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Endometrium type I (COL1) and III (COL3) collagen accumulation,

periglandular fibrosis and mare infertility characterize endometrosis.

Metalloproteinase-2 (MMP-2), MMP-9 and tissue inhibitors of

metalloproteinases (TIMP-1 and TIMP-2) are involved in collagen turnover.

Since epigenetic changes may control fibroproliferative diseases, we

hypothesized that epigenetic mechanisms could modulate equine

endometrosis. Epigenetic changes can be reversed and therefore extremely

promising for therapeutic use. Methylation pattern analysis of a particular

gene zone is used to detect epigenetic changes. DNA methylation commonly

mediates gene repression. Thus, this study aimed to evaluate if the transcription

of some genes involved in equine endometrosis was altered with endometrial

fibrosis, and if the observed changes were epigenetically modulated, through

DNA methylation analysis. Endometrial biopsies collected from cyclic mares

were histologically classified (Kenney and Doig category I, n = 6; category

IIA, n = 6; category IIB, n = 6 and category III, n = 6). Transcription of

COL1A1, COL1A2, COL3A1, MMP2, MMP9, TIMP1, and TIMP2 genes and DNA

methylation pattern by pyrosequencing of COL1A1, MMP2, MMP9, TIMP1

genes were evaluated. Both MMP2 and MMP9 transcripts decreased with

fibrosis, when compared with healthy endometrium (category I) (P < 0.05).

TIMP1 transcripts were higher in category III, when compared to category I

endometrium (P < 0.05). No di�erences were found for COL1A1, COL1A2,

COL3A1 and TIMP2 transcripts between endometrial categories. There were

higher methylation levels of (i) COL1A1 in category IIB (P < 0.05) and III (P <

0.01), when compared to category I; (ii)MMP2 in category III, when compared

to category I (P < 0.001) and IIA (P < 0.05); and (iii)MMP9 in category III, when

compared to category I and IIA (P < 0.05). No di�erences in TIMP1methylation

levels were observed between endometrial categories. The hypermethylation

of MMP2 and MMP9, but not of COL1A1 genes, occurred simultaneously with

Frontiers in Veterinary Science 01 frontiersin.org

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2022.970003
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2022.970003&domain=pdf&date_stamp=2022-08-12
mailto:gmlfdias@fmv.ulisboa.pt
https://doi.org/10.3389/fvets.2022.970003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fvets.2022.970003/full
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Alpoim-Moreira et al. 10.3389/fvets.2022.970003

a decrease in their mRNA levels, with endometrial fibrosis, suggesting that

this hypermethylation is responsible for repressing their transcription. Our

results show that endometrosis is epigenetically modulated by anti-fibrotic

genes (MMP2 and MMP9) inhibition, rather than fibrotic genes activation and

therefore, might be promising targets for therapeutic use.
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Introduction

Equine endometrosis is a multifactorial disease considered

to be one of the most important causes of equine infertility,

especially in older mares (1) and has an economic impact on

the horse breeding history (2). Endometrosis is characterized

by periglandular fibrosis of the equine endometrium (3) which

compromises the integrity and function of the endometrial

glands required for embryonic preimplantation and placental

development (4). However, this condition is still a puzzle

regarding its pathogenesis and treatment. Periglandular

arrangement of myofibroblasts, associated with the deposition

of extracellular matrix (ECM), such as collagen (COL), is a

cardinal feature of endometrosis in mares (5). Bochsler and

Slauson (6) stated that the deposition of collagen types I

(COL1) and III (COL3) occurs in fibrotic processes, which

promotes the development of cicatricial tissues with major

tensile strength. In a healthy endometrium, the first collagen

to be synthesized is COL3, which in turn is gradually replaced

by COL1 following the development of fibrotic lesions

(7, 8). Collagen type I is usually predominant in Kenney’s

category III endometrium (severe fibrosis) (7), and COL3 in

category I healthy endometrium (9). Matrix metalloproteinases

(MMPs) are a family of extracellular endopeptidases (10)

