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Abstract: PbS quantum dots (QDs), a representative zero-dimensional material, have attracted great
interest due to their unique optical, electronic, and chemical characteristics. Compared to one-
and two-dimensional materials, PbS QDs possess strong absorption and an adjustable bandgap,
which are particularly fascinating in near-infrared applications. Here, fiber-based PbS QDs as a
saturable absorber (SA) are studied for dual-wavelength ultrafast pulses generation for the first
time to our knowledge. By introducing PbS QDs SA into an erbium-doped fiber laser, the laser can
simultaneously generate dual-wavelength conventional solitons with central wavelengths of 1532
and 1559 nm and 3 dB bandwidths of 2.8 and 2.5 nm, respectively. The results show that PbS QDs as
broadband SAs have potential application prospects for the generation of ultrafast lasers.

Keywords: fiber laser; mode locking; PbS quantum dots

1. Introduction

Low-dimensional materials have attracted extensive interest in applied physics due
to their excellent optical, electronic, and chemical characteristics [1–3]. Two-dimensional
(2D) graphene [4,5], black phosphorus [6], MXenes [7], antimonene [8], transition metal
dichalcogenides [9], topological insulators [10], and one-dimensional (1D) carbon nano-
tubes [11,12] have been employed as saturable absorbers (SAs) to obtain ultrafast pulses
in passively mode-locked fiber lasers. Among these SAs, the main problem is that it is
difficult to achieve short carrier lifetime, high thermal damage, large modulation depth,
and wide bandwidth in an individual material at the same time. Therefore, one of the ways
to solve the problem is to find a new saturable absorption material that can effectively
adjust the above parameters.

Semiconductor quantum dots (QDs) are particularly charming materials showing
strong quantum confinement effects, as the size of QDs is close to the Bohr radius of
the exciton [13]. Strong confinement not only produces interesting new effects but also
strengthens the nonlinear optical characteristics [14]. Among numerous semiconductor
QDs, PbS QDs possess smaller carrier effective masses and larger optical dielectric constant,
leading to a large exciton Bohr radius (~18 nm), which makes relatively large QDs have
strong quantum confinement effects [14]. Therefore, combined with the small energy
bandgap (~0.41 eV) of PbS, the wavelength range of the excitonic absorption peak is from
the visible to 3 µm via changing the size of PbS QDs [15]. This means that PbS QDs can
promote the saturable absorption in a large spectral range by changing the size of QDs [16].
As a result, PbS QDs as SAs have been used for Q-switching or mode locking in various
near-infrared lasers [13,16,17]. The most obvious advantages of PbS QDs-based SA are
adjustable absorption peak, large third-order nonlinear susceptibility, fast response time,
large modulation depth, and high damage threshold [18,19].
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On the other hand, multi-wavelength passively mode-locked fiber lasers have been
investigated extensively in the advancement of fascinating applications as optical fiber
sensing, biomedical research, and wavelength division multiplexing (WDM) optical com-
munication [20,21]. Several types of the saturable absorption materials that can realize
multi-wavelength passive mode locking have been studied in depth [22–26]. Based on
SESAM, Wu et al. realized the dual-wavelength (1553 and 1562 nm) dissipative solitons
in Er-doped fiber laser operating at normal dispersion regime [22]. By virtue of carbon
nanotube SA, dual-wavelength vector solitons centered at 1533 and 1557 nm were achieved
by Zhao et al. [23]. Tunable dual- and triple-wavelength dissipative solitons were obtained
from a Yb-doped fiber laser using graphene-oxide mode locker [24]. In a previous paper,
we also reported the generation of a dual-wavelength polarization-locked vector solitons
fiber laser using black phosphorus SA [25]. However, as far as we know, there is no report
of multi-wavelength solitons operating in fiber-based PbS QDs mode-locked fiber lasers.

In this context, PbS QDs are fabricated via a modified hot-injection method. A dual-
wavelength passively mode-locked Er-doped fiber laser is realized by using fiber-based
PbS QDs as intracavity mode-locked devices. The stable dual-wavelength conventional
solitons with central wavelengths of 1532 and 1559 nm, and 3 dB spectral bandwidths of
2.8 and 2.5 nm are obtained. By finely tuning the pump intensity and polarization state, the
dual-wavelength mode locking can be switched into single-wavelength operation state.

2. Materials and Methods

The PbS QDs coated with oleic acid were prepared by a modified hot-injection meth-od
by precisely controlling the mass of the precursor, reaction temperature, environment, and
reaction time [18,27]. The preparation details are given in Figure 1a. Firstly, the Pb precursor
was formed by putting lead oxide (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China)
(450 mg), octadecene (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) (30 mL),
and oleic acid (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) (10 mL) into a
three-necked flask and heating it at 120 ◦C for 1 h in vacuum. Secondly, the S precursor
was prepared by mixing sulfur powder (Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) (32 mg) with oleic amine (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China)
(10 mL) and heated to 120 ◦C until it was completely dissolved. Thirdly, the prepared S
precursor was rapidly injected into a three-necked flask containing a Pb source under the
protection of argon gas; then, it was cooled to room temperature with an ice water bath
quickly. Finally, the sample was separated with ethanol and centrifuged at 12,000 r/min
for 3 min. The obtained PbS QDs were dried in vacuum, dissolved in cyclohexane solution
(Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), and stored at a concentration of
10 mg/ mL. The transmission electron microscope (TEM) (Hitachi, Tokyo, Japan) image of
PbS QDs is given in Figure 1b, which shows that PbS QDs are spherical and have good
dispersivity, and the average particle size is ~5.7 nm.

