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Abstract

A computational neural model that describes the competing roles of Basal Ganglia and Hippocampus in spatial navigation is
presented. Model performance is evaluated on a simulated Morris water maze explored by a model rat. Cue-based and
place-based navigational strategies, thought to be subserved by the Basal ganglia and Hippocampus respectively, are
described. In cue-based navigation, the model rat learns to directly head towards a visible target, while in place-based
navigation the target position is represented in terms of spatial context provided by an array of poles placed around the
pool. Learning is formulated within the framework of Reinforcement Learning, with the nigrostriatal dopamine signal
playing the role of Temporal Difference Error. Navigation inherently involves two apparently contradictory movements: goal
oriented movements vs. random, wandering movements. The model hypothesizes that while the goal-directedness is
determined by the gradient in Value function, randomness is driven by the complex activity of the SubThalamic Nucleus
(STN)-Globus Pallidus externa (GPe) system. Each navigational system is associated with a Critic, prescribing actions that
maximize value gradients for the corresponding system. In the integrated system, that incorporates both cue-based and
place-based forms of navigation, navigation at a given position is determined by the system whose value function is greater
at that position. The proposed model describes the experimental results of [1], a lesion-study that investigates the
competition between cue-based and place-based navigational systems. The present study also examines impaired
navigational performance under Parkinsonian-like conditions. The integrated navigational system, operated under
dopamine-deficient conditions, exhibits increased escape latency as was observed in experimental literature describing
MPTP model rats navigating a water maze.

Citation: Sukumar D, Rengaswamy M, Chakravarthy VS (2012) Modeling the Contributions of Basal Ganglia and Hippocampus to Spatial Navigation Using
Reinforcement Learning. PLoS ONE 7(10): e47467. doi:10.1371/journal.pone.0047467

Editor: Jeff A. Beeler, University of Chicago, United States of America

Received July 31, 2012; Accepted September 11, 2012; Published October 26, 2012

Copyright: � 2012 Sukumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research described in this study was funded by the Department of Biotechnology, India (http://dbtindia.nic.in/index.asp). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: schakra@ee.iitm.ac.in

Introduction

Animal navigation is assisted by a combination of wandering

exploratory movements and goal-directed movements. Animals

tend to adopt one of three different navigation strategies – 1) taxon

navigation, 2) praxic navigation and 3) locale navigation –

according to the environment, the task at hand and the inputs

that they receive from the environment [2]. In taxon navigation the

animal simply pursues a visible goal represented in an egocentric

coordinate system. In praxic navigation, the animal codes the

trajectory in terms of body turns triggered by external stimuli (e.g,

turn right at the next junction). In locale navigation, the animal

uses, not just a single cue but a much larger spatial context, to

construct its own internal map of surrounding space, and navigates

thereby. Taxon navigational strategy is also called cue-based

navigation and locale-based navigation is also known as place-

based navigation [3], which is the terminology used in this paper.

More recent models have shown that spatial navigation with a

topological map is more suitable to explain highly flexible

navigational behavior, a capability that is not afforded by purely

distance-based models [4–7].

Experimental work on spatial navigation in animals suggests

that, the basal ganglia are recruited for the encoding of stimulus-

response or cue-based form of navigation [8]. Hippocampus

provides spatial information, generating a cognitive map of the

environment, thereby subserving place-based navigation [9]. The

two neural substrates receive different inputs, process different

representations and operate in parallel to support navigation [10].

Functional neuroimaging studies on human beings have revealed

that the relative contribution by each system depends on the

strategy chosen by the agent [11]. Experiments suggest that in

rodents, these two systems interact competitively during navigation

[12]. Also, there is evidence for the two systems being employed

successively at different stages of proficiency [13]. Hence, a

realistic model of animal navigation should demonstrate both the

strategies and incorporate an appropriate switching mechanism

between the two.

Early lesion studies on the distinctive roles of Basal ganglia and

Hippocampus in spatial navigation may appear to give a simplified

picture of the matter: place-based navigation of Hippocampus in

the early stages, followed by cue-type navigation of Basal ganglia

[14]. However, Basal ganglia and Hippocampus are not simple,
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unitary entities but complex circuits involving several nuclei or

subregions. The Basal ganglia are a group of subcortical nuclei

comprising the striatum (caudate-putamen), the external and

internal segments of the globuspallidus (GPe and GPi), the

subthalamic nucleus (STN) and the substantia nigra (SN) [15].

The SN is further split into two nuclei: the pars compacta (SNc)

containing dopaminergic neurons and the pars reticulata (SNr), an

output nucleus of Basal ganglia. Similarly, the hippocampal

formation comprises the entorhinal cortex, dentate gyrus, fields

CA3 and CA1 of the hippocampus proper and the subiculum.

These form a loop of connections that starts and ends in the

entorhinal cortex [16].

Spatial navigation of various forms seems to be a result of

complex interactions among different components of basal ganglia

and Hippocampus. For example, dorsal medial striatum in Basal

ganglia is thought to receive place-coding information from

hippocampus [1,8]. Similarly lateral dorsal striatum is thought to

have a role in selecting stereotyped responses in cue-based

navigation [1,8]. Thus an ideal computational model of spatial

navigation should be able to explain the relative contributions of

various Basal ganglia and hippocampal regions to spatial

navigation.