that are important factors in the process of fibrosis. Data

concerning MMP expression in equine endometrial fibrosis

are limited but MMP-2 and MMP-9 (now called 72 kDa

gelatinase and 92 kDa gelatinase, in the horse), seem to

be involved in this process (11–14). MMP-2 and MMP-9

are gelatinases that denature collagens (gelatins) and other

ECM substrates (15, 16). The endogenous inhibitors of

MMPs are tissue inhibitors of metalloproteinases (TIMPs)

and neutralize the activity of MMPs. Among the four types

of TIMPs, TIMP-1 is a specific inhibitor for MMP-9 (15)

while TIMP-2 regulates MMP-2 activity (17). A key feature

of fibrosis is the disbalance between MMPs and TIMPs

resulting the loss of the homeostasis between fibrolysis and

fibrogenesis (18).

Novel findings implicate a role for epigenetic modifications

contributing to the progression of fibrosis by alteration of

gene expression profiles (19–22). Epigenetic modifications,

heritable changes in the genome that do not alter the DNA

sequence, influence, or regulate gene expression (23). Epigenetic

changes, unlike genetic alterations, can be reversed (24) as

thus extremely promising for therapeutic use. In mammals,

the most studied epigenetic events are DNA methylation

and histone modifications, such as methylation, acetylation,

ubiquitination, and phosphorylation (25, 26). DNA methylation

constitutes a major epigenetic modification of the genome and

is essential for cellular reprogramming, tissue differentiation,

and normal development related to many biological processes

including gene expression regulation. DNA methylation is

known to occur at the 5′ of cytosine in CpG dinucleotides

which are found mostly in so-called CpG islands present in

promoters (27–29) and is catalyzed by DNA methyltransferases

(DNMTs) such as DNMT1, DNMT3a, and DNMT3b (30).

These CpG islands are enriched in promotor regions close

to transcriptional start sites and their methylation might

prevent the transcription of the respective gene (31, 32).

Hypermethylation of a promoter has long been well recognized

as an efficient means of repressing transcription (33). The

majority of CpG sites outside of CpG islands are methylated,

suggesting a role in the global maintenance of the genome,

while the majority of CpG islands in gene promoters are

unmethylated, which allows active gene transcription (34, 35).

Transcriptional factors bind to the unmethylated promotor

region of a gene to allow its transcription. But, if that region

becomes hypermethylated this binding does not occur, and

this transcription is not activated. However, most recently, it

was demonstrated that intragenic DNA methylation could also

affect the gene expression (36). In fact, differential methylation

within the gene body plays a role in several gene regulation

processes (37). One way to evaluate epigenetics mechanisms

is through DNA methylation by DNA methyltransferases

(DNMT1, DNMT3A, and DNMT3B). However, this only

reflects the level of these enzymes, which in turn may indicate

the level of global methylation. Another way to assess the

DNA methylation pattern is by bisulfite pyrosequencing. This

method is very accurate and is commonly used for quantitative

analysis of DNA methylation at single nucleotide level, and in

a particular region of the gene (CpG islands), providing more

detailed information.
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As such, we proposed to evaluate the transcriptomic

pattern of some of the most relevant genes involved in

mare endometrosis (COL1A1, COL1A2, COL3A1, MMP2,

MMP9, TIMP1, and TIMP2) and secondly, perform epigenetic

studies of the genes that have shown alterations (through

DNA methylation analysis) to determine whether there is an

epigenetic regulation of endometrial fibrosis in mares.

Materials and methods

Animals

During the breeding season, Lusitano cyclic mares (n =

24; 6 per Kenney and Doig’s category; 3 in luteal phase and

3 in follicular phase per category) were used for endometrial

biopsy procurement. Mare’s internal genitalia were examined

by transrectal ultrasonography (Sonovet 600). Endometrial

biopsies were randomly obtained from cyclic mares (May to

July), with a biopsy alligator jaw forceps (ref. 141965; Kruuse),

complying to welfare mandates as a clinical procedure, and with

owner’s consent. The age of mares ranged from 3 ± 0 years

within category I; from 3 to10 years (5.17 ± 1.38) in category

IIA, from 6 to 14 years (9.50 ± 1.26) in category IIB, and 11 to

23 years (18.5± 2.72) in category III.