The fiber-based PbS QDs mode-locked device was prepared by dropping PbS QDs
solution on the end face of an optical fiber connector and evaporated slowly at room
temperature and pressure. Compared with the SA prepared by other methods such
as mechanical exfoliation or CVD growth, the PbS QDs SA prepared by this scheme
avoids the complicated and time-consuming growth and post transfer processes, and it
not only overcomes the mechanical damage but also improves the damage threshold of
the laser. Based on the dual-path detection system [9,18], the nonlinear optical absorption
characteristics of the PbS QDs have been studied. As illustrated in Figure 2, PbS QDs show
strong saturable absorption behavior at 1550 nm. The experimental results show that the
unsaturable loss, saturation intensity, and modulation depth of the PbS QDs SA are ~21%,
~0.22 MW/cm2, and ~44% respectively. To the best of our knowledge, our SA exhibits
high modulation depth compared with that reported to date. The corresponding digital
photograph of the PbS QDs mode-locker is shown in the inset of Figure 2.
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Figure 2. Nonlinear saturable absorption curve of PbS QDs saturable absorber (SA). Inset: PbS QDs mode locker.

3. Results and Discussion

The PbS QDs mode-locked Er-doped fiber laser operating in net anomalous dispersion
regime is depicted in Figure 3. The ring cavity is composed of a 5.3 m erbium-doped fiber
(EDF, D = −16 ps/nm/km) and 23.2 m single-mode fiber (SMF, D = 17 ps/nm/km). The
net cavity dispersion is about −0.39 ps2. The EDF served as a gain medium is pumped
by a laser diode (LD, 980 nm) (Connet, Shanghai, China) through a WDM (980/1550 nm)
(Connet, Shanghai, China). A polarization-insensitive isolator (PI-ISO) provides unidirec-
tional operation. A polarization controller (PC) (Connet, Shanghai, China) is used to adjust
the polarization and balance the gain distribution of the EDF by controlling the cavity loss.
The pulses are extracted from the cavity with a 10% output coupler (OC). The PbS QDs SA
device is assembled by sandwiching a fiber connector between two FC/PC fiber ferrules.
The performance of the laser is recorded by an optical spectrum analyzer (Yokogawa
AQ6370D) (Yokogawa, Tokyo, Japan), a second harmonic generation intensity autocorrela-
tor (APE PulseCheck SM1600) (APE, Munich, Germany), an oscilloscope (RIGOL DS4050)
(Tektronix, Johnston, OH, USA), and a radio-frequency analyzer (RS-FSV30) (Tektronix,
Johnston, OH, USA).
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Figure 3. Laser setup. Laser diode (LD), wavelength division multiplexing (WDM), erbium-doped fiber (EDF), polarization-
insensitive isolator (PI-ISO), single-mode fiber (SMF), polarization controller (PC), output coupler (OC), and Lead sulfide
quantum dots saturable absorber (PbS QDs SA).

Based on the above experimental setup, the stable dual-wavelength mode-locked
laser pulses are generated when the pump strength is scaled to 200 mW and the PC is
finely tuned, as illustrated in Figure 4. The spectrum in Figure 4a appears to be obvious
Kelly sidebands, which is a typical feature of the conventional solitons in the anomalous
dispersion region [28]. The central wavelengths are 1532 and 1559 nm, and the correspond-
ing 3 dB bandwidths are measured to be 2.8 and 2.5 nm, respectively. The spectrum of
dual-wavelength solitons exhibits almost the same peak intensity, and the center wave-
length spacing ∆λ is 27 nm. Figure 4b illustrates the oscilloscope trace, in which two pulse
trains are formed simultaneously. There are two conventional solitons propagating in the
laser cavity, and the pulse energy of each soliton varies slightly with the height. Under
proper triggering, one pulse sequence stops, and the other moves on the oscilloscope screen.
The results show that the two pulse sequences have different group velocities [24]. The
corresponding radio-frequency spectrum is demonstrated in Figure 4c. Different from the
single-wavelength soliton mode-locked, there are two fundamental frequencies that appear
in the dual-wavelength mode-locked spectrum, corresponding to two mode-locked states.
The fundamental frequencies are ~7.200695 MHz and ~7.201131 MHz, which are consistent
with the mode-locked wavelengths of 1559 and 1532 nm, respectively. The formation of
dual-wavelength conventional solitons may be due to the interaction of EDF gain spectrum
and cavity-filtering effect [29]. Both of the signal-to-noise ratios are as high as 60 dB, which
indicates good temporal stability of the PbS QDs-SA based dual-wavelength mode-locking
operation. The frequency interval ∆f is 436 Hz. Furthermore, the relationship between ∆f
and ∆λ is theoretically expressed as [30]:

