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Abstract: With the advent of combination antiretroviral therapy (cART), overall survival has been im-
proved, and the incidence of acquired immunodeficiency syndrome (AIDS)-defining cancers has also
been remarkably reduced. However, non-AIDS-defining cancers among human immunodeficiency
virus-1 (HIV-1)-associated malignancies have increased significantly so that cancer is the leading
cause of death in people living with HIV in certain highly developed countries, such as France. How-
ever, it is currently unknown how HIV-1 infection raises oncogenic virus-mediated cancer risks in the
HIV-1 and oncogenic virus co-infected patients, and thus elucidation of the molecular mechanisms
for how HIV-1 expedites the oncogenic viruses-triggered tumorigenesis in the co-infected hosts is
imperative for developing therapeutics to cure or impede the carcinogenesis. Hence, this review is
focused on HIV-1 and oncogenic virus co-infection-mediated molecular processes in the acceleration
of non-AIDS-defining cancers.
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1. Introduction

Human immunodeficiency virus-1 (HIV-1) infection accelerates the progression of both
acquired immunodeficiency syndrome (AIDS)-defining cancers and non-AIDS-defining
cancers in patients co-infected with HIV-1 and other oncogenic viruses. With the advent
of combination antiretroviral therapy (cART), AIDS-defining cancers, such as Kaposi
sarcoma and non-Hodgkin lymphoma have declined by 60–70% and 30–50%, respectively,
when compared with the pre-cART era [1]. Significant reduction of the rates of these
cancers by cART is believed to be due to ameliorating the suppressed immune responses,
including depletion of CD4+ T helper cells, exhaustion of lymphopoiesis, and so forth [2–5].
By contrast, non-AIDS-defining cancers caused by hepatitis B and C viruses (HBV and
HCV), human papillomavirus (HPV), etc., in HIV-1-associated malignancies have been
significantly elevated [6–8] such that cancer is the leading cause of death in HIV-1-infected
persons in certain highly developed countries [9], where the life expectancy of HIV-1-
infected people has increased with the advent of cART. However, it is currently unknown
how HIV-1 raises the risks for non-AIDS-defining cancers; thus, understanding is critical
for developing therapeutics to cure or impede the carcinogenesis.

Currently, cART is composed of six different classes of antiretroviral drugs, such as
entry/attachment inhibitors, nucleoside and nonnucleoside reverse transcriptase inhibitors,
protease/integrase inhibitors, and so forth [10,11]. cART blocks HIV-1 replication at dif-
ferent stages of the HIV-1 life cycle and significantly reduces HIV-1 infection-associated
morbidity and mortality [12–15]. Blockade of HIV-1 replication with cART reduces the viral
load and thus the risk of HIV-1 transmission. Moreover, the treatment allows the immune
system destroyed by HIV-1 infection to repair and prevent further damage [16–18]. As virus
replication is blocked and thus immune responses are recovered, risks of AIDS-defining
cancers are remarkably reduced, while those of non-AIDS-defining cancers were increased,
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as briefly described above. However, it is currently unknown how cART differentially
impacts the progression of either AIDS- or non-AIDS-defining cancers. This review is
focused on the co-infection-associated impacts on tumorigenesis of non-AIDS-defining
cancers by HIV-1 infection, illustrating potential intercommunication between HIV-1 and
oncoviruses in the co-infected hosts to develop these cancers.

2. Overview of HIV-1 and Oncoviruses
2.1. HIV-1

It is unclear how HIV-1 infection leads to clinical deterioration in oncovirus-caused
cancers, even if HIV-1 and the co-infected oncoviruses have disparate routes of transmission
and target cells for infection. First, HIV-1 is transmitted by sexual contact across mucosal
surfaces, percutaneous inoculation, or by maternal–infant exposure [19]. These transmis-
sion mechanisms differ from those of oncoviruses with the exception of HBV and HCV.
Transmitted HIV-1 in the human body then enters the target cell as the first step of the virus
life cycle, by the interaction between HIV-1 envelope (Env) and the receptor/co-receptor
molecules expressed on the surface of the host cells. Briefly, Env is composed of a glyco-
protein (gp) 120 trimer on the surface of the virion particle and heterodimer of gp41 in the
virus membrane. HIV-1 gp120 first binds to its primary receptor, a cluster of differentiation
4 (CD4) expressed on the surface of the target cells [20–24]. Interaction between gp120
and CD4 is critical for the repositioning of variable loop 3 of gp120 to enhance co-receptor
engagement. Different HIV-1 strains employ disparate co-receptor molecules for virus
entry. For instance, HIV-1 strains that target CD4+ T lymphocytes utilizes the C-X-C motif
chemokine receptor 4 (CXCR4) as a co-receptor (X4-tropic or T-tropic), the virus entering
into macrophage/monocytes and dendritic cells uses the C-C motif chemokine receptor 5
(CCR5) as a co-receptor (R5-tropic or M-tropic), and primary isolates employ both CXCR4
and CCR5 for virus entry (R5X4-tropic or dual tropic) [25–29]. In virally suppressed in-
dividuals, the largest HIV reservoir resides in various subsets of memory T cells and the
importance of tissue reservoirs remains highly discussed [30–32]. The most compelling
evidence confirms that HIV-1 enters its target cells using CCR5 and CXCR4, indicating that
in vivo HIV-1 targets cells expressing CD4 and CXCR4 and/or CCR5 [27]. That is, HIV-1
susceptible cells are distinct from those for oncoviruses, as described below (Table 1).

Table 1. Summary of HIV-1 and oncoviruses inducing non-AIDS-defining cancers.

Virus Family Viral Genome Receptor/Co-
Receptor Primary Target Cells Tumor Types

HIV-1 Retroviridae ssRNA CD4/CXCR4
CD4/CCR5

CD4+ T cells, macrophages,
monocytes, dendritic cells

HBV Hepadnaviridae ss/dsDNA NTCP Hepatocytes Hepatocellular carcinoma

HCV Flaviviridae ssRNA
CD81, SR-B1,

CLDN1, OCLN,
etc.

