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EDITORIAL

has been shown that ocular rigidity increases with increasing age.25 
There is age-related thickening or increased stiffness of trabecular 
meshwork (TM) and Schlemm’s canal (SC) cells and tissues, leading 
to elevated IOP.26

In glaucoma, the lamina cribrosa of the optic nerve head is 
the principal site of RGC axonal damage. During aging, due to 
the accumulation of advanced glycation end products, profound 
changes are observed in the collagenous and noncollagenous 
components of ECM of lamina cribrosa causing stiffening and 
reduced compliance at the optic nerve head, leading to increased 
susceptibility to IOP-induced damage.27 Like lamina cribrosa, 
age-related alterations in ECM of sclera and peripapillary sclera 
(thinning, stiffening) also have a significant impact on the 
biomechanics of optic nerve head.28 Stiff sclera causes decreased 
optic canal expansion and increases ganglion cell loss.29,30 Age-
related structural changes may lead to a reduction of corneal 
hysteresis (a measure of the change in viscoelastic damping 
of the cornea) and corneal resistance factor.31 Lower corneal 
hysteresis is associated with an increased risk for glaucoma 
progression.

Aging and Retinal Ganglion Cell Loss
Aging is known to be associated with the loss of RGC and their 
axons.32,33 With increasing age, the proportion of neuronal tissue 
in the RNFL also decreases.33

In older age, the mechanical risk factors associated with retinal 
ganglion cell loss include a stiff sclera and decreased optic canal 
expansion.30 Apart from these mechanical factors, age-related 

In t r o d u c t i o n

Glaucoma is a chronic progressive optic neuropathy characterized 
by degeneration of retinal ganglion cells (RGC) and its axon 
causing optic nerve cupping and associated visual field defects.1–9 
In glaucoma, initially, there is the death of RGC associated 
with damage to the retinal nerve fiber layer (RNFL) and optic 
nerve head (structural changes), leading to visual field defects 
(functional changes). Many studies also suggest that the structural 
changes precede the visual field changes in glaucoma. Although 
intraocular pressure (IOP) control is the mainstay of treatment, 
glaucoma progression can occur even after adequate IOP control.2–9

Glaucoma is an age-related noncommunicable disease—part 
of the bouquet of diseases that affect some, but not all, elderly. 
While aging is an immutable, and irreversible deterioration in 
physiological homeostasis and function due to changes at the 
cellular level, it is exaggerated in the case of disease. The factors 
that may be responsible for the development of glaucoma at the 
cellular level include oxidative stress and mitochondrial dysfunction 
as well as protein misfolding. Possible alterations in cellular milieu 
that could contribute to glaucoma include excitotoxicity, altered 
neurotrophin signals, and hypoxic and ischemic injuries.8

Various neuroprotective strategies have been proposed to 
prevent RGC apoptosis, but IOP lowering is the only practical 
therapy.10–16 As apart from glaucoma, the aging process can also 
contribute to the RNFL loss/optic nerve neurodegeneration, there 
is an unmet need to focus on therapies for slowing down this 
process.7–9,17–22

This is important for patients first detected with moderate/
advanced damage and already have a low reserve of RGC. Even 
after adequate treatment, there is a downward slope of age-related 
progression, which may cause visual disability in their lifetime. Hence, 
a key question emerges—can antiaging therapies and lifestyle 
modifications reduce the rate of age-related decline of RGC/RNFL 
in glaucoma patients? Therapeutic strategies that may reverse or 
retard aging, will not decrease the incidence and morbidity due to 
age-related chronic diseases, but also prolong the healthy lifespan, 
improving the quality of life of the individual. In this article, we will 
briefly discuss the pathophysiology of age-related changes; the 
potential role, and new strategies to reverse, or at least, slow aging.