The tissue was divided into small pieces with a scalpel

and then immersed in RNA later for qPCR or in 4%

formaldehyde solution for histopathological evaluation.

Formaldehyde-fixed endometrium was paraffin embedded and

hematoxylin (05-06014E; Bio-Optica) and eosin (HT1103128;

Sigma-Aldrich) stained sections were examined under

a light microscope (Leica DM500; Leica Microsystems,

Mannheim, Germany). Endometrial biopsies were graded

based on the extent of inflammation and /or fibrosis,

following Kenney and Doig’s classification (38). They were

assigned to category I (n = 6) when the endometrium was

healthy or with slight or sparse inflammation or fibrosis;

to category IIA (n = 6) when there was mild and scattered

inflammation and fibrosis; to category IIB (n = 6), when

moderate inflammation or fibrosis were present; or to category

III (n = 6), characterized by severe irreversible fibrosis

and/or inflammation.

Real time PCR

Endometrial biopsies, from different Kenney and Doig’s

categories, were used for the evaluation of COL1A1, COL1A2,

COL3A1, MMP2, MMP9, TIMP1, and TIMP2 transcripts, after

RNA isolation, cDNA synthesis and qPCR studies, performed

as described (39). Briefly, total RNA was extracted using

TRI Reagent (Ref T9424; Sigma Life Science), including

a DNA-digestion step with an RNase-free DNase (Ref.

79254, RNase-Free DNase Set, Qiagen, Germany), according

to manufacturer’s instructions. Quantification and quality

of RNA was carried out with a Nanodrop system (ND;

Fisher Scientific, Spain) and by agarose gel electrophoresis,

respectively. The cDNA was obtained from total RNA

(1µg), using M-MLV Reverse transcriptase (Ref. M1705;

Promega) and oligo (dT) 15 primer (Ref. C101; Promega).

Specific primers were designed, as well as the reference gene

(Supplementary Table 1), using the Internet-based program

Primer-3 (40) and Primer Premier software (Premier Biosoft

Interpairs). Mitochondrial ribosomal protein L32 (MRPL32)

was chosen as the most stable internal control gene (41)

among four validated reference genes, as described (39).

Using Power SYBER Green PCR Master Mix (Ref. 4367659;

Applied Biosystems) and a StepOne-Plus TM Real-Time

PCR System (Applied Biosystems), qPCR studies of target

and reference genes were performed simultaneously. Zhao

and Fernald (42) method was used to analyze the relative

mRNA data.

DNA preparation

DNA extraction was performed using the kit Quick-DNA 96

Plus Kit (Zymo Research R©). Briefly the biopsy sample (25mg)

was diluted with 95 µL of DEPC water and 95 µL Buffer

Solid Tissue as indicated in the Kit. The samples were then

macerated using the TissueLyser (QIAGEN), 5 cycles of 25

mHz for 30 s. The protocol was performed as instructed by the

Kit. Quantification and quality of DNA was carried out with

a Nanodrop system (ND; Fisher Scientific, Spain). 500 µL of

each sample (24 in total; 6 per Kenney and Doig’s category)

were sent to an external lab for DNA bisulfite pyrosequencing

methylation analysis.

Promoter annotations

CpG islands and CG percentage were predicted for

COL1A1, MMP2, MMP9 and TIMP1 equine gene sequences

with MethPrimer software (43). Within these, hotspot

regions with the highest percentage of CpGs were identified

and used in our analysis (Supplementary Table 2). Among

the four genes (COL1A1, MMP2, MMP9, and TIMP1)

studied, three were annotated in this study to possess

CpG islands within the promoter region (COL1A1, MMP2

and TIMP1). Only MMP9 did not have CpG islands in

the first 1,000 bp and therefore the studied region was

exon 8, by homology with human studies, which have

demonstrated regulation of MMP9 gene transcription in this

region (44).
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DNA bisulfite pyrosequencing analysis
(CpG Islands)