Hepatocytes Hepatocellular carcinoma

HPV Papillomaviridae dsDNA HSPG Epithelial cells Cervical, oropharyngeal,
anal, genital cancers, etc.

Abbreviations: Cluster of differentiation 4 (CD4)/C-X-C motif chemokine receptor 4 (CXCR4), C-C motif
chemokine receptor 5 (CCR5), sodium taurocholate co-transporting polypeptide (NTCP), CD81, Scavenger
receptor class B type I (SR-BI), claudin-1 (CLDN1), and occludin (OCLN), Heparin sulfate proteoglycans (HSPGs).

While co-infection of cells by both an oncovirus and HIV-1 is controversial, as described
below, co-infection may not be the only way for HIV-1 to accelerate oncovirus-mediated
tumorigenesis. In fact, transferable HIV-1 proteins may expedite oncovirus-mediated
cancer progression (Figure 1). Briefly, HIV-1 expresses several important regulatory pro-
teins (Tat, Rev, Nef, Vpr) in addition to three structural proteins (Gag, Pol, and Env), in
a stage-specific manner. Regulatory proteins such as transactivator of transcription (Tat),
regulator of expression of virion proteins (Rev), and negative factor (Nef) are expressed
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during the early stage (Figure 2). More specifically, Rev exports viral messages containing
the Rev-response element to the cytoplasm so that structural polyproteins encoded by gag,
pol, and env, are produced at the late stage of virus infection [33–38]. Among these viral
proteins, Env, Tat, and Nef are key viral proteins that can be transferred from HIV-1-infected
cells, by means other than infectious virions, into target cells and dysregulate the target
cell biology. Since HIV-1 Tat is a diffusible, cell-penetrating peptide [39], secreted Tat could
diffuse into neighboring cells and modulate intracellular gene expression, tumorigenesis,
etc. [40,41]. Furthermore, the HIV envelope gp120 could directly interact with CXCR4
or CCR5 co-receptor molecules expressed on the non-CD4+ target cells [42,43], dysregu-
lating the co-receptor-mediated intracellular signaling cascade and changing the target
cell biology [44,45]. HIV-1 Nef can also be transferred from HIV-1-infected cells to the
non-susceptible cells through conduits (filopodia) and/or exosomes [46–49]. However, it is
unclear how these HIV-1 proteins contribute to the escalation of non-AIDS-defining cancers
in the co-infected patients.
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Figure 1. HIV-1 and/or its viral proteins accelerate oncovirus-mediated tumorigenesis. It remains
controversial whether HIV-1 can infect the same target cells as oncoviruses given the absence of
essential receptor/co-receptor expression needed for HIV-1 binding and entry into oncovirus target
cells. Alternatively, HIV-1 proteins which can be transferred from an HIV-1-infected cell to an
oncovirus target cell via mechanisms such as shedding (Env), diffusion (Tat), or exosome/conduit-
mediated assistance (Nef) could instead be accelerating oncovirus-mediated tumorigenesis. Notably,
the cell–cell transfer mechanisms of HIV-1 Rev and Vpr proteins remain unknown. Regardless, HIV-1
infection and/or transfer of HIV-1 proteins to oncovirus-infected target cells can promote increased
oncovirus replication and infectivity, which leads to increased pathogenicity propagated by the
oncovirus. Increased viral replication, co-infections, and HIV-1 proteins can alter inflammatory and
immune responses in tumor microenvironments which can promote survival signals and even tumor
growth. Finally, HIV-1 proteins themselves can modulate gene expression to upregulate oncogenic
factors as well as interact with cell signaling pathways that regulate cell fate including cell cycle,
growth/proliferation, migration, inflammation, and survival to enhance tumorigenesis. Created with
BioRender.com (accessed on 28 January 2022).
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Co-Infection with Oncoviruses

Among non-AIDS-defining cancers, this review is focused on the oncoviruses that
most commonly affect people living with HIV. Due to the shared route of transmission
between HIV-1 and HCV, an estimated 15 to 30% of persons living with HIV-1 have or have
had an HCV co-infection [50–52] in the US. While both HBV and HCV are treatable, chronic
liver disease remains a major cause of morbidity and mortality in people living with HIV.
In people living with HPV, an HIV-1 co-morbidity increases the risk for head and neck
squamous cell carcinoma, anal cancer, and cervical cancer between 2- and 4-fold [8,53,54].
This review is focused only on oncogenic virus-mediated non-AIDS-defining cancers,
excluding AIDS-defining cancers, such as Epstein–Barr virus and human herpesvirus.

2.2. Hepatitis B and C Viruses (HBV and HCV)

Transmission and entry. HBV and HCV are responsible for the most widespread
forms of chronic hepatitis worldwide and lead to liver disease, cirrhosis, and hepatocellular
carcinoma (HCC) [55–61]. Like HIV, they are transmitted by sexual contact, sharing needles,
syringes, and other injection equipment, and by maternal–infant exposure. HBV and HCV
enter hepatocytes by interacting with distinctively disparate receptor molecules. HBV
enters cells by interaction of the preS1 region of the large (L) HBV glycoprotein with
a liver-specific bile acid transporter known as the sodium taurocholate co-transporting
polypeptide (NTCP) [62–68]. However, a recent report indicates that NTCP itself is not
sufficient for entry, and E-cadherin plays a role in HBV entry by modulating the localization
of NTCP to the plasma membrane [69]. It is also reported that epidermal growth factor
receptor enhances HBV internalization by complex formation with NTCP [70]. By contrast,
HCV entry requires multiple receptors, including tetraspanin CD81 [71], scavenger receptor
class B type I (SR-B1) [72], tight junction proteins, claudin-1 (CLDN1) [73], and occludin
(OCLN) [74]. Despite differential routes of entry, both hepatitis viruses cause morbidity
and mortality through the development of chronic liver diseases, including cirrhosis and
HCC [58–61].