How Do e s Ag i n g Im pac t Gl au co m a 
Pat i e n ts?
Aging and Ocular Stiffness
With advancing age, there are alterations in extracellular matrix 
(ECM) microstructure like increased ECM deposition, assembly, and 
subsequent crosslinking, leading to increased tissue stiffness.23,24 It 
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shortening.44 Animal experimental studies also suggested that 
exposure to chronic stress and glucocorticoids is associated with 
shortened telomeres, which may be partially reversible.45 People 
who are exposed to chronic stress age rapidly due to telomere 
shortening.46

Antiaging Therapy
While aging, an organism experiences a series of progressively 
degenerative changes and becomes more sensitive to internal 
and external stimuli which leads to an aggravation of oxidative 
stress, accumulation of inflammation, apoptosis of cells, damage 
to structures and functions of cells/organs, and finally death.47,48 
There are some interventions in animal models or even in 
human studies that are known to have antiaging properties and 
can increase the lifespan.49 Activation of the sirtuin can be a 
useful method for lifespan extension.50 Quercetin can regulate 
the inflammatory response, oxidative stress, mitochondrial 
dysfunction, autophagy, and apoptosis by activating sirtuin 1 
in aging-related diseases.51–53 Many studies have shown that 
resveratrol has antiaging properties, can extend the lifespan, 
and also treat age-related diseases.54–61 The mechanisms by 
which resveratrol causes antiaging effects include suppression 
of oxidative stress, inhibition of inflammation, improvement of 
mitochondrial function, and regulation of apoptosis.62 In recent 
years, the role of hyperbaric oxygen therapy (HBOT–delivering 
100% oxygen at atmospheric pressure) in antiaging therapy has 
been explored.63–65 HBOT alters gene expression, delays cell 
senescence, assists in telomere length enhancement, and thus 
has the potential for regenerative and antiaging therapy.64 Thus, 
vitamin D can act as a shield against aging. Due to the critical 
effect exerted by vitamin D, it can be considered a tool to tackle 
immunosenescence, oxi-inflammaging, and whole-body aging. 
However, there are significant limitations to translating knowledge 
into clinical practice.66 Oleic acid, coenzyme Q10, alpha-lipoic 
acid, and nicotinamide mononucleotide (NMN) supplementation 
are gaining attention for antiaging therapy. Further studies must 
assess their potential benefit and safety.67–72 NMN as a sirtuin-
activating agent had protective effects against age-related ocular 
diseases such as dry eye, glaucoma, and macular degeneration.73 
Similarly, many strategies were tried to protect or regenerate 
the RGC Cells.11,74–76 Skoufis and Segos reported that antiaging 
therapy could aid in glaucoma control, improving the ocular 
microcirculation.77

Epigenetic Reprogramming
It is proposed that during aging, the accumulation of epigenetic 
noise/loss of epigenetic information disrupts gene expression 
patterns, leading to decreases in tissue function and regenerative 
capacity.78–80 Even though aging is thought to be a unidirectional 
process, there are some situations in which biological age can be 
reset entirely, such as in “immortal” jellyfish and when cloning an 
animal using nuclear transfer. If the mammalian cells had preserved 
a faithful copy of epigenetic information from an earlier stage of life, 
it might be possible to reverse aging by using that information.81 
Sinclair stated that restoring epigenetic information to reverse 
aging is similar to rebooting a malfunctioning computer.

Epigenetic reprogramming is the key to reversing aging and 
increasing longevity.82 The epigenetic rejuvenation is achieved 
through transcription factor-mediated reprogramming or 
pharmacological interventions based on small molecules, like DNA 
methyltransferase inhibitors and HDAC inhibitors.

biochemical alterations contribute to retinal ganglion cell loss. 
Most of these biochemical alterations are mediated by caspase-
dependent apoptosis, histone lysine methylation, and histone 
acetylase (HAT)/histone deacetylase (HDAC) deacetylation.34–36 
Nuclear factor (erythroid-derived 2)- like 2 (NRF2), a transcription 
factor that regulates cellular redox homeostasis, declines with 
age.37 Age-related alterations in redox homeostasis prevent 
reactive oxygen species (ROS) reduction. The increased ROS 
causes oxidative stress, damages mitochondrial deoxyribonucleic 
acid (DNA), and increases the optic nerve’s neurodegenerative 
vulnerability.37–39