The bisulfite modified DNA sample was then 10-fold diluted

and 1 µL of diluted DNA was used in PCR reactions with 3

µL 10xPCR buffer, 200 µL/L of dNTPs, 6 pmol forward primer,

6 pmol reverse primer, and 3 mmol/L MgCl2, 0.75U Qiagen

HotStar Taq polymerase (Qiagen Inc., Valencia, CA., 205203)

in 30 µL total volume adjusted using double distilled H20,

as necessary. The PCR cycling condition was as follows: 95
◦C 15min; 45 x (95 ◦C 30 s; 51 ◦C 30 s: 72 ◦C 30 s); 72◦C

10min; 4 ◦C∞. The PSQ96HS system was used according to

standard procedures for the Pyrosequencing TM analysis. DNA

methylation pattern ofCOL1A1,MMP2,MMP9, andTIMP1was

analyzed by bisulfite pyrosequencing in an external lab (IMIBA,

Malaga, Spain). Quantitative sodium bisulfite pyrosequencing

was performed, as previously described (45), for the genes

that showed differences in the transcriptomic analysis between

endometrial categories, and comprised: COL1A, MMP2, MMP9

and TIMP1. In brief, targeted assays were designed using

the PyroMark Assay Design Software 1.0 (Qiagen). Forward,

reverse, and sequencing primers were used for PCR and

pyrosequencing (Supplementary Table 2). The % of methylation

was calculated as a mean of the CpG sites that passed quality

control. Samples were considered for the study where at least

80% of the CpG sites passed quality control.

In silico analysis

The in-silico analysis was performed in the genes where

methylation was correlated to transcription: MMP2 and MMP9

genes. CpG islands sequences were analyzed using two different

programs: TRANSFAC R© database (46) and Alibaba 2.1 (47)

in search for possible binding transcription factors of the

regulatory region of the genes (Figure 6).

Statistical analysis

Normal distribution of the data was evaluated by Shapiro-

Wilk test. Kruskal-Wallis analysis followed by Dunn’s multiple

comparison test were performed to compare COL1A1

and MMP9 transcripts and COL1A1, TIMP1, and TIMP2

methylation between endometrial categories. One-way analysis

of variance (ANOVA) followed by post-hoc Tukey multiple

comparison test were used to analyse COL1A2, COL3A1 and

TIMP2 mRNA and MMP9 methylation, between endometrial

categories. Unpaired t-test was used to compare MMP2 and

TIMP1 mRNA and MMP2 methylation, between endometrial

categories. Pearson correlation test was performed to analyse

transcription and methylation of MMP2 and MMP9 genes.

GraphPAD PRISM (Version 8.1.0, 253, San Diego, CA, USA)

was used. Significance was considered when P<0.05. Data are

presented as mean± SEM.

Results

MMP2 and MMP9 expression is
downregulated during fibrosis
progression

Firstly, we interrogated if expression levels of the COL

genes and some of their regulators (MMPs and TIMPs)

were altered in the different endometrial categories. Although

no statistical differences in mRNA levels were observed in

COL1A1, COL1A2 and COL3A1 between different stages of

endometrosis (Figure 1), a striking decrease in mRNA levels

was observed for the MMP2 and MMP9 metallopeptidase

genes (P < 0.05) between endometrial categories (Figure 2).

As for the metallopeptidase tissue inhibitors studied, TIMP1

transcripts were higher in category III when compared to

category I endometrium (P < 0.05) whereas no differences

were found for TIMP2 transcripts (Figure 3). Mares were then

grouped by phase of estrous cycle for each category and no

differences were found between luteal and follicular phase (data

not shown).

DNA methylation plays a role in
endometrial fibrosis regulation

Next, we questioned if the observed alterations in

mRNA levels of the studied genes were associated with

epigenetic mechanisms. As such, we performed DNA

methylation analysis and observed higher methylation

levels of COL1A1 in category IIB (P < 0.05) and III (P <

0.01), when compared to category I endometrium (Figure 4A).

In addition, higher levels of methylation were observed

for MMP2 in category III when compared to category I (P

< 0.001) and IIA (P < 0.05) (Figure 4B) and for MMP9

gene in category III with respect to category I and IIA

endometrium (P < 0.05) (Figure 4C). No difference in

methylation levels between endometrium categories were

observed for TIMP1 (data not shown). There were no

methylation differences between luteal and follicular phase for

each endometrial category.

