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Abstract—Goal: To predict physician fixations specif-
ically on ophthalmology optical coherence tomography
(OCT) reports from eye tracking data using CNN based
saliency prediction methods in order to aid in the educa-
tion of ophthalmologists and ophthalmologists-in-training.
Methods: Fifteen ophthalmologists were recruited to each
examine 20 randomly selected OCT reports and evaluate
the likelihood of glaucoma for each report on a scale of
0-100. Eye movements were collected using a Pupil Labs
Core eye-tracker. Fixation heat maps were generated us-
ing fixation data. Results: A model trained with traditional
saliency mapping resulted in a correlation coefficient (CC)
value of 0.208, a Normalized Scanpath Saliency (NSS) value
of 0.8172, a Kullback–Leibler (KLD) value of 2.573, and a
Structural Similarity Index (SSIM) of 0.169. Conclusions:
The TranSalNet model was able to predict fixations within
certain regions of the OCT report with reasonable accuracy,
but more data is needed to improve model accuracy. Future
steps include increasing data collection, improving quality
of data, and modifying the model architecture.

Index Terms—Deep learning, optical coherence tomogra-
phy, saliency prediction.

Impact Statement—Reliable prediction of physician fix-
ations could aid in teaching physicians-in-training and AI
systems how to most efficiently evaluate OCT reports and
identify regions of interest.

I. INTRODUCTION

IN A clinical setting, eye movement analysis can be used
to measure the position, location, and duration of human

gaze on medical images. Many studies have used eye tracking
to examine differences in how radiologists with varying levels of
experience interpret medical images [1], [2], [3], [4]. For exam-
ple, eye tracking has been utilized in the field of mammography
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to show performance of expert clinicians in diagnosing breast
cancer is much higher than that of clinicians-in-training [5].

Eye tracking software can measure the eye movements of indi-
viduals to generate fixation maps. These fixation maps measure
the location and duration of human gaze on regions of interest
in an image. Typically, in medical image segmentation tasks,
regions-of-interest are hand-labeled by physicians, which is an
extremely time-consuming process to collect the amount of data
needed to train segmentation models. However, gaze data from
eye tracking software can also be used to generate annotated
data for deep learning training [6], [7], [15].

Eye-tracking processes can further be analyzed with deep
learning algorithms and technologies. Specifically, visual
saliency reflects the extent to which the content in an image
attracts visual attention. The field of saliency prediction relies on
collecting fixation data to generate ground truth saliency maps
which highlight regions that attract the most visual attention
from the viewer. Predicting visual saliency has been furthered
by the use of convolutional neural networks (CNNs) and the
availability of large-scale saliency prediction datasets [6]. Many
recent studies have utilized CNNs for saliency prediction with
promising results; however, many of these studies have used
public benchmark datasets with generic images of animals, road
signs, and humans.

This same methodology can be applied to medical image data
sets used to identify regions of interest in medical diagnostic
images, but limited saliency prediction studies have actually
been utilized for medical applications. One example of a medical
saliency prediction application was in the field of mammography
to predict radiologists’ visual attention on mammograms to
assist in diagnosis [7]. Four hundred scans were collected and
used to indicate initial perception of cancer, and the results
showed that 57% of the cancer was fixated in the first second
of viewing [18]. However, similar methodologies have not been
applied to the field of ophthalmology. Here, we seek to develop
a medical-saliency prediction model for glaucoma diagnosis on
OCT reports.

Glaucoma is among the leading causes of irreversible blind-
ness in the world; this disease causes damage to the optic nerve
which can lead to gradual vision loss and ultimately complete
blindness if not diagnosed in a timely manner [8]. There are
two main forms of imaging used to diagnose glaucoma: fundus
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photography and optical coherence tomography (OCT). Fun-
dus photography has limitations. For example, factors such as
miosis, corneal opacity, and the opacity of the ocular media
can impact ophthalmic imaging and are associated with un-
clear fundus photographs. Furthermore, optic nerve findings in
fundus photography are shown in a two-dimensional manner.
These combined limitations have been shown to result in de-
creased diagnostic efficiency in physicians with less training
[5], [6]. OCT is considered a reliable alternative to fundus
photography that provides 3D structural information of the
retina and has improved the accuracy of glaucoma detection;
however, there are currently few agreed-upon guidelines for
glaucoma diagnosis using OCT, and results may differ de-
pending on a given physicians’ interpretation [9]. We believe
analyzing the OCT scans can improve clinical diagnosis of
glaucoma.