Why d o We Ag e—Pat h o p hys i o lo g y o f 
Ag i n g

Aging occurs mainly due to cumulative DNA damage and epigenetic 
dysregulation. The epigenome determines which genes are switched 
on (functional) or off (not functional), and this gets dysregulated as 
we age, leading to cell damage. There is a shortening of telomeres 
that caps and protects the DNA in our chromosomes. There is also 
an accumulation of protein due to loss of protein homeostasis 
related to this, an increase in crosslinked proteins that bind to each 
other—advanced glycation crosslinks and an increase in senescent 
cells which are harmful to healthy cells. There is a loss of energy 
production with a reduction in mitochondrial function and a loss 
of stem cells, which are responsible for cell rejuvenation or tissue 
repair. Chronic, low-grade inflammation, also called inflammaging, 
involves both cytokine and noncytokine mediate processes, and is 
central to immunosenescence.

There is also considerable evidence that lifestyle factors are 
the triggers for systemic physiological imbalances. The latter 
is a result of the underlying oxidative stress, insulin resistance, 
and hyperinsulinemia,7 imbalances in the renin–angiotensin–
aldosterone system, as well as autonomic and immunomodulatory 
dysregulation. In fact, insulin resistance has been shown to 
have a positive correlation with IOP, and the former, along 
with hyperinsulinemia may, thus, contribute to glaucoma. The 
interaction between the lifestyle style triggers and their resultant 
physiological malfunctions and individual genetic susceptibility 
is known to influence not only aging, but also several age-related 
diseases.2,7–9

Stress and Aging
With increasing age, there is a shortening of telomeres; thus, 
telomere length is a marker of cellular aging. Psychological stress 
can be associated with decreased telomere length.40 Darrow 
et al., in their meta-analysis, reported that there is a shortening 
of telomere length in patients with psychiatric disorders (like 
depression, anxiety, posttraumatic stress disorder, etc.) compared 
to controls.41 The underlying mechanisms for the association of 
chronic psychological stress and shorter telomere are poorly 
understood. During stressful events, the hypothalamic–pituitary–
adrenal axis (HPA) is activated, causing a rapid (but transient) 
increase in glucocorticoid stress hormone.42 There may be an 
increase in oxidative stress if repeated activation of the HPA axis 
occurs. The oxidizing molecule can affect telomeres, which leads 
to the hypothesis that increased glucocorticoids cause telomere 
shortening. Steptoe et  al. reported that cortisol responsivity 
may partly mediate the relationship between psychological 
stress and cellular aging.43 Jiang et  al.’s meta-analysis also 
supported a relationship between cortisol reactivity and telomere 
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of reprogramming factors.97 Reprogramming factors like OSKM 
genes may be associated with the risk of neoplastic development 
in reprogrammed cells.98 Most of these reprogramming has been 
successful only in rejuvenating animal tissues. New technologies 
and further research are needed to apply these findings in humans.

Lifestyle Modifications for Antiaging
Several lifestyle factors like physical activity, smoking, drinking, 
nutrition, sleep, stress, etc. can be associated with age-related 
diseases and death. Lifestyle modifications can be beneficial to 
prevent aging and age-related diseases. Most of these aim at 
reducing the allostatic overload which results in physiological 
dysregulation due to chronic stress.2,7–9,99–129

Stress Management
Meditation-based interventions have been shown to reduce stress 
and improve general health.101,102 Our previous studies have shown 
that meditation-based interventions can also reduce stress and 
improve the quality of life in patients with glaucoma.14,103–105 A 
recent meta-analysis by Schutte et al. suggested that meditation-
based interventions may prevent telomere attrition or increase 
telomere length.106 In long-term meditators, telomere length 
correlates with DNA methylation.107 Tolahunase et al. studied the 
impact of yoga and meditation-based lifestyle intervention (YMLI) 
on cellular aging in apparently healthy individuals.108 In their 
study, a 12-week course of YMLI significantly reduced the mean 
levels of 8-hydroxy-2’-deoxyguanosine, ROS, cortisol, and IL-6. It 
also significantly increased the mean levels of total antioxidant 
capacity, telomerase activity, β-endorphin, BDNF, and sirtuin-1. The 
mean level of telomere length was increased (but the finding was 
not significant p = 0.069). They concluded that YMLI can reduce 
the rate of cellular aging. Similarly, Dasanayaka et al. studied the 
associations of meditation with telomere dynamics in healthy adults 
and reported that meditation has multilevel benefits in telomere 
dynamics (compared to nonmeditators, meditators had longer 
relative telomere length, higher relative expression of hTERT and 
hTR genes and significantly lower methylation level of the promoter 
region of hTERT gene) with potential to promote healthy aging.109 
Thus, meditation can aid in healthy aging by appropriate telomere 
dynamics.110–112