Methylation of MMP2 and MMP9 is
negatively correlated with its
transcription

We than analyzed the correlation between the observed

DNA methylation events and potential alterations in gene
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FIGURE 1

Relative COL1A1, COL1A2 and COL3A1 mRNA transcripts in equine endometrium graded as Kenney and Doig’s categories I, IIA, IIB and III. Bars

represent mean ± SEM.

FIGURE 2

Relative MMP2 and MMP9 transcripts in equine endometrium graded as Kenney and Doig’s categories I, IIA, IIB and III. Bars represent mean ±

SEM. The asterisk indicates significant di�erences between endometrial categories (*P < 0.05).

FIGURE 3

Relative TIMP1 and TIMP2 transcripts in equine endometrium graded as Kenney and Doig’s categories I, IIA, IIB and III. Bars represent mean ±

SEM. The asterisk indicates significant di�erences between endometrial categories (*P < 0.05).
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FIGURE 4

Methylation of DNA (%) of (A) COL1A1, (B) MMP2 and (C) MMP9 in equine endometrium graded as Kenney and Doig’s categories I, IIA, IIB and III.

Bars represent mean±SEM. The asterisks indicate significant di�erences between endometrial categories (*P < 0.05, **P < 0.01).

FIGURE 5

Correlation between methylation and transcription of (A) MMP2 and (B) MMP9 in equine endometrial categories graded as Kenney and Doig’s

classification.

expression. The higher methylation levels observed in MMP2

and MMP9 were strongly correlated with the decreased

transcription levels of both genes (r = −0.967, P < 0.05 and

r = −0.956, P < 0.05, respectively) upon endometrial fibrosis

progression (Figure 5).

Sp-1 and Ap-2α transcription factors
identified as predicted binding factors in
regulatory regions of MMP2 and MMP9

Several transcription factors from each software program

were detected and the overlapping factors from the two

programs were identified. The predicted transcription factors for

MMP2 andMMP9 were Sp-1 and Ap-2α (Figure 6).

Then we analyzed which positions within the CpG island

were accountable for the observed alterations. For COL1A1 the

CpG positions that showed more alterations in methylation

levels between endometrial categories were sites 2, 6, and 8

(Figure 7); for MMP2 site 2, 3, 5, 6, 8, 13, and 15 (Figure 6A);

andMMP9 only site 2 (Figure 7B).

Discussion

Novel findings implicate a role for epigenetic modifications

contributing to the progression of fibrosis by alteration

of gene expression profiles. Furthermore, accumulating

evidence suggests that epigenetic alterations are central

in maintaining the myofibroblast phenotype (20). Several

studies demonstrated that the hypermethylation of gene

promotors of antifibrotic mediators plays important roles

in pathologic fibroblast activation and that inhibition of

DNMTs prevents fibrosis in many fibrotic diseases (48–

55). Previously, we reported an increase in DNMT3B

mRNA levels with equine endometrial fibrosis (category

III) when compared with healthy endometrium (category I),

indicating there was hypermethylation with the advance

stage of endometrosis (56). However, more detailed
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FIGURE 6

Gene analyzed sequence, binding transcription factors and methylation (%) in equine endometrial categories graded as Kenney and Doig’s

classification per CpG position in (A) MMP2 and (B) MMP9. Sp1 - proximal specificity protein 1, AP2α- Activator protein 2. Red arrows and

asterisks indicate significant di�erences between CpG positions (*P < 0.05).
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FIGURE 7

Methylation (%) of COL1A1 by CpG position in equine endometrial categories graded as Kenney and Doig’s classification. Red arrows and

asterisks indicate significant di�erences between CpG positions (*P < 0.05, **P < 0.01, ***P < 0.001).

FIGURE 8

(A) Transcription of MMP2 and MMP9 genes is possible when there is no hypermethylation of these genes, as chromatin is accessible and thus

allows transcriptional factors to bind to the promoter region and activate the transcription process (B) Epigenetic modulation of MMP2 and

MMP9 in equine endometrial fibrosis. When hypermethylation occurs, the chromatin becomes condensed and the transcriptional factors are

not able to bind to this site and therefore, transcription is inhibited.

information is needed to understand which genes were

involved and if hypermethylation was occurring in the

gene promoter region and therefore could be regulating

its transcription.

