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Abstract

The ability to monitor population dynamics and detect major changes in population trend is

essential for wildlife conservation and management. However, this is often challenging for

cetaceans as surveys typically cover only a portion of a population’s range and conventional

stock assessment methods cannot then distinguish whether apparent changes in abun-

dance reflect real changes in population size or shifts in distribution. We developed and

tested methods for estimating population size and trend and detecting changes in popula-

tion trend in the context of shifting habitat by integrating additional data into distance-sam-

pling analysis. Previous research has shown that incorporating habitat information can

improve population size estimates for highly mobile species with dynamic spatial distribu-

tions. Here, using simulated datasets representative of a large whale population, we demon-

strate that incorporating individual mark-recapture data can increase the accuracy and

precision of trend estimation and the power to distinguish whether apparent changes in

abundance reflect changes in population trend or distribution shifts. We recommend that

similar simulation studies are conducted for specific cetacean populations to assess the

potential for detecting changes in population dynamics given available data. This approach

is especially important wherever population change may be confounded with long-term

change in distribution patterns associated with regime shifts or climate change.

Introduction

The ability to monitor population dynamics and detect major changes in population trend is

essential for wildlife conservation and management. A reduction in population growth rate or

a change in vital rates can provide an early warning of increased extinction risk [e.g., 1–5].

Changes in population growth rates can provide a pertinent metric of the effects of new or

increased threats or management actions [e.g., 6, 7]. The timing of changes can point towards

specific trigger factors [e.g., 8] or guide research into underlying causes [e.g., 5, 9]. Synchro-

nous changes across taxa may reflect broad changes in environmental conditions or regime

shifts [e.g., 9, 10].

Major changes in population trends can be investigated statistically by comparing support

for models with or without a change in dynamics [e.g., 2, 8, 11] or evaluating parameters that

quantify change [e.g., 6, 12]. Formal statistical approaches are especially useful where a change

in trend could have direct policy or management implications (as for species managed under
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the U.S. Marine Mammal Protection Act, MMPA), and in systems characterized by substantial

inherent variation that makes it hard to distinguish long-term trends from random variation.

Nevertheless, few studies have attempted this for cetaceans.

Cetacean stock assessments are typically based on distance-sampling data collected during

line-transect surveys, but these often have limited statistical power to estimate a single popula-

tion trend [13], let alone detect a change in trend. The timeframe covered by surveys is typi-

cally short relative to the generation length of long-lived species, such as cetaceans. Broad-

scale surveys are costly and conducted infrequently. Consequently, surveys often cover only a

portion of a population’s range, so that changes in the distribution of habitat can lead to

changes in the proportion of the population available for sampling in the survey region [14,

15]. Conventional modeling approaches applied to distance-sampling data [e.g., 16] cannot

then distinguish whether an apparent change in abundance in the survey region reflects

changes in population size or shifts in distribution. This is especially problematic in the context

of oceanographic regime shifts and climate change, which have been associated with distribu-

tional shifts for many species [e.g., 17–20].

Previous research has shown that incorporating habitat information can improve estimates

of population size for highly mobile species with dynamic spatial distributions [e.g., 15]. Here,

we show that additional information may be required to estimate population trends reliably

and detect biologically significant changes in population trend in the context of variable distri-

bution patterns.

Mark-recapture analysis of individual photo-identification data provides an alternative to dis-

tance-sampling data based on line-transect surveys for assessing population size and survival.

Mark-recapture models can be used to detect changes in population dynamics, by incorporating

an explicit change in vital rates a priori or examining parameter estimates ex post [e.g., 4]. Mark-

recapture analysis is considered more robust to inter-annual variation in availability for sampling,

as it can be inferred that individuals were alive throughout the period from initial mark to final

recapture, but is not immune to problems associated with temporary emigration [e.g., 21–23].

Population-level distance-sampling data and individual mark-recapture data are typically

analyzed separately, using distinct methodologies. However, results are often difficult to com-

pare, making it hard to reconcile apparent inconsistencies. When comparing estimates of blue

whale (Balaenoptera musculus) abundance in the California Current Ecosystem, for example,

Calambokidis and Barlow [24] questioned whether estimates based on distance-sampling and

mark-recapture data were measuring the same population if some individuals were not avail-

able for sampling in the survey region in some years. In a later comparison, Calambokidis and

colleagues [25] highlighted the divergence between the apparent sharply declining trend in

blue whales in the California Current since the 1990s indicated by distance-sampling analysis

and the increasing trend indicated by mark-recapture analysis. They hypothesized that this

discrepancy could be the result of blue whales expanding their distribution northwards into

areas off British Columbia and in the Gulf of Alaska, leading to a reduction in average density

in the main survey region off the U.S. west coast that did not represent an actual population

decline [see also 18]. This hypothesis provided the initial motivation for the present study.

Integrated population models (IPMs) that combine data on demographic parameters and

population size to estimate the parameters of a single underlying population model can help

resolve such inconsistencies. By combining data types, IPMs can also achieve more precise

parameter estimates with increased statistical power than separate analyses [26]. Here, we

focus primarily on estimates of population trend and the power to detect changes in trend.

Bayesian hierarchical or state-space models (BHMs) provide new opportunities for assess-

ing population size and trend using IPMs [27]. Bayesian IPMs comprise two interlinked sets of

equations: state equations describe the relationship between demographic parameters and
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population size; while observation equations describe the relationship between population size

and population counts and between demographic parameters and demographic data [26].