BioRender.com
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Life cycle. The life cycles of HBV and HCV are as distinct as their receptors despite
inducing similar pathogenesis. As a member of the Hepadnaviridae family, HBV’s life cycle
includes the nucleus where its partially double-stranded (ds) DNA genome is integrated
into the cell genome [75]. While, HCV, as a member of the Flaviviridae family, possesses an
RNA genome and completes its life cycle in the cytoplasm.

The HBV viral genome is transported to the nucleus wherein a covalently closed
circular form of DNA (cccDNA) accumulates as a stable episome, and the cccDNA is
responsible for persistent HBV infection of hepatocytes, serving as a template for viral tran-
scription [76–79]. Subgenomic and pregenomic RNA transcribed from the template then
function as a template for reverse transcriptase as well as mRNA to generate viral proteins,
such as core, pre-core, polymerase, small (S), middle (M), and large (L) glycoproteins, and
the critical HBV-encoded regulatory protein hepatitis B virus X protein (HBx) (Figure 3).
The translated viral proteins are assembled in the endoplasmic reticulum (ER) and Golgi to
generate viral particles [76]. The pregenomic RNA is packaged into the core and reverse
transcribed into (−) strand DNA by viral reverse transcriptase, which serves as a template
for (+) strand DNA, forming a partially ds-genomic DNA. The assembled HBV particles are
then released from the hepatocyte ER [76] in vesicles that travel to the plasma membrane.
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In contrast, HCV, the Hepacivirus genus of the Flaviviridae family, comprises a single
stranded (ss) RNA genome with messenger activity in the virus particle. Since the genomic
RNA is translated into a single polyprotein precursor upon entry, the virus spends its entire
lifecycle in the cytoplasm. The polyprotein is then cleaved into several smaller structural
(core, envelope 1 and 2) and non-structural (NS1 to NS5A and 5B) elements (Figure 4). The
virus does not have a reverse transcriptase protein and thus does not integrate into the host
genome like HBV. However, the viral core proteins (p19 and p21) enter the nucleus and
trigger various cellular signal transduction pathways to mediate the transcription activity
of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription
(STAT) 3 proteins. It is known that HCV infection dysregulates the host immune responses
of infected cells, inducing hepatitis.
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2.2.1. Molecular Mechanisms on HBV- and HCV-Mediated Hepatocarcinogenesis

As noted above, HBV and HCV use different receptor molecules to enter hepatocytes
and have distinct virus life cycles within the cells. Nonetheless, the eventual consequence
can be identical, HCC.

HBV replicability, genotype, and genomic mutations. HBV, directly and indirectly, dys-
regulates host cell biology in various manners to induce HCC. First, the risk of developing
HCC is directly related to replicability, genotype, and genomic mutations of HBV [58,80].
High serum HBV DNA generated and released during viral replication is an indicator of
accumulation of liver damage, evolution to cirrhosis, and HCC development [58]. Among
the eight HBV genotypes (A–H), genotype C has been associated with a higher risk of
progression to HCC [81]. Mutations in the basal core promoter of HBV genotypes B and C
are closely associated with the development of HCC. More specifically, deletions, insertions,
or even nonsynonymous point mutations in the preS1 and preS2 gene found in patients
with cirrhosis and long-lasting HCC [82–88] increased the risk of HCC by 3.77-fold [83].
These risks are the result of mutant protein production that abnormally activates the ER
stress signaling pathways [82,89–91], generating reactive oxygen species (ROS) and causing
oxidative DNA damage and genomic instability [92–94]. Such changes in the different
strains of HBV provide an optimal microenvironment for the development of HCC.

HBV DNA integration. The integration of HBV DNA into the host genome during
the early steps of clonal tumor expansion enhances genomic instability and mutagenesis
and causes secondary chromosomal rearrangements, such as duplications, translocations,
and deletions, in a diverse array of cancer-related genes. Genome-wide association studies
indicated that single nucleotide polymorphisms in genes such as deleted in liver cancer
1 (DLC1, a tumor suppressor gene implicated in HCC pathogenesis) [95], STAT4 (a key
protein for regulation of the inflammation) [96,97], cytotoxic T-lymphocyte antigen (CTL)-
4 [97], transforming growth factor β 1 (TGF-β1) [98], TPTE2 (a phosphatase and tensin
homolog) [99], mouse double minute 2 homolog (MDM2) [100] are associated with HCC in
chronic HBV patients. This demonstrates that genetic mutation by HBV infection plays a
pivotal role in HCC development. Further, somatic gene mutations in the coding region in
HCC [101–106], reactivation of telomerase reverse transcriptase (TERT), which is important
for telomerase maintenance, and promoter mutations caused by HBV insertion and/or HBx
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protein [101–103,106] are frequently observed in HCC, indicating that various mutations
contribute to induction and acceleration of HBV-mediated tumorigenesis.

HBV gene expression. Aberrant expression and/or functional changes of HBV viral
genes and proteins trigger HBV-associated tumorigenesis by dysregulating the expression
of viral and cellular genes integral to cell functions, such as cell proliferation and viabil-
ity, and sensitizing liver cells to mutagens. For instance, HBx plays a critical role in cell
proliferation and death by regulating the expression of various cellular genes involved
in ROS production [107], ER stress [108], apoptosis [109], angiogenesis [110,111], etc., and
viral transcription of the large S gene, which promotes hepatocarcinogenesis [112,113]. To
elaborate, HBx augments HBV replication by recruiting the cccDNA minichromosome in
HBV replicating cells [114,115] and by blocking the inhibitory activity of HBV transcription
conferred by protein arginine N-methyltransferase 1 (PRMT1) [116,117], spindlin-1 [117],
and SET domain-bifurcated histone lysine methyltransferase 1 (SETDB1) [118]. Regulation
of HBV replication is also mediated by additional mechanisms, such as transcriptional
activation of genes and micro (mi)RNAs potentiating endocytosis and autophagy [119–121],
inactivation of the Smc5/Smc6-associated restriction of cccDNA transcription [122], and
direct transcriptional repression of miRNAs (miR-138, -224, and -596) that inhibit HBV
replication [119]. The HBV capsid protein is also known to bind to the viral minichromo-
some [77,79], affect cccDNA transcription [79] and stability, and regulate the expression of
host genes involved in innate immunity, inflammation, and cell proliferation [123]. Inappro-
priate expression of wild-type envelope initiates a cascade of events that advance malignant
transformation [112]. Moreover, mutated preS2 displays pro-oncogenic potential via tran-
scriptional activation of TERT [91,124], upregulation of cyclin A [125], and enhancement
of vascular endothelial growth factor-A [126]. Mutant preS2 also dysregulates phospho-
rylation of retinoblastoma (Rb) and cell cycle progression [127], induces cell proliferation
and anchorage-independent growth by overexpression of cyclin A and cyclooxygenase-
2 [93,128], and thereby promotes HCC development. Taken together, changes to the viral
gene expression and functional changes of viral genes by mutation play a pivotal role in
regulation of HCC progression.