Our first proposed goal to evaluate transcriptomic of some

of the genes involved in mare endometrial fibrosis, showed

a decrease in MMP2 and MMP9 mRNA transcripts and

an increase in TIMP1 mRNA transcripts with endometrial

fibrosis. Although the COL1A1 mRNA transcripts did not

show statistical differences we decided to include it in

the DNA methylation study, along with the genes where

an alteration was observed, to understand if they were

epigenetically regulated.

The main constituents of fibrotic lesions are interstitial

collagens, such as COL1 and COL3, and excessive deposition

of these durable fibers can result in disruption of proper

tissue structure and function (17). Activated fibroblasts are

the central mediators in the pathogenesis of fibrosis and they

differentiate into myofibroblasts, which are characterized by

the increased secretion of collagen and other components of
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the extracellular matrix (57, 58). In the present study, no

differences were found for COL1A1, COL1A2 or COL3A1

transcripts between different endometrial categories. In a study

in equine endometrium (59) neither the estrous cycle phase,

nor the age of mares had any effect on COL1 mRNA levels.

Another study in jennies showed no differences in COL1A2

and COL3A1 transcripts between endometrial categories (60).

However, some in vitro studies with mare cultured endometrial

fibroblasts showed increased COL1A1 and COL3A1 mRNA

transcripts after TGF-β1induced fibrosis (61) together with

high COL1 and COL3 protein levels. Additionally, a study

in equine tendon fibroblasts also demonstrated an increase

in COL1A1 and COL1A2 gene expression after stimulation

with TGF-β (62). This divergence could be due to differences

in signaling and regulatory pathways in tissues examined ex

vivo or cultured in vitro. Nevertheless, data from other study,

with the same mares (unpublished data), have shown elevated

COL1 and COL3 protein concentrations in endometrial tissue

with fibrosis, regardless of unaltered COL1 and COL3 gene

transcription. This suggests that accumulation of collagen in

the endometrial tissue might be due to lack of degradation,

rather than increased collagen production. Other explanation

could be that the mRNA signal for COL1 and COL3 production

might have occurred before the biopsy was performed. It

is known that mRNAs are less stable than proteins with a

maximum half-life of approximately 7 h, compared to 46 h for

proteins (63). Thus, protein abundance mainly depends on

a dynamic balance amongst transcription, mRNA processing

and damage, translation, modification, and destruction of

the resulting proteins (63). DNA methylation of the CpG

islands in the promotor zone of the COL1A1 gene increased

with endometrial fibrosis. However, hypermethylation of

COL1A1 gene with fibrosis, did not result in its altered

transcription. It is important to consider that collagen synthesis

is precisely controlled at multiple levels, including via post-

transcriptional and post-translational mechanisms that are still

being discovered (64).

One class of molecules that is thought to be important

in the maintenance of the ECM and processes of tissue

repair is the class of matrix metalloproteinases (MMPs). The

MMPs have been considered to play an important role in

the extracellular matrix turnover (15) and a balance between

activation and inhibition of MMPs is crucial for maintaining

tissue homeostasis (14). Dysregulated expression of various

MMPs is associated with many pathological processes, such

as fibrosis, weakening of ECM or tissue destruction, e.g., in

cancer metastasis (65, 66). However, data concerning MMP

expression in equine endometrium during endometrial fibrosis

is limited. In our study bothMMP2 andMMP9 gene expression

decreased with endometrial fibrosis, suggesting that the reduced

transcription may result in diminished degradation of collagen

and its accumulation in the endometrium. Other studies

also demonstrated lower MMP2 gene transcription in fibrotic

endometrium but MMP9 transcription was higher (67). In

another study with endometrial fibroblasts in mares (14),

MMP9 gene transcription increased after TGF-β1 stimulation.

Also, a study by Centeno and collaborators (12) showed that

MMP2 transcription was upregulated in endometrial fibrosis.