Avoid Smoking and Alcohol Consumption
Cigarette smoking is an important accelerator of the aging process 
both directly (complex mechanisms mediated by excessive free 
radical formation) and indirectly (by favoring the appearance of 
various pathologies).113,114 Smokers have a significantly higher 
biological age than chronological age and a higher percentage of fat 
tissue than nonsmokers.115 Nonsmokers can delay the aging process 
and the appearance of diseases. Chronic alcohol consumption 
accelerates and exacerbates the age-related diseases.116 Alcohol 
consumption can increase oxidative stress and inflammation, 
influencing telomere length.117 Wang et al. reported that the long-
term average alcohol consumption is associated with acceleration of 
biological age.118 Thus, avoiding smoking and alcohol consumption 
will aid in healthy aging.

Improving Physical Activity
Physical activity/regular exercise can limit the prevalence of 
various cardiometabolic and neurodegenerative diseases by 
reducing mitochondrial dysfunction.119 It prevents the decline 
in mitochondrial respiration, mitigates aging-related loss of 

Transcription Factor-mediated Reprogramming
Almost all species have a decline in regenerative potential during 
aging. In mammals, the central nervous system (CNS) is among 
the first to lose regenerative potential.83,84 RGC (part of CNS) can 
regenerate axons after damage during the embryonic or neonatal 
period, but this capacity is lost within days after birth.83,85 The trio of 
genes Oct4, Sox2, and Klf4 (together named OSK), which are active 
in stem cells, can help to rewind the adult cells to an earlier state. 
Lu et al. showed that ectopic expression of OSK in mouse RGC can 
restore youthful DNA methylation patterns and transcriptomes, 
promote axon regeneration after injury, and reverse vision in mouse 
models of glaucoma and aged mice.76 The DNA demethylases TET1 
and TET2 are required for the beneficial effects of OSK-induced 
reprogramming in axon regeneration and vision restoration. It is 
a partial reprogramming that enables the epigenetic landscape 
of cells and DNA methylation patterns to be reset, allowing 
cells to rejuvenate and tissues to regenerate without reaching a 
pluripotency state, thus minimizing the risk of tumorigenesis.86

Deoxyribonucleic Acid Methyltransferase Inhibitors-
mediated Reprogramming
With increasing age, there are alterations in DNA methylation 
like global hypomethylation and site-specific hypermethylation, 
which are linked to many age-related diseases like diabetes, cancer, 
cardiovascular diseases, neurodegenerative disorders, etc.87 DNA 
methylation is catalyzed by DNA methyltransferases.88 So, targeting 
DNA methyltransferases with specific inhibitors to delay or reverse 
the pathologies can be a potential antiaging strategy. FDA had 
approved DNA methyltransferase inhibitors like 5-azacitidine and 
decitabine as antitumor agents.89,90 There is limited experimental 
evidence regarding the direct effects of DNA methyltransferase 
inhibitors on age-related diseases.