Prolonged expression of viral genes in infected cells induces mutations in various
cellular genes involved in the signal transduction pathways critical to tumorigenesis. In
HCC, the WNT/β-catenin pathway is activated by activating and inactivating mutations
of CTNNB1 [129,130] and AXIN1 [130], respectively. Approximately 5–15% of HCC involve
mutations that activate nuclear factor-erythroid factor 2-related factor 2 (NRF2) and inacti-
vate Kelch-like ECH-associated protein 1 (KEAP1), which prevents NRF2 ubiquitination
and subsequent degradation. These mutations protect tumor cells from ROS-induced death
by increasing antioxidant responses [103,104,131,132]. The cell cycle regulating pathway
is also disrupted by mutations in p53 tumor suppressor protein in 12–48% of cases of
HBV-associated HCC [102,103,131,133], which are associated with tumor aggressiveness
and poor prognosis [102,105]. The Rb pathway, which plays an essential role in G1/S cell
cycle regulation, is also inactivated by homozygous deletion of cyclin-dependent kinase
inhibitor 2A (CDKN2A, CDK2) [103], amplification of the CCND1/FGF19 locus [134,135],
and recurrent HBV insertions in cyclin E1 (CCNE1) [106]. The fate of infected cells, whether
proliferation or death, is also regulated by HBx-triggered signaling pathways. For exam-
ple, HBx-mediated calcium signaling leads to the accumulation of cytosolic calcium by
modulating mitochondrial calcium uptake, which in turn increases ROS, ER stress and
activates the unfolded protein response pathways [108,136]. In fact, the binding of HBx to
the mitochondrial voltage-dependent anion-selective channel protein 3 (VDAC3) augments
ROS production, which eventually leads to cell death by apoptosis [109]. An additional
effect of HBx is inhibition of tumor necrosis factor-α (TNFα) and Fas-mediated apoptosis
by activation of NF-κB, enabling HBV-infected hepatocyte survival, but also uninfected
cell apoptosis [137]. Thus, HBx confers differential impacts on the fates of HBV-infected vs.
uninfected hepatocytes. Finally, accumulated HBx transactivates transcription of cellular
genes involved in the regulation of cell proliferation, such as c-jun, c-fos, and c-myc, etc.,
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and the transcriptional transactivation appears to be accompanied by the stimulation of
the protein kinase C and NF-κB pathways [138]. These HBV-associated disruptions of
signaling cascades consequently foster progression of HCC and are thoroughly reviewed
in Levrero et al. [139].

As described above, HCV differs significantly in its structure, life cycle, and epidemi-
ology. HCV infection is heavily distributed in some African and Asian countries, not in
North America and Western Europe, and the number of HCV-infected people is lower than
that of HBV-infected hosts [140,141]. Nonetheless, numerous previous reports indicated
that HCV shares molecular processes and pathogenesis with HBV in many aspects leading
to hepatocarcinogenesis [140,142]. That is, both HBV and HCV promote inflammatory
reactions and oxidative stress. Liver injury by these agents sequentially leads to fibrosis,
cirrhosis, and HCC [143]. Since the genotype and replicability of HBV relate to the risk
of developing HCC [58,80], a meta-analysis of large cohort studies in both cirrhotic and
non-cirrhotic patients also indicates that genotype 1b of HCV carries a 2.5-fold higher risk
of HCC than patients with other genotypes [144–147], indicating strain-specific differences
in oncogenic potential. Further, as observed in HBV-associated HCC, HCV infection of liver
cells generates extensive heterogeneity of genomic alterations. For example, approximately
15–50% of p53 and 20–40% of β-catenin is mutated in HCV-associated HCC [148]. β-catenin
plays a critical role in the regulation and coordination of cell–cell adhesion [149–151],
gene transcription [151], and tumorigenesis [152–154]. Like HBx, the HCV core protein
is known to cause genomic instability in viral and cellular genes, which is critical for the
transformation of the murine fibroblasts and tumorigenesis [155]. Expression of the core
gene is closely associated with the immortalization of the primary hepatocytes, leading
to cellular transformation and carcinogenesis [155–158]. Sequence analysis confirmed the
gene mutations increased in HCC [159–162]. Other viral genes mutations, such as NS5A,
have also been associated with the risk of HCC [160,163].