On the other hand, a study in mice with induced liver

fibrosis reported increasedMMP2mRNA and decreasedMMP9

mRNA (68). Many studies in other animals and humans

have shown a decrease in MMP2 (69, 70) and MMP9 gene

expression in several fibrotic diseases (71) while others reported

the opposite (72–74). These inconsistent results regarding

MMP2 and MMP9 expression might be partially explained

by the fact that MMPs demonstrate tissue-dependent and

disease-specific expression and function (75). Moreover, current

knowledge about MMP regulation is largely based on cell

culture systems, raising a major question as to whether identical

mechanisms apply to MMP expression in the whole organism as

well (76).

Our results showed increased methylation in MMP2

and MMP9 in category III when compared to category

I and IIA. Our study agrees with many others in that

hypermethylation of antifibrotic gene promotors is involved

in fibrosis development (48–54). Furthermore, we observed

that hypermethylation of MMP2 and MMP9 genes occurred

concomitantly with a decrease in their transcription levels

as fibrosis increased, showing an epigenetic regulation as

suggested in Figure 8. Other studies also observed that

silencing of MMP genes is likely mediated by epigenetic

alterations (68).

Tissue inhibitors of metalloproteinases (TIMPs) are the

major endogenous regulators of MMP activities in the tissue

microenvironment and have the capacity to modify cellular

activities and to modulate matrix turnover (77). TIMP-1 and

TIMP-2 proteins bind to and inhibit activated collagenases,

subsequently protecting newly synthesized collagen from

immediate degradation by MMPs (18). In our study TIMP1

mRNA transcripts raised with fibrosis when compared to

healthy endometrium whereas no differences were observed

for TIMP2 mRNA. Our data agrees with a study in human

lung fibrosis, where TIMP1 mRNA was markedly increased

in response to lung injury, whereas there was no change

in TIMP2 mRNA levels (77). Also, studies by Heymans

in human cardiac disease (78) and Wang in rat lungs

(79) reported upregulated TIMP1 gene expression during

fibrosis. Since in our study, there were no alterations in

DNA methylation pattern between endometrial categories

for the TIMP1 gene, this might suggest that its inhibition

does not occur, continuing to be expressed and increased

with fibrosis, thus contributing to collagen accumulation in

mare endometrium.

Some of the studied CpG island positions showed more

differences in methylation between categories than others.

Transcriptional factors (TF) play an important role in
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gene transcription as they can regulate transcription by

binding to the activator or promoter regions of DNA and

control gene expression through various mechanisms (80).

The in silico analysis performed (81, 82) in the analyzed

regions of the MMP2 and MMP9 genes, detected Sp-

1 and Ap-2α as possible binding transcription factors for

MMP2 and MMP9. These putative binding regions encompass

CpG sites that showed significant methylation differences

across the four studied endometrial categories. Specificity

protein 1 (Sp-1) binding sites are often located close to

binding sites for activator proteins (Ap-1/Ap-2) (83), as it

was observed in our analysis. Transcription factor Ap-2,

an important TF for the expression of many genes (84)

has a role in the transcriptional regulation of MMP2 in

humans (85, 86). In this study, the binding region for

Sp-1 in MMP9 comprised loci 2, where the differences

in methylation between endometrial categories occurred.

Therefore, we speculate that these factors may play a role in

the complex mechanism of endometrial fibrosis regulation and

should be further investigated.

Overall, it seems like a different approach might be

needed to address fibrosis treatment, as up to date, no

effective therapy exists for equine endometrosis. “Epi-drugs”

that target active myofibroblasts in fibrotic disorders are

a promising direction in the treatment of a myriad of

diseases. Nevertheless, we are far from a comprehensive

understanding of how epigenetic modulators influence each

other andmyofibroblast behavior (23). If epigenetic mechanisms

are involved in mare endometrial fibrosis development,

as suggested by our results, then therapeutic agents that

can reverse these epigenetic changes may represent a new

and promising approach, for a condition that still has no

available treatment.

Conclusion

In this study we have showed that equine endometrial

fibrosis seems to be epigenetically modulated. Furthermore,

that modulation seems to occur through the inhibition

of antifibrotic genes like MMP2 and MMP9, rather than

fibrotic genes (COL1 and TIMP1) and therefore might

be promising targets for therapeutic use. Nevertheless,

further studies are required to understand in depth this

mechanism and possible role of other genes involved in

mare endometrosis.
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