Current research in salient detection is focused on two tasks:
saliency prediction and salient object detection. Saliency pre-
diction predicts the possibility of the human eyes to stay in
a certain position in the scene, while salient object detection
detects the object as a whole, similar to an image segmentation
task. We sought to determine if a saliency prediction model
could be implemented to create binary masks of salient vs.
non-salient regions in OCT images, such as those often uti-
lized in image segmentation tasks. Image segmentation refers
to classifying regions of interest in an image which have sim-
ilar properties. In our use case, the ophthalmic OCT report
used to diagnose glaucoma is composed of 7 different sub-
images, so regions-of-interest are actually composed of dif-
ferent features depending on the sub-image. Thus, we wanted
to evaluate if we could leverage saliency prediction methods
to classify regions of interest, based on learning medically-
salient regions fixated most by ophthalmic experts (i.e., that
captured their medical visual attention) when they viewed OCT
reports.

In this study, we utilized a CNN-based saliency prediction
model to predict binary and continuous saliency maps on a
custom dataset of optical coherence tomography (OCT) reports
used for glaucoma diagnosis. After reliable prediction, these
saliency maps can be used to educate clinicians-in-training to
analyze OCT reports as efficiently and reliably as a trained
clinician. Furthermore, predicted fixation maps can aid in the
diagnosis of glaucoma by informing clinicians about various
regions of interest implicated in glaucoma. Once salient OCT-
report regions are predicted, these patterns could also be used
to train self-supervised deep learning algorithms to distinguish
between healthy and diseased image classes without the need
for as many costly expert-provided labels. This model could
even work in tandem with pure glaucoma classification models
to provide interpretability to clinicians to encourage trust in AI
algorithms. Lastly, this study contributes the novelty of using
a custom medical-imaging dataset with a clinically significant
application to other work in the saliency prediction field, which
has predominantly used large publicly available natural-image
datasets such as MIT300 and SALICON [16], [17].

II. MATERIALS AND METHODS

A. Dataset

Eye tracking data was acquired from Columbia University
Irving Medical Center’s (CUIMC) Harkness Eye Institute. Oph-
thalmologists of varying expertise/tenure from CUIMC were
asked to view full OCT reports. Tenure of ophthalmologists
ranged from residents with 10 months of training to glaucoma
fellows (3+ years of experience) and faculty (30+ years of
experience). The OCT images, as seen in Fig. 4 column 1,
are composed of a retinal nerve fiber layer (RNFL) probabil-
ity map, a retinal ganglion cell inner plexiform layer (RGCP)
probability map (both overlaid with visual field points), RGCP
thickness map, a RNFL thickness map, and a circumpapillary
RNFL b-scan. The image dataset consisted of 185 OCT reports
collected using a Topcon Atlantis machine (from a subset of
patients who visited the CUIMC Harkness Eye Institute between
2010 and 2023), with 121 reports being glaucomatous and 64
reports being healthy. The OCT reports varied in difficulty
from clear glaucoma/healthy images to suspect cases (possibly
exhibiting myopia or optic neuropathies mimicking glaucoma),
thus ensuring our eye tracking dataset consisted of gaze on
straightforward as well as challenging OCT reports. In order
to collect fixation data, clinicians were fitted with a Pupil Labs
Core head-mounted eye tracker while viewing the OCT reports.
After viewing 20 randomly selected OCT reports, each of the
fifteen clinicians was immediately asked to report whether or
not the patient had glaucoma on a scale of 0-100, with 0
indicating definitely healthy and 100 indicating definitely glau-
coma. This study, AAAU4079, was approved by the Columbia
University Irving Medical Center Institutional Review Board on
December 23, 2022 and is in accordance with the tenets set forth
by the Declaration of Helsinki. Informed consent was received
from all study participants.

B. Data Pre-Processing

For the saliency prediction, a TranSalNet model was utilized
[10]. The model takes in three inputs: original stimuli image,
fixation map, and saliency map. The original stimuli was the
full OCT report. To produce the fixation map, we plotted the
fixations as white scatter plot points using corresponding (x, y)
fixation coordinates on a black background sized identically to
the original OCT image shown.