BHMs thus facilitate integrated analysis through the joint maximization of the likelihoods of

different types of data, with likelihood providing a common currency [28].

BHMs have recently been used to estimate population dynamics for several cetacean popu-

lations using distance-sampling data from line-transect surveys [e.g., 15, 29–32]. The model

framework developed by Boyd and colleagues [15] includes linked state equations for the pop-

ulation process and the distribution process as a function of habitat, and forms the basis for

the models developed in this study. BHMs have also been used to estimate cetacean population

size and, more rarely, trends in population size using individual mark-recapture data from

photo-identification studies [e.g., 4, 33, 34]. Some Bayesian IPMs have been developed to esti-

mate cetacean population dynamics using previous estimates of population size and data on

incidental mortality in fisheries [28], strandings [3], and individual mark-recapture data [35].

However, to our knowledge, no IPMs have yet been developed to assess cetacean populations

or other highly mobile nomadic species based on joint estimation of distance-sampling and

individual mark-recapture data.

Our objective was to develop a modeling approach to estimate population trends reliably

and detect a change in trend in the context of variation in the distribution of habitat using the

types of data typically available for large cetaceans.

We approached this by simulating a set of test datasets designed to represent the population

dynamics and distribution patterns of a highly mobile long-lived species with substantial

inter-annual variation in the distribution of habitat. The test datasets represent four contrast-

ing scenarios: (A) a stable population combined with random interannual variation in the dis-

tribution of habitat; (B) a stable population combined with a shift in the distribution of habitat

characteristic of a decadal-scale regime shift or long-term climate change; (C) a stable-then-

declining population combined with random variation in habitat; and (D) a stable-then-

declining population combined with shifting habitat.

We then simulated collection of distance-sampling and individual mark-recapture data and

calf indices from the test datasets through a periodic systematic broad-scale line-transect sur-

vey supplemented by more frequent spatially targeted mark-recapture surveys.

We developed a series of Bayesian hierarchical IPMs incorporating the various types of

data. Model 1 is a distance-sampling model similar to models developed by Boyd and col-

leagues [15]; Model 2 is an IPM that integrates distance-sampling data and a calf index com-

piled from the line-transect survey data; Model 3 is a more sophisticated IPM that integrates

distance-sampling data and individual mark-recapture data from the line-transect survey; and

Model 4 extends this IPM to incorporate additional mark-recapture data from a separate sur-

vey platform, such as dedicated small boat studies.

We applied the series of models to each of the test datasets and then evaluated the results,

using standard model comparison techniques and evaluation of change parameters to assess

the power of each model to distinguish correctly between the stable and declining population.

In several respects, we chose to keep the simulation simple to facilitate exposition. The need

to incorporate additional complexity or measurement error in simulation studies used to sup-

port real study design is considered in the Discussion.

Materials and methods

Test datasets

We provide an overview of our simulation approach here; please see S1 Appendix for further

details.
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We simulated a single demographically open but geographically closed population over a

16-year period under two scenarios: a stable population over the study period; and a stable

population over the first 8 years, followed by a declining population over the second 8 years.

We simulated the population’s spatial distribution so that it varies interannually as a func-

tion of relative habitat suitability based on two scenarios: a scenario with random interannual

variation in habitat distribution; and a scenario with a shift in habitat distribution after 8 years.

We constructed four contrasting test datasets by combining each of the two population trajec-

tories with each of the two habitat scenarios. In each year, individuals were then distributed

among habitat cells as a stochastic function of relative habitat suitability in each cell.

The test datasets were constructed so that the population size and distribution pattern is

identical across all four datasets in the first year. Fig 1 shows the evolution of the population

distribution pattern over the 16-year study period in Scenario B.

The survey region encompasses 50% of the total range. The number of individuals in the

survey region is relatively stable in Scenario A; exhibits and average decline of approximately

4% per year over the 16-year period in Scenario B, reflecting a shift in habitat distribution;

declines by a similar amount in Scenario C, reflecting a true population decline; and declines

more steeply in Scenario D, reflecting a combined population decline and habitat shift (Fig 2).

Fig 1. 16 representations of a spatially autocorrelated habitat index used to simulate broad-scale population distributions. The sequence shown here is

used for the shifting habitat scenarios (Scenarios B and D), with a relatively high proportion of habitat in the survey region in the first 8 years, and a relatively

low proportion in the second 8 years. Darker blues indicate more suitable habitat. Magenta points indicate the distribution of a stable population (as in Scenario

B) as a function of relative habitat suitability. The survey region is delineated by dark blue dashed lines; the small boat study area (i.e. the area within which target

cells are selected) is shown by the cyan dashed lines.

https://doi.org/10.1371/journal.pone.0251522.g001
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Fig 3 highlights how the shift in population distribution associated with shifting habitat in

Scenarios B and D could undermine efforts to estimate trends based on line-transect data from

the survey region. Note that the number of individuals alive is the same in Scenarios A and B

and the same in Scenarios C and D.

We simulated collection of distance-sampling data through six systematic line-transect sur-

veys conducted every three years (Fig 3). For simplicity, we set transect lines so that survey

effort was the same for each cell in the survey region in each year. The observed data comprise

a set of counts of individuals detected along each line-transect segment.