Signaling cascade dysregulation. These mutations in the viral and cellular genes of
HCV-infected cells affect various signaling cascades that play an important role in the
progression of HCC. Chronic infection with HCV determines the fate of infected cells by
regulating signaling cascades involved in cell proliferation and death. As was observed
during HBV infection, the HCV core protein activates the Ras/Raf/mitogen-activated
protein kinase/extracellular-signal-regulated kinase pathway, whose signaling cascades are
essential for the regulation of apoptosis or cell cycle progression [164,165]. The HCV core
protein augments cytoplasmic p21, while suppressing nucleic p21 by the p53-dependent
pathway, to determine the fate of the infected cells with respect to the proliferation and
apoptosis [166–168]. Meanwhile, NS5A downregulates growth arrest and DNA-damage-
inducible gene 45-a (GADD45a) through the NF-κB and phosphatidylinositol-3-kinase
(PI3K)/Akt pathways to regulate cell proliferation [169]. HCV NS5A is also known to
block caspase-dependent and mammalian target of rapamycin (mTOR)-mediated apopto-
sis [161,170], indicating that the NS5A-mediated PI3K/Akt-mTOR pathway plays a pivotal
role in the control of cell survival. The WNT/β-catenin pathway is also regulated by HCV
infection, just as the pathway is modulated with HBV and alcoholic liver cirrhosis [148].
HCV NS5B, like HBx and pre-S2 mutation in HBV, inhibits the tumor suppressor Rb sig-
naling cascade, which in turn promotes the progression of the cell to the next phase of the
cell cycle. The HCV core protein also regulates cell cycles by activating various G1 phase
proteins, such as CDK2, and inhibits p21Cip1 (a CDK inhibitor) [171,172]. Signaling trans-
ductions leading to increases in oxidative stress by chronic HCV infection are also affected
by increased oxidative stress markers, such as lipid peroxidation products, superoxide
dismutase, etc. [173]. HCV NS5A disturbs calcium signaling and increases mitochondrial
ROS, leading to translocation of NF-κB and STAT3 to the nucleus [174], which is required
for cytokine signaling and its activation. HCV viral proteins also regulate the expression of
the cellular proteins important for the HCV life cycle. HCV protease NS3/4A enhances
transcription of epidermal growth factor receptor, which plays a key role in HCV entry
processes by redistributing claudin-1 [175–177], and reduces the intrahepatic production of
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interferon (IFN) γ (IFNγ) and TNFα, impairing the hepatic inflammatory response against
HCV infection [178,179]. Since both HBV and HCV share common features crucial for
hepatocarcinogenesis, both viruses cause HCC, even as they display distinct life cycles in
the infected hepatocytes.

2.2.2. HIV-1/HBV or /HCV Co-Infection

In co-infected patients, every stage of HCV-mediated liver disease progression is
accelerated [180–183]. Thus, co-infection in Western countries has become a leading cause
of morbidity and mortality in HIV-1-infected individuals [184–186]. However, the molec-
ular mechanisms accelerating liver disease during co-infection are poorly studied. One
possible mechanism may occur through direct HIV-1 infection of HBV- and HCV-infected
hepatocytes followed by stimulation of HBV and HCV replication, resulting in increased
pro-inflammatory responses [187–189]. Replication of HIV-1 in hepatocytes is controver-
sial [190–195], as the expression of receptor and co-receptor molecules necessary for HIV-1
entry into hepatocytes is disputed [42–44,196]. Alternatively, HIV-1 viral proteins and/or
cellular elements may indirectly trigger HBV- and HCV-infected hepatocytes to enhance
replication. Another possibility is that activation of immune cells and dysregulation of
expression and secretion of pro-inflammatory cytokines can induce liver problems, such
as steatosis [197–200], fibrosis [198], etc. However, it is currently unclear which elements
are the most important mediators of these actions and how HIV-1 and/or viral proteins
induce alterations to promote hepatocarcinogenesis. Below we will discuss the potential
interplay of different HIV-1 proteins as mediators of HCC pathogenesis among HIV-1/HBV
or /HCV co-infected patients (Table 2) and possible influences of HIV antiviral therapies.

Table 2. HIV-1 and HBV/HCV protein interactions.

Oncovirus HIV-1 Protein Mechanism Outcome Refs.

HBV/HCV

Tat Unknown Modulate oncogene expression [40,41]

Env Co-receptor interaction Dysregulate co-receptor mediated
signaling cascades [42,43]

Nef

Lipid modulation Enhance viral replication [201–206]

Activates cellular kinases Dysregulate growth and survival
signaling cascades [48,207]

ROS and other unknown Immunologic alterations [198,208–213]

Since HIV-1 Tat protein is diffusible [39], the protein secreted from HIV-1-infected
cells could diffuse into hepatocytes to enhance HBV/HCV replication and expression
of hepato-cellular genes, thus promoting liver disease. Indeed, HIV-1 Tat is known to
enhance hepatocarcinogenesis in transgenic mice [40,41]. The HIV-1 envelope gp120
could directly interact with hepatocyte CXCR4 or CCR5 co-receptor molecules [42,43]
and trigger signals that modulate the expression of cellular and/or HBC/HCV genes.
However, these data require further evaluation, since recent reports indicate that hepatic
cell CXCR4, CCR5, and CD4 expression is limited [44,45], which weakens the case for Env
as a critical mediator of HIV-1/HBV or /HCV co-infection pathogenesis. HIV-1 Nef can
be transferred from HIV-1-infected cells to non-susceptible cells, including hepatocytes,
through conduits (filopodia) and/or exosomes [46–49]. Nef could also modulate HCV
replication by regulating the amount of intracellular lipid molecules that are essential for
efficient HCV replication at the replication site [201–206]. Further, Nef forms complexes
with and thereby activates several cellular kinases, such as the Src family of tyrosine
kinases [207], through the proline-rich domain of Nef [48,207], which could promote
tumorigenesis. Finally, liver disease is enhanced by immunologic alterations [199,200,208]
during HIV/HBV or /HCV co-infection, and Nef is known to contribute to many of these
immunologic alterations [198,208–213]. These data strongly indicate that HIV-1 Nef could
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be a critical viral factor exacerbating liver disease in people living with HIV-1 and hepatitis.
Nonetheless, to date, there has not been comprehensive research in the area of Nef-mediated
pathogenesis of hepatic disease.