For generating the saliency map input to the model, we at-
tempted 2 approaches: the first was a traditional saliency map via
a gaussian-kernel with a mean of 63 pixels and a standard devia-
tion of 7 pixels applied at all fixation points weighted by fixation
duration. The second approach employed the Pygaze software to
overlay a heatmap on the original stimuli (OCT report) showing
regions where clinicians fixated most by convolving those x,
y locations with a gaussian kernel proportional to the length
of fixation duration with a mean of 200 pixels and a standard
deviation of 33 pixels [19]. Of note, the parameters were chosen
based on the default value of the Pygaze software [19], and no
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significant change of result was found if they were changed.
From there, the binary saliency map was created by setting all
pixels with duration greater than 0 to 1 and all pixels with no
corresponding duration data set to 0. Upon visual inspection, two
participants with extremely noisy data were excluded. In addi-
tion, fixations that appeared in the whitespaces of the original
stimuli image and not on any of the 7 sub-images were removed,
as they were determined not to be meaningful. After following
this exclusion criteria, we utilized data from 12 participants,
resulting in a total of 216 saliency maps and stimuli images
which were then split into a 5-fold cross-validation with 20%
holdout. Data augmentation was performed to add variability to
the sample; augmentations included horizontal image flipping,
image rotation with a maximum angle of 30 degrees, and color
changes. Additionally, input images were resized to 384 × 288
to as required by the TranSalNet model architecture.

C. Model Architecture & Training

The model chosen for saliency prediction was the TranSalNet
Res-Net model (architecture shown in Fig. 1). TranSalNet was
chosen because of its superior performance on public saliency
datasets, compared to other benchmark models. It achieves
the best performance on all perception-based metrics in both
MIT1003 and CAT2000. Its increased performance is attributed
to the addition of transformer-encoders in the typical CNN
architecture for saliency prediction. The TranSalNet utilizes a
basic convolutional neural network (CNN) backbone (ResNet-
50 pretrained on ImageNet [20]) with additional transformers to
generate saliency predictions from original stimuli and fixation
data. The TranSalNet model also utilizes a linear combination
of four loss metrics typically used for saliency prediction and
found to increase performance. These loss functions include
Kullback–Leibler (KLDiv) divergence, Normalized Scanpath
Saliency (NSS), Correlation Coefficient (CC), and a Structural
Similarity Metric. The model was trained using a learning rate of
1e-5 and Adam optimizer. The epoch with the lowest validation
loss was kept and used to generate predictions. Predictions
obtained were produced as grayscale and thresholded to produce
the binary saliency mask.

III. RESULTS

A. Objective Function/Medically-Salient Region
Predictions – Quantitative

The model was trained using a linear combination of saliency
prediction loss metrics as defined in the TranSalNet paper. The
training loss for the binary mask approach was found to decrease
over epochs, but validation loss started increasing after 2 epochs.
While training loss improved, validation loss exhibited severe
overfitting.

Fig. 3 shows that the model using a traditional saliency
map started to overfit after 20 epochs. Although training and
validation loss decreased over more epochs, absolute training
loss achieved a lower value (12) for the binary saliency map,
shown in Fig. 2.

Fig. 1. TransalNet architecture.
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Fig. 2. Loss curve for binary mask approach.

Fig. 3. Loss curve for traditional saliency map approach.

B. Medically-Salient Region Predictions – Qualitative

1) Binary Mask: The predictions from the binary mask
output model, shown in Fig. 4, show that fixations are being
predicted in the correct OCT report regions when compared to
ground truth fixation/saliency maps. However, the specificity of
shape and exact location of fixations still needs to be improved.

2) Traditional Saliency Mask: The predictions in Fig. 4(c)
show examples of good predictions via use of the traditional
saliency map. The locations of different fixations are well-
captured. However, Fig. 4(d) shows a suboptimal prediction in
which the boundaries of each predicted region of interest are
poorly-defined.

C. Saliency Predictions – Quantitative

Several evaluation metrics were calculated to evaluate image
similarity between model predictions and ground truth saliency
masks. Table I shows the results of the validation metrics on test
predictions when compared to the ground truth masks for both
binary saliency mask and traditional saliency mask predictions.
The continuous (traditional) saliency mask outperforms the
binary saliency mask model predictions for all four metrics.

Fig. 4. (a) and (b) Predictions from the binary mask model vs. Ground
Truth (c) Good predictions via use of the traditional saliency map
(d) Suboptimal predictions via use of the traditional saliency map.