We simulated collection of individual mark-recapture data based on photo-identification

from the line-transect survey. In each year, a proportion of adults and juveniles detected dur-

ing the line-transect survey were identified to individual. All detected whales had the same

probability of identification if detected, consistent with identifiability being influenced more

by variable sighting conditions than individual distinctiveness. The observed data comprise a

set of standard temporal capture histories for individuals identified during line-transect

surveys.

We also simulated individual mark-recapture data collected through small boat studies con-

ducted every year in the nearshore section of the survey region (Fig 1). In each year (primary

occasion), small boat studies targeted a subset of cells with the most suitable habitat in the

nearshore survey region. Each targeted cell was sampled on three secondary occasions in each

year based on a robust design framework. The observed data comprise a set of standard tem-

poral capture histories for individuals identified during small boat studies.

Fig 2. Population trajectories under the four contrasting scenarios over the entire range and in the survey region. Blue points indicate the true population size

over the entire range in each scenario. Open black points indicate the number of individuals in the survey region in each scenario, with filled points for survey years.

https://doi.org/10.1371/journal.pone.0251522.g002
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Fig 3. Individual distribution patterns in the final survey year under the four contrasting scenarios. Blue dotted lines indicate transect lines. Filled magenta points

indicate individuals detected in the line-transect survey; open magenta points indicate undetected individuals; yellow points indicate individuals identified from either

the survey vessel or the small boat.

https://doi.org/10.1371/journal.pone.0251522.g003
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We also compiled two calf indices: the number of females with calves among all detected

animals in the line-transect survey; and the number of females with calves among all individu-

als identified in the line-transect survey and small boat studies.

Finally, we extracted a measured habitat covariate for the population’s entire range in each

year.

Integrated population models

The BHMs in this study comprise two linked ecological process submodels: a population pro-

cess submodel and a distribution process submodel, but differ in how these submodels are

configured. They also differ in the types of data used and the associated observation submodels

(Table 1).

The observation process in all four models was kept simple to facilitate exposition, consis-

tent with the test datasets. In addition to standard assumptions in distance sampling [36], the

models assume perfect detection on the transect line and constant survey conditions.

Two versions of each model were constructed: a baseline version with constant trend and a

change-in-trend version with a separate trend parameter (Model 1) or survival parameter

(Models 2–4) for the second half of the study period.

Model 1: Distance-sampling population model. Overview. Model 1 is a distance-sam-

pling population model in Bayesian hierarchical form. It is a simplified version of the inte-

grated population-redistribution model described by Boyd and colleagues [15] and

summarized in S2 Appendix.

The dependent data are the perpendicular distances of detected individuals from the tran-

sect line, and counts of detected animals (Table 1). The population process submodel is an

exponential growth model. In this study, we apply a conventional distance-sampling model

without habitat data as a benchmark (Model 1a), and a model with a single dynamic habitat

covariate (Model 1b) as described for Model 2 below. The observation process submodel com-

prises the same likelihoods for distance-sampling data as described for Model 2 below.

Model 2: IPM with distance-sampling, calf index, and habitat data. Overview. In Model

2, the population process submodel is transformed from an exponential growth model to a

binomial demographic model that describes population change as a function of demographic

parameters, with the aid of additional data on fecundity derived from the calf index.

The dependent data are same as for Model 1 with the addition of calf index data derived

from the line-transect survey (Table 1). The population, distribution, and observation process

submodels are described in full below; please see S3 Appendix for notation.

Table 1. Model summaries.

Model 1a Model 1b Model 2 Model 3 Model 4

Population process submodel:

exponential population model ✓ ✓

binomial demographic model ✓ ✓ ✓

Distribution process submodel:

habitat-based ✓ ✓ ✓ ✓

Observation process submodels:

(a) distances of detected animals ✓ ✓ ✓ ✓ ✓

(b) counts of detected animals ✓ ✓ ✓ ✓ ✓

(c) calf index data ✓ ✓ ✓

(d) individual mark-recapture data from line-transect survey ✓ ✓

(e) individual mark-recapture data from small boat studies ✓

https://doi.org/10.1371/journal.pone.0251522.t001
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Population process. The population process submodel is a simple binomial demographic

model based on a single age class comprising all juveniles and adults in the population. (This

estimation model is a simplification of the age-structured model that was used to simulate the

population.) The population size, Nt in year t, is calculated from the population size in the pre-

vious year less mortalities, Dt−1, plus recruits, Rt (i.e. age-1 juveniles):

At t ¼ 1; Nt � binomialðNmax; zÞ ð1AÞ

For t ¼ 2 . . .T : Dt� 1 � binomialðNt� 1; 1 � φÞ ð1BÞ

Rt � binomialðNt� 1; r � wÞ ð1CÞ

Nt ¼ Nt� 1 � Dt� 1 þ Rt ð1DÞ

where z is an inclusion parameter used to sample the initial population size, Nmax is the maxi-

mum plausible population size, φ is average non-calf survival, ρ is average fecundity (i.e. calf

production per capita), and χ is calf survival.

The long-term trend, υ, was calculated as a derived parameter in the model to facilitate

comparison to the true trend in simulated populations:

u ¼ logðr � wþ φÞ ð1EÞ

Two versions of each model were constructed: a baseline version with constant vital rate

parameters (as above) and a change-in-trend version with separate estimates of average sur-

vival, φ, for the first and second halves of the study period:

for t ¼ 2 . . .TBP : Dt� 1 � binomialðNt� 1; 1 � φ
1
Þ ð1FÞ

for t ¼ ðTBP þ 1Þ . . .T : Dt� 1 � binomialðNt� 1; 1 � φ
2
Þ ð1GÞ

where TBP indicates the hypothesized change point between periods with different trends.

