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Zika virus-associated brain damage: animal models
and open issues
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The suspected involvement of Zika virus
(ZIKV) in the ‘epidemics’ of microce-

phaly and Guillain–Barré syndrome among
patients from Brazil and French Polynesia is
of relevant concern.1 Within this context, the
skyrocketing number of cases of ZIKV-
associated microcephaly has become a
critical public health issue in Brazil since
2015.2 In fact, the last report of the Brazi-
lian Ministry of Health, released on 25 June
2016, shows 8165 notified cases, 1638 of
which received either a diagnostic confirma-
tion of microcephaly or were classified as
central nervous system (CNS) alterations
suggestive of congenital infection.3 The
number of ZIKV-associated cases of micro-
cephaly in Brazil is still rising; consequently,
the threat to other countries, both in South
and North America, has become a major
concern.
Therefore, characterizing ZIKV neurotrop-

ism and neuropathogenicity, along with the
host–pathogen interaction dynamics at the
CNS level, should be regarded as crucial
issues in the study of ZIKV infection’s
neuropathogenesis. To this end, valuable
insight may be derived from the characteriza-
tion and development of suitable animal
models, both natural and experimental, of
ZIKV-associated neurological disease,1,4 in
close agreement with the ‘One Health’
concept and principles. Three recent experi-
mental studies conducted in mice5–7 have

provided clear-cut evidence that ZIKV is able
to cross the placental barrier, thereby reach-
ing the fetal CNS, with subsequent micro-
cephaly occurrence. It is worth mentioning
that intrauterine growth restriction has also
been reported to be associated with
microcephaly in ZIKV-challenged mice,6,7 in
close agreement with the clinical findings
obtained in human newborns.8 Notably, the
aforementioned experimental mouse data
were corroborated through the use of
neurospheres and brain organoids. These
elegant and useful investigation ‘tools/sub-
strates’ confirmed that neural progenitor cells
(NPCs) are easily targeted and severely
damaged by ZIKV,6 in agreement with what
was reported in previous studies.9–11 This is
likely due to the high expression levels of the
tyrosine kinase AXL receptor (AXL receptor,
encoded by the AXL gene and a member of
the Tyro3-Axl-Mer receptor tyrosine kinase
subfamily) on the NPC membrane surface,12

which is necessary for viral entry into host
cells.13

Before the works cited above were pub-
lished, the cause-and-effect relationships
between ZIKV infection and microcephaly
development had yet to be uncovered, and
other factors, such as nutritional state, coin-
fection(s) and previous exposure to other
viral pathogens, particularly Dengue virus,
had to be ruled out.
Notwithstanding the above, there is much

left to be discovered about the neuropatho-
genesis of ZIKV infection. In this respect,
provided that white matter hypomyelination
and dysmyelination as well as corpus callosum
hypogenesis and hypoplasia have been
recently described in the brains of
ZIKV-infected, microcephaly-affected infants
from Brazil,14,15 we believe it would be
important to investigate the simultaneous
occurrence of white matter damage, if any,

in the brain and spinal cord from ZIKV-
infected mice. Indeed, neuronal and glial cell
proliferation and migration pathways within
the developing brain appear to be altered
during ZIKV infection.14 As a consequence,
the role of oligodendrocyte precursor cells
(OPCs) in the pathogenesis of the aforemen-
tioned myelin damage should receive
adequate attention, with ZIKV-challenged
mice5–7 likely representing a very useful
model. Because OPCs migrate across the
entire CNS during development before
differentiating into mature myelinating
oligodendrocytes,16 characterizing ZIKV trop-
ism toward OPCs and mature oligodendro-
cytes appears to be a crucially important issue
in the study of ZIKV-associated myelin
damage. Furthermore, given that myelination
and oligodendrocyte maturation are thyroid
hormone-dependent processes,17 the thyroid
glands from ZIKV-infected mice should also
be investigated as putative, additional virus
targets.
In conclusion, it should be emphasized

that, quite surprisingly, the pathogenetic
characterization of ZIKV-associated/related
myelin damage has been hitherto largely
neglected. On the basis of the above,
forthcoming in vivo and in vitro studies,
particularly those aimed at assessing ZIKV
tropism toward OPCs and mature oligo-
dendrocytes, along with the expression
levels of the AXL receptor on these cells,
should be considered among the research
priorities in ZIKV infection’s pathogenesis.
Indeed, providing adequate replies to the
aforementioned viral neuropathogenesis-
related issues would greatly add to the
knowledge of the virus- and host-
dependent factors and the mechanisms
involved in ZIKV-associated microcephaly
and myelinopathy. This would also, among
other things, shed light on both the
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occurrence and the pathogenesis of other
developmental defects, such as club foot,
arthrogryposis and muscle hyperreflexia
and hypertonia, which, not uncommonly,
are observed in microcephaly-affected
newborns.
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