Histone Deacetylase Inhibitors-mediated 
Reprogramming
With increasing age, there are changes in histone acetylation, 
particularly alterations in specific histone marks and the expression 
of HDACs.91 The opposing actions of histone acetyltransferases 
(HATs) and HDACs (whose activities are correlated with gene 
activation and gene silencing, respectively) control the acetylation 
of core histones.92 HDAC inhibitors target epigenetic changes 
and, indirectly, the remaining hallmarks of aging and thus have 
shown promise in treating age-related chronic disorders.93 HDAC 
inhibitors reprogram chromatin through modulating p53, p300/
CREB binding protein, p300/CBP-associated factor and thus 
promoting neuroprotection.33,94,95 HDAC inhibitors like RGFP966 
or conditional knockout of the Hdac3 gene (encodes HDAC3), offer 
protection to the RGC.74,75

Current Challenges in Epigenetic Reprogramming
Epigenetic reprogramming can reverse aging and increase 
longevity, but several challenges hinder these strategies. 
Despite progress, there is an incomplete understanding of the 
intricate processes regulating gene expression and cellular 
reprogramming.96 After attaining youthful characteristics, 
sustaining them and preventing their reversion to an aged state 
over extended periods is complex and requires continuous 
monitoring and optimization of reprogramming. Delivery of 
transcription factors for reprogramming by the viral vectors can 
lead to pathological insertional mutagenesis and reactivation 
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muscle mass, and enhances insulin sensitivity.120 It can maintain 
blood pressure, control blood sugar and body weight, reduce 
dyslipidemia, and improve bone and muscle health. Thus, exercise/
physical activity can promote healthy aging.

Diet Modification
Appropriate nutrition intake is crucial to prevent or delay the 
development of diseases, boost longevity, and promote healthy 
aging.121,122 One should consume diets rich in vegetables, fruits, 
nuts, cereals, fish, unsaturated fats, antioxidants, potassium, 
and omega-3, choose a low carbohydrate diet, reduce intake of 
red meat, and ultraprocessed foods. Calorie restriction has also 
been shown to improve lifespans in some model organisms.123 It 
works by neutralizing the harmful effects of ROS and oxidative 
damage.124

Sleep Quality and Quantity
Sleep is integral to the health of metabolic and physiological 
systems, endocrine function, immune response, and retardation 
of senescence. Poor sleep is known to accelerate aging, and age-
related diseases, like Alzheimer’s disease, hematopoietic stem cell 
dysfunction, and coronary artery disease.125–131 Numerous studies 
have reported that improving the quantity and quality of sleep can be 
considered as an antiaging treatment that can prevent, slow, or even. 
Similarly, the chronobiological effects of melatonin include a reversal 
of the cellular degeneration associated with aging. Melatonin, 
and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine 
(AFMK) and N1-acetyl-5-methoxykynuramine (AMK), have 
neuroprotective, anti-inflammatory, immunomodulatory, and 
oncostatic properties.125–130

Increased HIF-1α protein levels, higher oxidative stress markers 
8-OHdG and TNF-α, and a decrease in pyruvate dehydrogenase 
kinase-1 protein were noted in rats with chronic intermittent 
hypoxia, induced by obstructive sleep apnea-like models. These are 
like the oxidative stress, inflammation, and upregulation of HIF-1α 
in the retina, seen in early-stage glaucoma.129 Obstructive Sleep 
Apnea (OSA), however, appears to be an aggravating factor, rather 
than an independent risk factor for glaucoma, even though there 
is a significant association between OSA, glaucoma, and higher 
eye pressures.130,131

Co n c lu s i o n

To conclude, aging can cause or accelerate the loss of RGC either 
by mechanical or biochemical alterations. Several research 
studies have attempted to stop or reverse aging and age-related 
diseases, with promising results. However, there are several 
challenges to using them in clinical practice at the present time. 
Future research could provide a valuable intervention to halt or 
reverse age-related loss of RGC and be a helpful armamentarium 
in treating glaucoma. At present, lifestyle modifications could 
be considered as adjuvant therapy in glaucoma patients, 
with an aim to evaluate and reduce the allostatic load, to 
restore the physiological balance.9 That these may also have 
a potentially beneficial or protective effect on other age-
related noncommunicable diseases is an added advantage. It is 
important to establish a new target in glaucoma patients other 
than the target IOP for “reversing aging” or “slowing the aging 
process” to mitigate the age-related retinal ganglion cell loss. An 
interesting research question for the future would be to evaluate 
glaucoma “fast progressors” for “accelerated aging” and evaluate 
if lifestyle interventions can slow/reverse both.
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