Distribution process. The population is assumed to distribute itself throughout its range in

proportion to relative habitat suitability in each survey year following an ideal free distribution

[see 15 for further discussion]. The expected proportion of the population in a cell, p. kk,t,

depends on habitat suitability h in cell k relative to habitat suitability over all k = 1. . .K cells in

the range:

p:hk;t ¼ expðb �Ηk;tÞ ð2AÞ

p:kk;t ¼ p:hk;t=
PK

1
p:hk;t ð2BÞ

where H is a matrix of habitat covariates and b is a vector of associated coefficients. Here, we

use a single dynamic habitat covariate and estimate a single associated parameter. (Eq 2A dif-

fers from the formula used to generate the test datasets (see S1 Appendix). The measured

covariate, H, only explains about one third of the variation in simulated distribution patterns;

additional variation is attributable to unmeasured habitat covariates or measurement error.)

Observation process. Distance-sampling data. The likelihoods for distance-sampling data

are based on standard distance-sampling theory [36] as implemented by Boyd and colleagues

[15]. Assuming that the distribution of individuals at local scales follows a homogenous Pois-

son point process and a stationary half-normal detection function, the likelihood of the
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perpendicular distances, xj, of detected individuals (j = 1. . . J) from the transect line is:

xj � normalð0; s2Þð0; xmaxÞ ð3Þ

where T(0, xmax) denotes truncation at 0 and xmax. There is one estimated parameter: the vari-

ance of the half-normal detection function, s2.

The likelihood of the number of individuals detected in each surveyed cell in the line tran-

sect survey in each year, nk,t, is assumed to follow a Poisson distribution:

nk;t � Poisðlk;tÞ ð4AÞ

The expected number of animals detected in each surveyed cell, λk,t, depends on the total

population size, Nt, derived from the population process submodel, the expected proportion of

the population in the cell, p.kk,t, derived from the distribution process submodel; and the prob-

ability of detecting an individual that is present in the cell along the corresponding transect

segment, p.dk,t:

lk;t ¼ Nt � p:kk;t � p:dk;t ð4BÞ

The conditional probability of detecting an individual in a cell along a transect segment, p.

dk,t, depends on the segment length, l, the effective strip half-width, ESW, the cell area, A, and

the detection probability on the transect line, g(0):

p:dk;t ¼
2 � l � ESW � gð0Þ

A
ð4CÞ

Here, we assume g(0) = 1 for simplicity. The effective strip half-width, ESW, is calculated

from the probability density of the detected distances, ESW ¼ 1=f ð0Þ [see 15 for further

details].

Calf index data. Model 2 includes a likelihood for the calf index (i.e. the proportion of cow-

calf pairs among detected animals) derived from the line-transect survey. The expected pro-

portion of cow-calf pairs among all detected animals is a function of per-capita fecundity, ρ,

calf survival, χ, and non-calf survival, φ, given that the number of calves in year t is a function

of population size in the previous year:

n:cðsurveyÞt ¼ Binomial
r

r � wþ φ
;NðsurveyÞ;t

� �

ð5Þ

where n.c(survey)t is the number of cow-calf pairs and N(survey),t is the total number of animals

detected in the line-transect survey in each year.

Model 3: IPM with distance-sampling data, individual mark-recapture data from the

line-transect survey, calf index, and habitat data. Overview. Model 3 integrates an open

population Cormack-Jolly-Seber (CJS) individual mark-recapture model [37–39] for individu-

als identified in the line-transect survey. The CJS model is based on a state-space framework

similar to that developed by Kéry and Schaub [27; see also 40, 41].

The dependent data are the same as for Model 2, with the addition of individual mark-

recapture data from the line-transect survey (Table 1). An additional component is incorpo-

rated into the population process submodel to account for marked individuals, as described

below. Information on individual availability for sampling in the survey region is extracted

from the distribution process submodel. A likelihood for the recapture data is incorporated

into the observation process submodel.

Population process. In the state-space formulation of the CJS model, the state process is

summarized in a latent state matrix, Z, with dimensions Nmarked x T and 1s and 0s indicating
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whether each marked individual, i, is alive or not in each year. The CJS model is conditioned

on the first capture or mark—only subsequent recapture events are modeled. The Z-matrix is

therefore completed sequentially for each marked individual from the year when it was first

marked and known to be alive, tmarked,i, as follows:

for t ¼ tmarked;i : zi;t ¼ 1

for t ¼ ðtmarked;i þ 1Þ . . .T : zi;t � Bernoulliðφ � zi;t� 1Þ ð6Þ

A marked individual’s state, zi,t, depends on whether it was alive in the previous year, zi,t−1,

and the average survival rate, φ.