Therapeutic interventions for HIV-1/HBV co-infections rely on reverse transcriptases
with structurally similar enzymatic pockets and thus are susceptible to the same enzy-
matic inhibitors [214]. The Food and Drug Administration approved four nucleoside
reverse transcriptase inhibitors (NRTI) that target HIV, i.e., lamivudine, emtricitabine,
tenofovir disoproxil fumarate, and tenofovir alafenamide, for use in HBV. While these
NRTI impede HBV polymerase activity and viral replication [215], they demand potentially
life-long regimens and are not curative. Accordingly, clevudine-triphosphate, which shares
functionalities with both NRTI and non-nucleoside reverse transcriptase inhibitors, has
been introduced to address the weaknesses of NRTI [216]. In HIV-1/HCV co-infections,
HIV-targeted cART is ineffective at reducing HCV replication. Instead, pan-genotypic
direct-acting antivirals (i.e., NS5A inhibitors and NS3/4A protease inhibitors) are used
to cure most persons of HCV infection in 12–24 weeks depending on the state of liver
fibrosis [217]. However, ART and HCV treatment regimens must be selected with special
consideration for potential drug–drug interactions and overlapping toxicities as many com-
binations are counter-indicated [218]. Direct-acting antivirals are a dramatic improvement
over previous interferon-based therapies that had significant adverse effects and coun-
terindications for PLWH [217,219,220]. In both HIV-1/HBV and HCV co-infections, the
benefits of cART outweigh the risks of co-therapies. However, the need for anti-co-infection
therapeutics capable of targeting oncogenic viruses such as HBV/HCV without detrimental
effects on HIV suppression or drug-induced toxicity remains the highest priority.

2.3. Human Papillomavirus (HPV)

Transmission and entry. As a member of the Papovaviridae family, HPV is a small,
non-enveloped double-stranded DNA virus [221,222] that is primarily transmitted by
skin-to-skin or skin-to-mucosa contact. Sexual contact, such as vaginal or anal sex with
someone living with HPV, is the most common type of transmission and the virus can be
transferred without penetrative sex [223,224]. To gain entry HPV binds to the basement
membrane and then to the cell surface through the interactions between the viral capsid
protein L1 and heparin sulfate proteoglycans (HSPGs) on the surface of the target cells,
which are principally the squamous epithelium of the human mucosa and skin [225–229].
The receptor-bound virus will then be internalized into the cell via clathrin-mediated
endocytosis [230,231]. Notably, other studies indicate that internalization of HPV can be
dependent [232] or independent [233] of clathrin- and caveolin-mediated endocytosis.

Life cycle. Once internalized HPV migrates from the early endosome to the nu-
cleus with the help of the L2 protein. Host cellular components play an essential role in
intracellular viral trafficking as HPV passes from late endosomes/lysosomes to the trans-
Golgi-network, Golgi apparatus, and the ER prior to establishing itself in the nucleus as low
copy, viral DNA episomes [234]. The episomal HPV genomes are then quickly replicated
to generate HPV early proteins (Figure 5), including E1 and E2 as well as E6 and E7, from
the early viral promoter, marking an initial amplification phase [235]. These early proteins
are essential for the overall regulation of the HPV life cycle, including genome replication,
gene expression, evasion of the host immune systems, and viral genome persistence [236].
The E1 and E2 proteins function as replication factors by binding to the replication origin
sequences located near the start of early transcription. Complex formation of E1 and E2
with the replication origin facilitates recruitment of cellular replication factors to the viral
origin [237,238]. E2C, a truncated form of E2, acts as a viral transcription repressor to
modulate expression levels throughout the HPV life cycle [239]. E4 contributes to genome
amplification efficiency and virus synthesis as well as expedites virion egress following
assembly in suprabasal cells [240]. E5 regulates the HPV-infected cell life cycle by de-
laying normal epithelial cell differentiation and maintaining cell cycle progression [241].
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Functions of E6 and E7, the two major viral transforming proteins, are described in the
following section.
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uary 2022).

Replication of HPV genomes in synchrony with chromosomal DNA replication in
the S phase of infected basal cells generates new genomes that will be equally distributed
to two daughter cells. One of the two daughter cells moves toward suprabasal layers
and undergoes differentiation. Differentiation switches replication of the viral genome to
a productive mode, dramatically increasing expression of E1 and E2, and thus genomic
copies [235,242]. The structural major and minor capsid proteins, L1 and L2, respectively
(Figure 5), will then be expressed by the late promoter in the terminally differentiated layer
of the epithelium [235,242]. The L1/L2 capsid will then be assembled to generate a mature
virus particle, which is shed together with the dead squamous cells of the exterior-most
epithelium for the next transmission journey [235].

2.3.1. Molecular Mechanisms on HPV-Mediated Carcinogenesis

Over 400 different types of HPV have been identified. However, only a small subset of
HPV strains is characterized by persistent infection that generates squamous proliferative
lesions, also called verruca/wart, papilloma, and condyloma [243,244]. Among them, types
16 and 18 belong to the α-papilloma virus and are the main causes of HPV-associated
cancers. Approximately 50% of cervical cancer cases are associated with HPV16, 25% of
cases are linked with HPV18, and the remaining 25% of cases are caused by the remain-
ing HPV types [245]. Activation of E6 and E7 induces degradation of tumor suppressor
molecules, p53 and Rb, respectively, to accelerate the progression of HPV-mediated tu-
morigenesis. Briefly, E6 interacting with E6-associating protein (E6-AP, also known as
UBE3A), an E3 ubiquitin ligase, functions as a carrier protein to recruit p53 to the proximal
position of E6 and E6-AP complex so that E6-AP degrades p53 via the ubiquitin proteosome
system [246,247]. Likewise, the binding of E7 to Rb releases the E2F transcription factor
from Rb/E2F complex to promote cell cycle progression and induces E7-mediated pro-
teasomal degradation of Rb [248,249]. Calpain, another protease, also plays an important
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role in the rapid degradation of Rb by cleaving Rb to expose a region better recognized by
the ubiquitin proteosome system [250]. E6 and E7 also increase transforming activity by
binding several other cellular factors, such as PDZ proteins and p600 [251,252]. Further,
these oncoproteins suppress the host immune responses by blocking the IFN pathways and
thereby enabling the virus to evade the host immune surveillances. In brief, E6 blocks the
Jak-STAT pathway initiated by IFNα by physical association with tyrosine kinase 2 [253],
while E7 inhibits the antiviral and anti-growth functions of IFNα and inactivates IFN regu-
latory factor-1, a tumor suppressor protein. All of which enhance the persistent infection of
high-risk HPVs to initiate neoplastic change.