TABLE I
PERFORMANCE METRICS OF 5-FOLD CROSS VALIDATION OF OUR MODEL

Metrics are significantly worse for the binary mask model.
However, the TranSalNet model significantly outperforms our
saliency mask model in regards to all four metrics with a CC
value of 0.901, an NSS value of 1.998, a KLD value of 0.414
and an SSIM of 0.796. Note: The metrics achieved by the
original TranSalNet model are merely for value reference as
the original problem is totally different (predicting saliency on
natural images rather than medical images). We believe such a
difference could be a source of the large gap between their results
and ours. The original problem of TranSalNet is testing the func-
tion of the transformer encoder via training on public datasets
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of natural images, and they compare their results with other
models. Hence, the ground-truth saliency maps of the images
are well-defined, and most of these regions are object-based. In
the results on a previous retinal dataset of fundus images [21],
CC value between the visualized heat maps and ground-truth
ophthalmologist attention maps was 0.33 and 0.14 for correct
and incorrect glaucoma classification, respectively [21]. Thus,
our work is the first to our knowledge that investigates expert
attention vs. AI-segmented heatmaps on OCT reports instead of
retinal fundus images.

IV. DISCUSSION

A. Qualitative Analysis

Saliency predictions were generated using the TranSalNet
model for fixation prediction on glaucoma OCT reports with
reasonable qualitative results but suboptimal quantitative results.
The continuous (traditional) saliency mask model outperformed
the binary mask model in terms of quantitative results. The
slightly better qualitative results for the binary saliency mask
compared to the traditional saliency mask suggest that the binary
saliency mask may be a better starting input for medically-
salient region prediction compared to the traditional (contin-
uous) saliency mask typically used for saliency prediction tasks
for natural images.

Qualitative results for the binary mask showed that the pre-
dictions were able to adequately predict fixations on the correct
sub-images. Very few predictions had fixations on sub-images
that were not fixated on in the ground-truth image. Most of the
predicted fixations for the good traditional and binary saliency
map predictions (as shown in Fig. 4(a)–(c) above) were focused
on the RNFL and RGCP probability maps and visual field (VF)
test points overlaid on the probability maps as well as the RNFL
and RGCP thickness maps, which is in line with the physicians’
written responses (regarding what features they were using to
make their decisions) we obtained during the experiment. This
indicates that the model is generally predicting fixations on
the correct regions. The predicted fixations also seem to more
closely match the ground truth predictions in the circumpapillary
RNFL and RNFL probability map and VF test point sub-images.
This is likely due to the fact that physicians spent more time
fixating on these regions, so the model was trained better for
those regions

B. Quantitative Analysis

Quantitative results showed that both the binary mask model
and continuous (traditional) saliency mask model performed
poorly when compared to results of public saliency dataset
such as SALICON. Of note, these datasets consist of natural
objects and relatively well-defined ground-truth while defining
the ground-truth for our task could be difficult since every
participant had a unique pattern of observing the OCT report,
meaning that the process is stochastic. However, our results of
traditional saliency map were comparable to results of other
medical AI studies exploring expert gaze on retinal images, such
as glaucoma detection using CNN models in terms of CC value.

Medical images are different from natural images in several
aspects: (1) regions of interest can be smaller when compared to
the salient objects in natural images [22]; (2) local details, such
as lesion/tissue density and patterns can be important for feature
extraction [23]; (3) the original resolution is generally much
higher in medical images; thus, the aggressive downsampling
needed to fit the TranSalNet input size constraints could result
in lost pixel-level information.

The low scores for both approaches may indicate that the
structure of the predictions matches the ground truth, but they
are not capturing specific details such as exact location and shape
of the original fixations. For example, when we compare the
ground truth with the predictions, we can see that fixations that
are being predicted are being predicted in the correct subimages
in the OCT report. The predictions using the traditional saliency
map capture the circular shapes in the OCT image accurately,
especially if they are in RGB color. However, when we compare
the predictions from the ground truth at a pixel-by-pixel level,
we are still not accurately capturing the shape and exact location
of the fixations, which explains the low quantitative metrics.
This indicates the model is capturing the general locations of
physician gaze but not yet the specific regions of interest within
a sub-image. This motivates the development of new ‘medical-
saliency’ metrics that differ from conventional natural image
saliency metrics.

Another possible explanation for our lower quantitative per-
formance could be that OCT reports are evaluated differently
than the natural images typically seen in visual saliency datasets.
For instance, natural objects are given different saliency or fix-
ation weights via shape, contour and color; however, shape and
contour may not be the key components of determining regions
of interest in medical images. The exact contour or shape might
not be essential for the clinical use case; rather, variations in
anatomy within similar OCT-report sub-images across patients
may be more salient. Additionally, a very high KLD could
be the result of mis-detections, as KLD is very sensitive to
that [24]. We had a comparable CC value to the result of the
glaucoma classification task in past work [21], which suggests
that our model prediction distribution had a reasonably good
linear correlation with the ground truth distribution. NSS can be
interpreted as a discrete approximation of CC since it operated
on the fixations instead of the continuous saliency mapping
[24]. SSIM directly compares the histogram of prediction and
ground truth [24]. Our model generally predicts more positive
regions (white region) in both methods. Hence, the histogram
of our prediction can be more skewed towards the low pixel
intensity.