Distribution process. Individual availability, α(survey)i,t, is assumed to follow a Bernoulli dis-

tribution where the probability of an individual being available for sampling in the survey

region, p.α(survey)t, is the sum of the expected proportion of the population in a cell, p.kk,t, for

all cells in the line-transect survey region (Fig 1):

aðsurveyÞi;t � Bernoulliðp:aðsurveyÞtÞ ð7Þ

Observation process. Mark-recapture data. For each marked individual, i, the likelihood of

the individual recapture data from the line-transect survey, y(survey)i,t, is based on the Bernoulli

distribution. Conditional on being alive, zi,t, and available for sampling in the survey region

α(survey)i,t, the individual recapture probability in the line-transect survey in a given year, p.r(sur-

vey)t, depends on the joint probability of detecting an individual during the line-transect survey,

p.d(survey)t and then identifying it from the survey vessel, p.id(survey)t:

yðsurveyÞi;t � Bernoulliðp:rðsurveyÞt � aðsurveyÞi;t � zi;tÞ ð8AÞ

p:rðsurveyÞt ¼ p:dðsurveyÞt � p:idðsurveyÞt ð8BÞ

The overall probability of detecting an individual in the survey region during the line-tran-

sect survey, p.d(survey), is calculated from the total survey effort in the region and the estimated

detection function:

p:dðsurveyÞt ¼

PK
k¼1
ð2 � l � ESW � gð0ÞÞ
PK

k¼1
A

ð8CÞ

The conditional probability of identifying an individual detected during the line-transect

survey, p.id(survey)t, is calculated from the number of individuals identified compared to the

number of individuals detected in the line-transect survey in each year and is provided to the

model as data.

Model 4: IPM with distance-sampling data, individual mark-recapture data from the

line-transect survey and small boat studies, calf index, and habitat data. Overview. The

dependent data incorporated in Model 4 are same as for Model 3, with the addition of individ-

ual mark-recapture data from small boat studies (Table 1).

The method for estimating individual availability in the distribution process submodel is

reconfigured to estimate availability in the small boat study area as well as the line-transect sur-

vey region (see below). An additional likelihood for recapture data from small boat studies is

incorporated into the observation process submodel and the likelihood of the calf index data is

adjusted to account for all identified individuals.

Distribution process. The distribution process submodel is reconfigured to provide informa-

tion on the availability of individuals for sampling from the small boat. Individuals that are in
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the line-transect survey region may or may not be in cells targeted by the small boat. We there-

fore need to estimate the availability of each specific individual i for sampling in both the line-

transect survey region, α(survey)i,t, and in cells targeted by the small boat, α(sb)i,t. This is achieved

by sampling from a multinomial distribution as follows:

a1:3;i;t � multinomialð1; p:a1:3;tÞ ð9Þ

where p.a1,t is the probability that an individual is in a cell targeted by the small boat (i.e. the

sum of p.kk,t for all targeted cells in year t); p.a2,t is the probability that an individual is in the

line-transect survey region but not in a target cell (i.e. the sum of p.kk,t for all cells in the survey

region excluding cells targeted by small boat studies in year t); and p.a3,t is the probability that

an individual is not in the line-transect survey region (i.e. the sum of p.kk,t for all cells outside

the survey region). Thus, α(sb)i,t = α1,i,t .and α(survey)i,t = 1−α3,i,t.

Observation process. Mark-recapture data. The likelihood of individual recapture data from

small boat studies, y(sb)i,m,t, is based on the Bernoulli distribution. Conditional on being alive,

zi,t, and available for sampling in a cell targeted by the small boat, α(sb)i,t, the individual recap-

ture probability on each small boat sampling occasion in a given year depends on the probabil-

ity of detection-and-identification from the small boat, p.r(sb):

yðsbÞi;m;t � Bernoulliðp:rðsbÞ � aðsbÞi;t � zi;tÞ ð10Þ

where m refers to a secondary sampling occasion. The conditional probability of detecting-

and-identifying an individual that is in a cell targeted by the small boat on a single occasion, p.

r(sb), is assumed constant.

Calf index data. The calf index is based on identified individuals only to avoid double-

counting, as the same individual may be identified in small boat studies and detected, but not

identified, in the line-transect survey. Eq 5 is modified accordingly:

n:cðidÞt ¼ Binomial
r

r � wþ φ
;NðidÞ;t

� �

ð11Þ

where n.c(id)t is the number of identified females with calves and N(id),t is the total number of

individuals identified in small boat studies in each year.

Model implementation and evaluation

Model implementation. Models were estimated using Markov chain Monte Carlo

(MCMC) sampling, implemented in JAGS [42]. (See S4 Appendix for model code.) For each

model, two separate chains were run for 100,000 iterations with a burn-in of 50,000 and thin-

ning rate of 100 to generate a total of 1,000 saved parameter sets.

Prior distributions were generally non-informative, except that bounds on vital rates

parameters were set to appropriate values for a long-lived cetacean [see 43]. Specifically, the

upper bound for the fecundity rate, ρ, was set at 0.2; the lower bound of non-calf survival, φ, at

0.8 and calf survival at 0.6; the upper bound of calf survival was delimited by φ. (See S5 Appen-

dix for the complete set of prior distributions.)

Convergence was assessed by visual inspection of trace plots and using standard diagnos-

tics, including the Geweke and Gelman-Rubin diagnostic test [44, 45].

Evaluation of model ability to estimate population size and trend. When evaluating

model ability to estimate population size and trend, we focused primarily on the constant

trend version of each model (Table 1) applied to the Scenario B dataset. This dataset, repre-

senting a stable population in shifting habitat, presents a greater estimation challenge than Sce-

nario A (i.e. stable population in relatively stable habitat). We did not evaluate other model-
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scenario combinations in the same way because either the model and scenario were mis-

matched (e.g., a constant trend model applied to data with a non-constant trend) or parame-

ters were constant for just a short period (e.g., 8 years in Scenarios C and D).