The integration of HPV into the human genome is a key genetic event in cervical
carcinogenesis. Not only does integration generate insertional mutagenesis, but it also
induces persistent expression of the viral oncoproteins, E6 and E7 [254], to augment the
progression of HPV-mediated tumorigenesis. It is reported that HPV type 16 integration
in cervical cancers frequently takes place in common fragile sites [255]. A recent whole-
genome sequencing and high-throughput viral integration detection analysis identified the
clustered genomic hot spots that promote the integration of HPV in cervical cancer [256].
Further, the study also indicated that HPV integration into the host genome may have
occurred by microhomology-mediated DNA repair pathways. Moreover, the integration
altered the expression of several key proteins, such as fragile histidine triad (FHIT), Myc,
high mobility group AT-hook 2 (HMGA2), etc., which play an important role in tumorige-
nesis [256,257]. Taken together, these reports demonstrate that HPV also causes cancers
by insertional mutagenesis, which dysregulates the expression of viral and cellular genes
playing a pivotal role in the tumorigenesis.

2.3.2. HIV-1/HPV Co-Infection

There is a statistically significant excess of HPV-associated cancers in AIDS patients
compared with those in non-AIDS patients [53]. Specifically, HIV-1 infection in HPV-
infected patients imparts a 2–4-fold increase in risk for head and neck squamous cell
carcinoma, a 2-fold increase for anal cancer, [53,54], and a 3-fold increase for cervical
cancer [8]. The intersection of cART on HPV is difficult to define, perhaps because of
the heterogeneity and ubiquity of HPV infection in the world population. A recent study
demonstrated that amprenavir, a protease inhibitor discontinued in 2007, compromised cell–
cell junctions in a stratified model of the oral or cervical epithelium. In this model, protease
inhibitors increased the permeability of HPV16 into the basal layer to promote infection and
viral spread [258]. However, the effect of amprenavir on HPV progression in PLWH has not
been examined. Many studies have not found an association between cART, HIV, and HPV
incidence, prevalence, or progression [259–261]. However, an HIV Epidemiology Research
Study found an increased HPV clearance rate in HIV-positive women diagnosed with
squamous intraepithelial lesions on cART compared to HIV-negative women [262]. Further,
a meta-analysis of cross-sectional, cohort studies of women living with HIV between 1996
and 2017 revealed that early cART initiation and sustained adherence reduces the incidence
and progression of HPV-associated lesions [263]. Regardless, there is no cure for HPV,
and the interplay between HIV-1 infection, cART, and HPV progression remains unclear.
Thus, to effectively suppress dual infections, it is imperative that pharmaceuticals that
simultaneously target both HIV-1 and HPV are developed or that cART must be safely
co-administered with anti-oncovirus therapies.

However, the molecular mechanisms by which HIV-1 exacerbates HPV-mediated
cancers in HIV/HPV co-infected patients are currently unknown. Human epithelial cells,
and more specifically, basal keratinocytes, are exclusive targets for HPV [264,265], while
CD4+ immune cells, such as T helper cells, monocyte/macrophages, dendritic cells, etc.,
are the major targets for HIV-1 infection [266,267]. While previous reports indicated that
HIV-1 can traverse the epithelial lining [268,269] or that HIV-1 antigens were detected in the
epithelial cells [270], there have not been adequately convincing data for HIV-1 infection of
HPV-target cells. Since HIV-1 and HPV are unlikely to encounter one another in infected
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cells, co-infection as a mechanism to aggravate HPV-associated cancers in co-infected
patients is also not feasible. How then does HIV-1 exacerbate HPV-induced cancers in
people living with HIV-1 and HPV comorbidities?

Rather than direct interaction of HIV-1 and HPV infection within individual target cells
to expedite the progression of HPV-mediated cancers, transferrable HIV-1 viral proteins
from HIV-1-infected cells to HPV-infected cells could be integral to exacerbating HPV-
associated tumorigenesis, similar to that discussed in HCC (Table 3). HIV-1 Tat augments
the expression of HPV oncoproteins E6 and E7, increasing E6- and E7-mediated oncogenic
effects HIV-1 Tat also increases HPV virion protein L1, which mediates initial attachment
of the virion to target cells, raising the cellular infectivity of HPV [271,272]. Expression
of HPV L1 is also enhanced by HIV-1 Rev [273], even though it remains unknown how
Rev reaches HPV-infected cells given its nuclear localization in HIV-1-infected cells. Viral
protein R (Vpr), another nuclear protein involved in cell cycle regulation [274–276], interacts
with E6 in cervical cancer cells [277]. However, again, it is unclear how and where Vpr
encounters E6 for cell cycle regulation. HIV-1 Nef, a known transferable protein from
HIV-1-infected cells to the neighboring target cells via filopodia and/or exosomes [46–49],
interacts with and degrades E6-AP (HPV oncoprotein E6-associating protein) [278]. This
interaction is crucial for the degradation of tumor suppressor, p53, via interacting with E6
in HPV-infected cells. Other reports also indicated that HIV-1 Nef degrades p53 [279,280],
suggesting that Nef could be a potential regulator of p53 stability. Dysregulation of miRNA
expression may also contribute to the pathogenesis of anal cancer [281]. Moreover, HIV-1
infection-associated dysregulation of host immune responses may directly or indirectly
protect HPV-infected keratinocytes from cytotoxic T-lymphocyte-mediated killing [281].

Table 3. HIV-1 and HPV protein interactions.

Oncovirus HIV-1 Protein Mechanism Outcome Refs.