C. Future Directions

Due to the fact that our approach is one of the first that
attempts to predict clinician fixations on glaucoma OCT reports
via CNN-based deep learning models, many aspects of the study
could be improved and enhanced. Further work needs to be
done to improve the quantity and quality of dataset, model
capacity, generalization capability, and to mitigate overfitting.
The TranSalNet paper, as well as many other state-of-the-art
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CNN-based saliency prediction models, were trained and evalu-
ated using the SALICON dataset which contains over 10,000
training, 5,000 validation, and 5,000 testing natural images,
which is significantly greater than the sample size of our custom
dataset. The sheer size of the dataset could introduce variability
to the model and prevent overfitting. Our data set does not com-
pare in size and variability to benchmark datasets. Collecting
more data will likely help with increasing model generalization
performance. At the time the model was trained, only a total of 12
participants were used, and many were qualitatively evaluated
to show a significant amount of noise. This is likely due to
calibration issues faced when fitting clinicians to the eye tracker.
Alternatively, in future work, we could try to use a TranSalNet
with its transformer encoder pretrained on a large corpus of eye
movements on natural images (SALICON, etc.) followed by
fine-tuning on our medical eye movement dataset to potentially
improve performance.

The PupilCore eye tracker is limited in its ability to adjust for
different face structures. The world camera could only be pushed
towards the face and away from the face a couple centimeters
which led to calibration issues for many individuals. Future
work will involve collecting eye tracking data with the 250 Hz
Tobii Pro Fusion eye tracker, which has higher precision and
higher frequency than the 200 Hz Pupil Core device. Our dataset
contained eye movements from 9 residents and 6 faculty/fellows.
Of note, we trained a separate model only on the data from the
6 faculty/fellows and found that performance was comparable.
As we collect more data, we will be able to evaluate the impact
on performance of using more data from just the more senior
expertise level. Another approach which may help to improve
the quantitative pixel-by-pixel accuracy of our model could be to
ask each clinician to evaluate the 7 OCT sub-images in sequence
instead of the whole report, which can increase the resolution of
each figure significantly and provide more detailed information
for model training.

In terms of model selection, CNN models pretrained on a
large number of OCT reports could speed our training and
improve generalizability [13]. Models like the TranSalNet aim
to capture/learn saliency predominantly from spatial features,
such as sharp-edges or blob-like structures from the encoder.
However, this might not fit well with our dataset, and meth-
ods utilizing pixel-wise regression directly have been shown
to produce improved performance over state-of-the-art saliency
methods via a customized objective function [14]. Probability
distribution-based loss functions could be more ideal to train our
dataset as the stochastic nature of evaluating OCT reports would
be emphasized more than the saliency of the exact object contour
or shape [14]. Hence, a simpler architecture consisting of a CNN
backbone and a few convolutional layers (without transformers
and a self-attention mechanism) could be sufficient to model the
visual attention process in our clinical setting.

V. CONCLUSION

This paper presents a novel approach for aiding ophthalmol-
ogists and ophthalmologists-in-training in efficiently evaluating
OCT reports and identifying regions of interest via using salient

regions produced by CNNs to replace the need for many hand
labels for similar tasks. The training dataset segmentation labels
were created via two different approaches and trained separately.
The traditional saliency map was generated via a gaussian-kernel
applied at all fixation points weighted by fixation duration. The
binary saliency map set image pixels (after gaussian convolu-
tion) larger than 0 to 1. The former approach has a higher score
of CC, NSS, KLS, and SSIM. However, both results suggest
that the locations of different fixations were well-captured, and
few predictions had fixations that were not fixated-on in the
ground-truth image. Better qualitative results, but lower metrics
score of the binary saliency approach could be a result of the
chosen objective function and metrics. To our best knowledge,
no prior work has been done on utilizing saliency mapping to
assist glaucoma OCT report prediction. We believe a larger OCT
report dataset, customized objective function, pretrained models
being trained and well-tuned in similar dataset, and reducing
intra and inter subject noise can finalize the model to reach a level
of a trained ophthalmologist reliably; at which point the model
predictions can be used to generate self-supervised input data
for other glaucoma prediction AI tools that can detect disease
using inherent differences in predicted eye movement patterns,
without requiring physicians to spend time looking at images or
providing labels.
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