We compared plots of estimated population trajectories to the known truth derived from

the simulated dataset to evaluate each model’s ability to reproduce the true population dynam-

ics in this context. We also compared the posterior distributions to the known truth for key

parameters (i.e. final population size, population trend, and non-calf survival where estimated)

to evaluate the accuracy and precision of parameter estimates.

Evaluation of model ability to detect a change in population trend. We used standard

Bayesian model comparison techniques and information criteria (specifically, Watanabe’s

Information Criterion, WAIC [46, 47]) to evaluate the ability of each model to distinguish cor-

rectly between the stable population and stable-then-declining population in all four scenarios.

For the purposes of this study, we evaluated a single change point, corresponding to the true

transition year. However, in a real study with uncertain transition timing, it would be appro-

priate to compare models with various plausible change points to identify the transition year

with greatest support from the data [see 8 for example].

In addition, we assessed the posterior distribution of the derived change parameter, Δ =

υ2−υ1, in the change-in-trend version of each model to see whether this indicated an estimated

negative shift in population dynamics.

Results

All models converged, as indicated by visual inspection of trace plots and the Geweke and Gel-

man-Rubin diagnostic tests [44, 45]. The estimated potential scale reduction factors was less

than 1.06 for final population size, long-term trend, survival, and deviance in all models.

Evaluation of model ability to estimate population size and trend

In presenting the results, we focus first on how well the constant trend version of each model

performed in estimating population dynamics when challenged by the scenario with stable

population and shifting habitat (Scenario B). However, the overall pattern described here, in

terms of the relative performance of the various models, was similar across all scenarios.

When evaluating estimates of population size, we focus on the final year as this year is likely

to be of greatest interest to managers.

Model 1: Distance-sampling model. The basic distance-sampling population model

without habitat data (Model 1a) attributes all interannual variation in numbers of individuals

detected in the survey region to variation in population size because it lacks information on

variation in the distribution of habitat. When applied to the scenario with shifting habitat, this

model attributes the reduction in numbers of individuals observed in the survey region follow-

ing the habitat shift to a reduction in population size (Fig 4). Consequently, this model esti-

mates a declining trend, even though the population is stable, and underestimates the final

population size (Fig 5A and 5B). Broad credible intervals reflect the overall uncertainty about

the population process (Fig 4).

In contrast, the distance sampling population model with habitat data (Model 1b) partitions

interannual variation in the numbers of individuals observed in the survey region between var-

iation in population size and variation in distribution. This leads to substantial improvements

in estimation of the population process (Fig 4), with more accurate estimates of final popula-

tion size and, especially, long-term trend (Fig 5A and 5B). These results confirm the previous

findings of Boyd et al. [15] that incorporating habitat information can improve abundance

and trend estimates despite imperfect habitat data.
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Model 2: IPM with distance-sampling, calf index, and habitat data. The simple IPM in

Model 2 is based on a binomial demographic model rather than the exponential population

model used in Model 1. The data are the same as for Model 1b, with additional data on fecun-

dity derived from the number of cow-calf pairs sighted during the line-transect survey. The

binomial demographic model constrains interannual variation in population size more tightly

Fig 4. Population processes estimated by Models 1a, 1b, 2, 3, and 4 for Scenarios B (stable population in shifting habitat)

and C (stable-then-declining population in randomly varying habitat). Model versions applied to Scenario B assume a

constant trend, while those applied to Scenario C allow for a change in trend. Blue points indicate the true population process in

each scenario. Open black points indicate the number of individuals in the survey region in each scenario. Blue dashed lines

indicate the median of the posterior distribution for population size estimated by each model, and the dotted lines indicate the

95% credible interval.

https://doi.org/10.1371/journal.pone.0251522.g004

Fig 5. Posterior distributions for (a) final-year population size, (b) long-term trend, and (c) non-calf survival under Scenario B (stable population in

shifting habitat). Posterior distributions are shown for Models 1a, 1b, 2, 3, and 4, and a stand-alone CJS model, assuming a stable population. (Non-calf

survival is not estimated by Models 1a or b; and final-year population size and long-term trend are not estimated by the CJS model.) In each panel, the blue

dashed line indicates the true value, and black horizontal lines indicate the median of the posterior distribution estimated by each model.

https://doi.org/10.1371/journal.pone.0251522.g005
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than the exponential model, leading to more precise estimates of the population dynamics pro-

cess, especially in non-survey years (Fig 4). Fig 5 shows negligible changes in accuracy but

more precise estimates of long-term trend and consequently population size (Fig 5A and 5B).

The binomial demographic model also enables estimation of vital rate parameters (e.g., sur-

vival, Fig 5C). These results demonstrate that a small amount of additional data on vital rates

can be useful if it enables a switch to a binomial demographic model.

Model 3: IPM with distance-sampling data, individual mark-recapture data from the

line-transect survey, calf index, and habitat data. The IPM with distance sampling and

individual mark-recapture data from the line-transect survey (Model 3) provides negligible

changes in the accuracy or precision of the estimated population process or parameters (Fig 4).

This result reflects the specific parameter values used in this simulation study—in particular,

the survey spans a 16-year period, which is short relative to the life span of large whale species,

and data are only collected every 3 years with an average capture probability resulting from the

combination of availability, detectability and identifiability of 0.08 in each survey year.