∆ f =
c2D∆λ

n2(L + LD∆λc/n)

where L is the fiber length, n is the refractive index of fiber, D is the dispersion parameter,
and c is the speed of light. Here, L = 28.5 m, n = 1.46, DSMF+EDF = 10.86 ps/nm/km, and
c = 3 × 108 m/s. Therefore, the calculated ∆f = 434 Hz, which is basically consistent with
the experimental results.
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By decreasing the pump strength to 80 mW and carefully tuning the PC, dual-
wavelength mode locking can be switched into single-wavelength mode locking. The
characteristics of the proposed single-wavelength operation are presented in Figure 5. As
shown in Figure 5a, the dual-wavelength conventional solitons at 1532 nm disappears, and
the single-wavelength soliton remains at 1559 nm. The spectrum exhibits symmetric sid
bands, and the 3 dB bandwidth is 2.4 nm. The autocorrelation trace is shown in Figure 5b.
The pulse envelope is fitted with a Sech2 function. The pulse duration is ~1.11 ps, so that
the time-bandwidth product equals to 0.33. Therefore, the single-wavelength conventional
soliton is nearly chirp-free. Figure 5c shows the fundamental frequency of ~7.200698 MHz,
which is corresponding to a pulse interval of ~138 ns. The signal-to-noise ratio of the
soliton is ~60 dB, indicating a stable single-wavelength mode locking. The average output
power of the single pulse is 1.9 mW, corresponding to a pulse energy and peak power of
~0.26 nJ and 234 W, respectively.



Nanomaterials 2021, 11, 2561 6 of 9

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 9 
 

 

By decreasing the pump strength to 80 mW and carefully tuning the PC, dual-wave-

length mode locking can be switched into single-wavelength mode locking. The charac-

teristics of the proposed single-wavelength operation are presented in Figure 5. As shown 

in Figure 5a, the dual-wavelength conventional solitons at 1532 nm disappears, and the 

single-wavelength soliton remains at 1559 nm. The spectrum exhibits symmetric sid 

bands, and the 3 dB bandwidth is 2.4 nm. The autocorrelation trace is shown in Figure 5b. 

The pulse envelope is fitted with a Sech2 function. The pulse duration is ~1.11 ps, so that 

the time-bandwidth product equals to 0.33. Therefore, the single-wavelength conven-

tional soliton is nearly chirp-free. Figure 5c shows the fundamental frequency of ~7.200698 

MHz, which is corresponding to a pulse interval of ~138 ns. The signal-to-noise ratio of 

the soliton is ~60 dB, indicating a stable single-wavelength mode locking. The average 

output power of the single pulse is 1.9 mW, corresponding to a pulse energy and peak 

power of ~0.26 nJ and 234 W, respectively. 

 

Figure 5. Single-wavelength conventional soliton. (a) Optical spectrum at 1559 nm, (b) autocorrelation trace, and (c) cor-

responding fundamental radio-frequency spectrum. Inset: pulse train. 

When the pump strength increases from 80 to 120 mW, the stable single wavelength 

mode locking centered at 1532 nm with a 3 dB bandwidth of 3.5 nm is realized, as 
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When the pump strength increases from 80 to 120 mW, the stable single wavelength
mode locking centered at 1532 nm with a 3 dB bandwidth of 3.5 nm is realized, as demon-
strated in Figure 6. By Sech2 fitting, the pulse duration of the conventional soliton is about
0.78 ps, the corresponding time bandwidth product is calculated to be 0.36, with slight
chirp. The fundamental frequency is ~7.201135 MHz, which corresponds to the round-trip
time of the cavity length of the fiber laser. The radio-frequency spectrum gives a signal-to-
noise ratio of ~65 dB, indicating low-amplitude fluctuations and stable single-wavelength
mode-locking state. When the pump power is 500 mW (maximum pump power available
of LD in the experiment), the mode-locking operation of the fiber laser is still stable, which
shows that the fiber-based PbS QDs SA fiber has good thermal damage. The average output
power of the laser cavity is 12 mW, and the corresponding single pulse energy is 1.7 nJ.
Therefore, the thermal damage threshold of PbS QDs SA is greater than 30 mJ/cm2.
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4. Conclusions

A passively mode-locked dual-wavelength Er-doped fiber laser is demonstrated with
a fiber-based PbS QDs SA. Compared with other nanomaterials, PbS QDs prepared by a
modified hot-injection method have the advantages of fast relaxation time, wide band-
width, large modulation depth, and thermal damage. Based on this PbS QDs SA, the pulse
laser can operate in a dual-wavelength conventional solitons region centered at 1532 and
1559 nm with 3 dB bandwidths of 2.8 and 2.5 nm, respectively. The experimental results
reveal that our PbS QDs can be adopted as a broadband SA for application in pulse lasers.
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