HPV

Tat

Increases expression of
oncoproteins (E6, E7)

Increases E6- and E7-mediated
oncogenic effects [271,272]

Increases expression of
virion protein (L1) Enhance infectivity of HPV [271,272]

Rev Increases expression of
virion protein (L1) Enhance infectivity of HPV [273]

Vpr Interacts with E6 Enhance infectivity of HPV [277]

Nef

Interacts with and
degrades E6-AP Regulates cell cycle arrest [278]

Degradation of tumor
suppressor, p53

Promotes p53 ubiquitination
& degradation [279,280]

Unknown Dysregulation of
miRNA expression Regulate oncogenic expression [281]

3. Discussion

Therapeutic intervention for people living with HIV-1 with cART can reduce a patient’s
viral load so dramatically that the virus becomes undetectable in the blood. Decreased
viral load, in turn, lessons damage to the immune system, such as CD4 count, which
is depleted by HIV-1 infection. Thus, the advent of cART has significantly reduced the
risks of oncovirus-related AIDS-defining cancers in people living with HIV-1; however,
those of non-AIDS-defining cancers have moved in the opposite direction. For instance,
as noted above, patients with co-infection of HIV-1/HCV are at higher risk for HCC than
those with HCV mono-infection [282]. However, it remains uncertain how cART treatment
exerts differential consequences on AIDS-defining vs non-AIDS-defining cancers in people
living with co-infections. Further, the molecular processes by which HIV-1 exacerbates
non-AIDS-defining cancers require additional investigation.



Biomedicines 2022, 10, 768 14 of 27

Dramatic amelioration of AIDS-defining cancers but not non-AIDS-defining cancers
by cART treatment indicates that immunologic status is not closely linked to non-AIDS-
defining cancers. However, it is unknown how cART, which suppresses HIV-1 replication
followed by improvement of host immune responses, then brings about differential out-
comes in raising those cancer risks. It is postulated that cART toxicity could play a role
in the differential determination of the cancer risk in people living with HIV [283–286].
Specifically, the cART toxicity exposure period is related to the cancer risks, i.e., the risks
of AIDS-defining cancers, such as Kaposi sarcoma and non-Hodgkin lymphoma, were
clearly reduced by cART treatment during early HIV-1 infection, before the development
of overt immunosuppression [287,288]. However, the impact of long-term cART exposure
on the risk for non-AIDS-defining cancers has not been well defined, albeit some stud-
ies have demonstrated long-term exposure of cART to be independently associated with
non-AIDS-defining malignancies in the HIV-1 clinical setting [283–285,289].

Inefficacies of antiretrovirals-only combination therapy for reducing morbidity and
mortality in non-AIDS-defining cancers now argue for either the development of pharma-
ceuticals that each simultaneously target the two co-infecting viruses or the administration
of antiretrovirals combined with anti-oncovirus drugs to counter these dual infections.
It will similarly be of great interest to discover anti-co-infection therapeutics that target
various other oncoviruses without eliciting appreciable drug resistance or side effects, in
the quest for safely and effectively treating HIV-1 and non-AIDS-defining cancers. The
elucidation of the relationship between cART exposure and non-AIDS-defining cancers inci-
dence, and of cART-associated molecular mechanisms differentially modulating AIDS- and
non-AIDS-defining cancer risks, will be essential for reducing the morbidity and mortality
of non-AIDS-defining cancers in co-infected patients.

It is proposed that HIV-1 co-infection increases the risks of oncovirus-mediated tumori-
genesis in several different ways (Figure 1). First, HIV-1-infection of oncovirus-infected
target cells could directly enhance oncogenic effects. However, as reviewed above, HIV-1
and oncoviruses employ disparate receptor/co-receptor molecules for entry into host cells
(Table 1), and thus their target cells are distinctively different. Nonetheless, numerous
reports assert that HIV-1can infect oncovirus target cells, such as hepatocytes and epithelial
cells, to exacerbate the oncovirus-mediated tumorigenesis. Alternatively, transferrable
HIV-1 proteins, such as gp120, Tat, Nef, and Vpr, to the neighboring uninfected cells could
be responsible for expediting the progression of co-infection-associated cancers [272,290].

Immunosuppression could be another important compounding factor accelerating
the progression of tumors. There is a tight link between immune suppression and the
risk of cancers. Recovery of immune responses, such as increased CD4 T cell counts
with effective cART, clearly lowers the risk of AIDS-defining cancers such as Kaposi
sarcoma and non-Hodgkin lymphoma. However, the relationship between HIV-associated
immunosuppression and the risk of non-AIDS-defining cancers, including HCC, cervical
cancer, and anal cancer is less clear [291–293]. Increased risk for non-AIDS-defining cancers
despite widespread cART use could result from an incomplete restoration of the immune
system. Nadir CD4 levels during HIV-1 associated viremia and subsequent cART-mediated
immune reconstitution could foster permanent immune alterations, which are involved in
malignancy and cannot be determined by CD4 counts alone [294].

Finally, HIV-1 infection induces various types of inflammatory response, and the
heightened inflammation is associated with malignancy. Progression of AIDS and rapid
drop of CD4 count augment levels of inflammation. The high level of inflammation can
be attenuated but not normalized by cART treatment [295,296]. A small but statistically
significant association of IL-6 and C-reactive protein is linked to developing infection-
related and -unrelated malignancies. However, it is unclear how HIV-induced inflammatory
reactions exert differential impacts on the progression of AIDS-defining and non-AIDS-
defining cancers.

In view of the unsolved molecular pathology, it is imperative to elucidate the molec-
ular mechanisms for how HIV-1 infection in the oncovirus-infected hosts accelerates the
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oncogenic virus-mediated tumors, which is paramount for developing therapeutics and
deterrents against cancer progression. Further exploration of the impacts of antiviral thera-
pies and vaccination on chronic infection and tumorigenesis is required to fully understand
non-AIDS-defining cancer in people living with HIV and other oncogenic viruses.
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