Model 4: IPM with distance-sampling data, individual mark-recapture data from the

line-transect survey and small boat studies, calf index, and habitat data. The IPM with

distance sampling and individual mark-recapture data from the line-transect survey and small

boat studies (Model 4) led to substantial improvements in the accuracy and precision of

parameter estimates. In particular, with additional information on survival, the non-calf sur-

vival rate and the long-term trend are both estimated accurately and with greater precision

(Fig 5B and 5C). These results demonstrate that incorporating individual mark-recapture data

can be extremely useful, even over a relatively short study period for a long-lived species, if

data are collected annually with a higher average capture probability (e.g., 0.15 in each year in

this study).

Survival estimates were also more precise in the IPM than a stand-alone CJS model applied

to the robust design dataset collected in small boat studies (Fig 5C) as distance-sampling analy-

sis provided information on the overall population trend and interannual variation in the

availability of individuals for recapture.

Evaluation of model ability to detect a change in population trend

We now turn to the question of how well the different models perform in terms of detecting a

change in population trend.

Model comparison. When the constant trend and change-in-trend versions of each

model were applied to each of the test datasets, the conventional distance-sampling model

without habitat data (Model 1a) fails to diagnose the correct trend in three of four scenarios

and indicates only marginally greater support for the correct trend in the fourth scenario

(Table 2). The three models with habitat data all performed better than the conventional

model. However, only Model 4 (i.e. the IPM with supplementary mark-recapture data from

small boat studies) had sufficient information to weight the correct model more highly in all

four scenarios. Additional simulations indicated that Model 4’s power to diagnose the correct

trend would generally increase with increased mark-recapture sampling effort, as expected

(Table 2, final row).

Focusing on the results for Scenario B (stable population in shifting habitat), the difference

in the WAIC was less than 2 for all models except Model 4, indicating similar levels of support

from the data. This result was expected as, for all models with habitat data, both model ver-

sions should be able to fit data derived from a stable population equally well and there should

be limited difference in the number of effective parameters. Model 4 indicated slightly greater

support for the constant trend version (i.e. the correct model in this case).
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The results were similar for Scenario C (stable-then-declining population in randomly vary-

ing habitat). In this case, the difference in the WAIC was less than 2 for all models, and only

Model 4 indicated marginally greater support for the change-in-trend version (i.e. the correct

model in this case). For all models, both versions had sufficient flexibility to fit the “observed”

data well, even though the underlying population exhibited a substantial change in trend.

Posterior distribution of the change parameter. An alternative approach to detecting a

change in trend through formal model-based inference is to evaluate the posterior distribution

of a parameter that quantifies the hypothesized change. Only Model 4 had sufficient informa-

tion to estimate the change-in-trend parameter effectively. Fig 6 shows the posterior distribu-

tion for this parameter, as estimated by Model 4, based on data derived from a stable

population (Scenario B) and a stable-then-declining population (Scenario C). For Scenario B,

46.9% of the posterior distribution was less than 0, indicating approximately 1:1 odds that a

positive or negative change occurred in the second half of the study period. In contrast, for

Scenario C, 84.9% of the posterior distribution was less than 0, indicating approximately 5:1

odds that a negative change occurred in the second half of the study period.

In this case, the extent of the negative change was underestimated. This likely reflects the

short time periods for estimating the old and new trends (8 years), given that Model 4 esti-

mated the consistent trend in Scenario B accurately when given 16 years of data (Fig 6B).

Discussion

Our objective was to develop and test methods for estimating population trend and detecting

changes in trend using simulated data representative of a large whale species. We developed an

IPM based on joint analysis of distance-sampling and mark-recapture data that increased the

accuracy and precision of trend estimates and power to detect a change in trend compared to

separate analyses [see 26 for results from other IPM studies].

Incorporating relevant habitat data provides information on distribution patterns and vari-

ation in the proportion of the population that is likely available for detection when surveys

cover only a portion of the population’s range. This information enables more accurate popu-

lation size and trend estimates in the context of variable habitat. Indeed, our results demon-

strated that trend estimates can be highly misleading in the case of a long-term habitat shift, if

habitat data are not included.

Table 2. Model comparison using difference in WAIC; a value of 0 indicates the model with greater support in each model pair; a value of less than 2.00 indicates a

model with substantial support.

Stable population Stable-then-declining population

Random habitat variation (A) Shifting habitat Random habitat variation (C) Shifting habitat

(B) (D)

Model Constant trend Change in trend Constant trend Change in trend Constant trend Change in trend Constant trend Change in trend

1a 0.66 0 0.54 0 0 1.09 0.19 0

1b 0 2.88 0 1.42 0 0.55 2.32 0

2 0 1.48 0.12 0 0 1.49 0.73 0

3 0 0.74 0 1.85 0 0.28 0 1.18

4 0 3.83 0 2.71 1.23 0 4.22 0

4� 0 2.12 0 4.31 2.32 0 5.08 0

� Small boat study effort increased by 50%.

Bold values indicate a correct diagnosis.

https://doi.org/10.1371/journal.pone.0251522.t002
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Switching from an exponential population model to a binomial demographic model in an

IPM framework provides new information through constraints on interannual population

growth that are more biologically realistic for long-lived species with inherently low fecundity,

such as cetaceans. This enables more precise estimates of population trend, despite limited

additional data (e.g., a calf index derived from just six sampling occasions in this study).

