE, i.e., the bottom strand, which
serves as the site for replisome assembly (Wegrzyn et al., 2014;
Wawrzycka et al., 2015). It can be further speculated that TrfA
may assist the clamp loader in recognition of the 3′ end of primer-
template junction within the oriV. Another possible role of TrfA
is illustrated in Figure 4B (second model, “β-clamp:clamp loader
recruitmentmodel”). Once TrfA is bound to bottom single strand
of DUE, it recruits the β-clamp, which is in complex with clamp
loader, to the RK2 plasmid origin. Thus, the local concentration
of β-clamp:clamp loader complex increases, the clamp loader can
assemble β-clamp onto the 3′ end of a primer within the plasmid
origin. Because TrfA-β-clamp interaction was shown in the
absence of DNA [using both ELISA and SPR (Surface Plasmon
Resonance) technique (Kongsuwan et al., 2006; Wawrzycka et al.,
2015)], the third model may also be justified (Figure 4C, “β-
clamp directed to oriV model”). In the third model the TrfA that
is not bound to DNA forms complex with β-clamp associated
with the clamp loader, then directs it to the plasmid origin,
oriV. Next, the clamp loader:β-clamp:TrfA complex binds to the
bottom strand of DUE via TrfA. TrfA passes the β-clamp bound
to clamp loader on the primer-template junction. Although ATP
binding to clamp loader (namely γ and τ subunit) is required
for β-clamp opening, it cannot be excluded that TrfA—whose
ATPase activity has not been revealed—substitutes the clamp
loader’s function at this stage. TrfA may capture β-clamp in
open conformation and load it onto primed DNA. Since ATP
hydrolysis is required for β-clamp closing (Trakselis et al., 2001),
here may participate the clamp loader.

DNA SYNTHESIS AND THE ROLE OF SSB

After the β-clamp closes around primer-template junction and
clamp loader dissociates, the final replisome component arrives—
the Pol III core, that is composed of three subunits: α (DNA
polymerase), ε (3′–5′ proofreading exonuclease) and θ (ε subunit
stabilizer; Kelman and O’Donnell, 1995; Taft-Benz and Schaaper,
2004). The number of Pol III cores within the replisome strictly
depends on the clamp loader composition, since Pol III core is
connected only through τ subunit to the clamp loader. Various
clamp loader complexes were widely studied in the light of
processivity of DNA replication and it was established that three
ATPases (τ or γ subunit) must be included with δ and δ’ subunits
to form active pentameric structure (Kelch, 2016). Initially, it was
thought that clamp loader contains two τ subunits (τ2γδδ’χψ),
so that two Pol III cores could constitute the replisome and
synthesize the leading strand and lagging strand at the same time
(Maki et al., 1988). However, further reports have argued on the
stoichiometry of hPol III subunits (McInerney et al., 2007; Reyes-
Lamothe et al., 2010; Dohrmann et al., 2016). The millisecond
single molecule fluorescence microscopy as well as in vitro
biochemical experiments showed that active E. coli replisome

FIGURE 4 | Models for the contribution of TrfA to β-clamp loading at

RK2 plasmid origin (oriV). We propose three model mechanisms for

β-clamp loading at oriV through cooperated action of TrfA and clamp loader.

(A) The first model suggests that ssDNA-bound TrfA recruits and hands off the

β-clamp to clamp loader. (B) The second model implies that ssDNA-bound

TrfA recruits the β-clamp in complex with clamp loader, thereby increasing the

local concentration of β-clamp:clamp loader complex at oriV. (C) The third

model indicates that TrfA binds β-clamp that is in complex with the clamp

loader and directs it to the ssDNA of oriV.

contains three molecules of polymerase that are functional at
replication fork (McInerney et al., 2007; Reyes-Lamothe et al.,
2010). Both these studies assumed that trimeric polymerase is
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associated with three molecules of τ subunit. However, the very
recent data indicated that in a bacterial cell there is predominately
present Pol III2τ2γδδ’χψ complex (Dohrmann et al., 2016). Since
plasmids do not encode all essential proteins required for a
plasmid replication, it is implied that the stage of DNA synthesis
is similar during chromosomal DNA replication.

The DNA synthesis is facilitated by SSB, especially on
the lagging strand (where the DNA synthesis is performed
discontinuously) and is present in organisms from all domains of
life (Shereda et al., 2008). Primary function of SSB is to protect
ssDNA against degradation and melting secondary structures
(Mackay and Linn, 1976; Meyer et al., 1979). SSB is linked to the
clamp loader via χ subunit (Glover and McHenry, 1998), which
was shown to be important for DnaG primase displacement
(Yuzhakov et al., 1999). Yet, SSB was termed the organizer
of genome maintenance complexes and was shown to interact
with at least 14 proteins, thus implying its diverse functions
(reviewed in details in Shereda et al., 2008). The SSB interactions
with proteins involves the C-terminal region of SSB, that is
highly conserved among eubacterial SSB proteins. Some plasmids
also encode SSB-like proteins, i.e., plasmid F, ColIb-P9, and
RK2 (Chase et al., 1983; Howland et al., 1989; Thomas and
Sherlock, 1990). While SSB of plasmid F and ColIb-P9 have
similar structural domains, the RK2 SSB, termed P116, is smaller
and contains only the N-terminal domain, which is responsible
for DNA binding. P116 lacks the C-terminal protein binding-tail
(Curth et al., 1996; Naue et al., 2013; Su et al., 2014), which may
suggest that the role of P116 limits to ssDNA protection against
nucleases.

CONCLUSIONS AND PERSPECTIVES

The ground-breaking model of DNA replication initiation,
introduced by Bramhill and Kornberg is still valid today
(Bramhill and Kornberg, 1988b). They proposed that first
the DnaA binds to DnaA-boxes to form an initial complex,
then DnaA melts the AT-rich region (DUE) to form an open
complex. Finally, DnaA directs the DnaB:DnaC complex
into the open complex, thus forming a pre-priming complex,
which marks the future forks of DNA replication (Bramhill

and Kornberg, 1988a,b). In this concept the chromosomal
replication initiator, DnaA triggers the DNA replication
initiation and is further required at each stage of the replication
initiation process. Iteron plasmids also encode replication
initiators that drive their replication initiation machinery.
Despite the fact that plasmid and chromosomal replicons use
overlapping set of proteins, there seems to be some subtle
differences that may largely affect the whole process. Recent
reports describe novel functions of replication initiators,
both plasmid and chromosomal, that outreach the replication
initiation process. The contribution of plasmid Rep protein
to replisome assembly by providing direct Rep-β-clamp
interaction, shed a new light on how far-reaching activities
replication initiators have i.e., determination of direction
of DNA replication (Wawrzycka et al., 2015). DnaA is also
involved in a regulation of DNA replication initiation by

a process termed RIDA (Regulatory Inactivation of DnaA;
Katayama et al., 2010). One may ask if there is any other
unanticipated activity of replication initiators to be discovered?
What other processes are influenced by replication initiators?
Described model mechanisms and unsolved questions of the
structure-function relation of replication initiators in DNA
replication and beyond this process await to be experimentally
challenged.
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