Integrating mark-recapture data into distance-sampling models provides additional infor-

mation on survival that can lead to more accurate and precise trend estimates depending on

Fig 6. Posterior distributions for change in trend under Scenario B (stable population in shifting habitat) and

Scenario C (stable-then-declining population in randomly varying habitat) estimated by Model 4 (change-in-trend

version). The blue dashed line indicates no change in trend.

https://doi.org/10.1371/journal.pone.0251522.g006
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sampling effort. In this study, this was achieved through supplementary mark-recapture stud-

ies conducted annually from a separate survey platform.

The focus of this study was on trend estimation, but estimation of demographic parameters

(e.g., survival and fecundity) can also be important for understanding the demographic causes

of population declines and guiding management responses [1, 48]. Integrating distance-sam-

pling data into mark-recapture models provides information on the overall population trend

and on interannual variation in availability of individuals for recapture, leading to more pre-

cise survival estimates than a stand-alone CJS model.

There are concerns about the potential for over-estimating precision in IPMs where data-

sets used to estimate different likelihoods are not independent. In this study, for example, an

individual detected in the line-transect survey may contribute to both distance-sampling and

mark-recapture likelihoods. Ensuring independence of datasets collected in different surveys

is considerably more challenging for highly mobile nomadic species than for territorial species

[c.f., 49]. We recommend that simulation studies are conducted to evaluate the potential for

over-estimation of precision [see 50 for an example] prior to applying the IPMs presented here

to real data, especially if the estimated precision could affect management decisions (as in cal-

culation of potential biological removal under the MMPA [51] or application of the Interna-

tional Whaling Commission’s revised management procedure [52] and strike limit

algorithms). Note that it would be simple to exclude the mark-recapture data collected from

the line-transect survey in Model 4. (These data were included in this study because of con-

cerns about possible sampling bias in mark-recapture data for blue whales off the U.S. west

coast as small boat sampling was restricted to the nearshore area [24].)

We were interested in the ability of the various models to detect a change in population

trend in the context of shifting habitat given sparse but realistic distance-sampling effort. In

this study, only the IPM incorporating supplementary individual mark-recapture data (Model

4) had the power to distinguish between a stable and stable-then-declining population in vari-

able habitat using model comparison techniques given the available data, despite the substan-

tial simulated decline in Scenarios C and D (a one-third reduction in population size over 8

years). These results highlight the challenge of determining whether a change in trend has

occurred in a population with variable distribution patterns and limited data. Note that we

evaluated a single change point in our analysis of simulated data, but several hypothetical

change points might be considered in an estimation study and model comparison used to

identify the transition with greatest support.

The question answered by model comparison—Was there a change in trend?—may not be use-

ful on its own. It may be more useful to ask—Was there a biologically significant change in trend?

The posterior distribution of parameters quantifying change can be used to evaluate the weight of

evidence for a significant change in trend. In this study, Model 4 indicated posterior odds of

approximately 5:1 that a negative change in trend occurred in the stable-then-declining popula-

tion scenario (C) compared to 1:1 in the stable population scenario (B). It is also possible to esti-

mate the odds that the change in trend exceeded some threshold value. Here, for example, the

posterior odds of a negative change in trend greater than 0.02 are approximately 2:1 in the stable-

then-declining population scenario (C) compared to 1:4 in the stable population scenario (B).

We focused on large whales in this study, but mark-recapture data is also increasingly avail-

able for small cetaceans. We recommend that similar simulation studies are conducted for spe-

cific cetacean populations to assess the potential for estimating population size and trend and

distinguishing between changes in population dynamics and distributional shifts given avail-

able data or to support survey design and decisions about sampling effort. The results would

be expected to vary depending on the focal species longevity, the study period, survey effort,

detection and recapture probabilities, and other factors.
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The models presented here would need several minor modifications for application to real

datasets. For example, real line-transect surveys are less regular than depicted here, leading to

variation in segment length; diving behavior may lead to imperfect detection on the line; and

additional factors such as Beaufort sea-state influence detectability [see 15 for a demonstration

of Model 1 applied to real line-transect survey data that addresses these factors]. We anticipate

that this approach would provide additional insights into variation in cetacean abundance and

the population and distribution processes that underlie any apparent inconsistencies in sepa-

rate analyses of distance-sampling and mark-recapture datasets, as in the assessments of blue

whales off the U.S. west coast that motivated this study [18, 24].

The IPMs presented here could be extended to account for individual heterogeneity in

recapture probabilities induced by site-fidelity through spatially-explicit mark-recapture analy-

sis [e.g., 23, 49, 53]. More minor modifications would allow for other sources of individual het-

erogeneity (e.g., additional random effects could account for individual variation in boat-

shyness).

Distance-sampling data derived from line-transect surveys can be used to estimate abun-

dance, trends and distribution patterns over broad spatial scales, but are costly to implement

and may only be conducted periodically. Mark-recapture data can often be collected at lower

cost and more frequently using smaller vessels, but small boat operations may be spatially

restricted, especially in relation to populations that range offshore [e.g., 24]. Our results suggest

that IPMs based on a combination of line-transect surveys and supplementary mark-recapture

studies may make more efficient use of available data and be more cost-effective than increas-

ing line-transect survey effort. Integrated analysis can combine the broad spatial scales of line-

transect surveys with the potential for more frequent but more spatially restricted mark-recap-

ture studies to resolve temporal variation. This approach will be especially useful wherever

changes in population dynamics may be confounded with long-term shifts in distribution pat-

terns associated with regime shifts or climate change.
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Methodology: Charlotte Boyd, André E. Punt.
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