There are models of navigation that incorporate both Basal

ganglia and Hippocampus, and accommodate both cue-based and

place-based navigational forms respectively [5,17,18]. However;

existing models do not seem to identify the neural substrate for

exploratory dynamics necessary for navigation. But this is

important since navigation is a combination of goal-directed

movements and wandering, exploratory movements. It has been

proposed that the indirect pathway of Basal ganglia is the substrate

for exploratory drive [19–23]. With this assumption about the role

of the indirect pathway, it seems to be possible to explain the

manifold functions of Basal ganglia (action selection, working

memory, motor preparation, goal-oriented behavior, sequence

generation etc.) in a single modeling framework [19]. Most existing

models of Basal ganglia tend to focus on one or two functions of

basal ganglia, while ignoring others. Our effort is to show that the

same model can be used to explain the whole range of models,

which is a much harder accomplishment than concocting a

different model for every function. The present model is one such

a development of our core Basal ganglia model, which aims to

describe the contributions of basal ganglia, along with hippocam-

pus, to spatial navigation.

In the present work, we describe an integrated model of spatial

navigation involving both Basal ganglia and hippocampus and

hypothesize that the indirect pathway of Basal ganglia provides the

exploratory drive for navigation. The proposed model integrates

the above two forms of navigation – cue-based and place-based –

into a single framework. It also incorporates mechanisms of gating

between the two forms of navigation, as it happens perhaps in a

real navigating rat. Furthermore, with an explicit representation of

dopamine signal, the model provides an opportunity to study

navigation under dopamine-deficient conditions as in the case of

Parkinson’s disease.

The model is cast in the framework of Reinforcement Learning

(RL), a branch of machine learning [24]. Model performance is

tested on a simple simulated Morris water maze, in which a model

rat searches for a platform, visible or hidden. Contributions from

Basal ganglia to this process consist in three things: 1) in modeling

the value, the reward-yielding potential, of the current position of

the rat, 2) in supplying the stochastic perturbations necessary to

drive the wandering, searching movements of navigation, and 3) in

using the reward information received, whenever the model

reaches the platform, to drive navigation. Like in several other RL-

based models of basal ganglia [25,26] the temporal difference

error (TD error), which is defined as the difference between the

predicted total future reward and the actual future reward,

represents the activity of mesencephalic dopaminergic neurons.

Contributions from hippocampus, in this model, consist of

representing the surrounding space as a topographic map of

views. Contributions from basal ganglia and hippocampus to

navigation problem are incorporated in a single model. Basal

ganglia and hippocampus components compete to drive naviga-

tion in the integrated model.

The paper is organized as follows. Sections 2 describes the

integrated model which combines the cue-based and place-based

modules. Section 3 presents the simulation results applied to two

experimental conditions: 1) the navigation study of [1], and 2)

navigation under Parkinsonian conditions. A discussion of the

model results along with possible future directions is presented in

the final section.

An Integrated Model For Navigation

In circumstances wherein both cue-based and place-based

strategies coexist, the two strategies may compete with each other

during learning [27,28]. Evidence shows that there is interference

from hippocampus-dependent learning in basal ganglia-dependent

processes. In rats, lesions in hippocampus enhance acquisition of

Basal ganglia-dependent navigation strategy in a radial arm maze

task [29,30]. Hence, the two systems may be recruited in parallel,

with different parts of basal ganglia or hippocampus participating

in different kinds of navigation.

A complete model of animal navigation must include both cue-

based and place-based responses. A competition mechanism must

be set up to select the action to be performed. Hence, the

integrated model developed includes a cue-based and a place-

based module (fig. 1), competing with each other to assist

navigation. The architectures of the cue-based and place-based

modules are now described.

2.1. The Cue-Based Module
In cue-based navigation the animal directly homes in on a

visible target. Spatial representations in hippocampus are not

thought to be involved in this type of navigation, which is also

called Stimulus-Response (S-R) type of navigation since it involves

response by movement to the stimulus of a visible target. This S-R

type of navigation strategy is thought to be subserved by the basal

ganglia region of the brain [31,32].

Basal ganglia have been known to be associated with control

and selection of voluntary behavioral acts [33]. They are actively

involved in resolving conflicts between multiple sensorimotor

systems seeking access to a common motor path [34]. Hence they

enable animals to select appropriate actions under dynamic

sensory and motivational conditions. Experiments suggest the

involvement of cortico-basal ganglia-thalamocortical circuit in

preparation of externally cued movements [35].

This model of navigation is instantiated in a simulated rat

exploring a simulated circular Morris water maze (radius = 5)

(fig. 2). There is a circular platform of radius 1, towards the right of

the pool. The simulated rat is trained to directly identify and

approach the visible platform – the cue.

The appearance of the visible platform, which is coded in the

form of Cue-based Visual Input Vector (fig. 2), is given as input to

basal ganglia. The basal ganglia system is responsible for

computing the value function and for producing the exploratory

drive. During the course of exploration, whenever the model rat

arrives at the pool, accidentally, it receives a positive reward (+1),

Basal Ganglia and Hippocampus Model in Navigation
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which is used to train the value function. If the model rat bumps

into the wall of the pool, it is given a negative reward (21) and its

position and orientation are randomly re-initialized. Elsewhere in

the pool, reward is zero. During training, if the model rat cannot

find the platform within 400 steps the trial is aborted and the

model rat is re-initialized to a random position and orientation.

We will show how the machinery of Basal ganglia can be used to

perform hill-climbing over the trained value function, thereby

enabling the model rat to move towards the platform.

In order to construct the Cue-based Visual Input Vector, the

field of view is divided into 30 sectors. Sectors that intersect with

the platform are associated with a value of 1; those that do not

intersect are given a value of 0 (fig. 2). Thus a 30-dimensional

binary Cue-based Visual Input Vector is constructed.

Model of Basal Ganglia. In case of cue-based navigation,

movements of the rat are controlled by the output of Basal ganglia,

which consists of the combined outputs of the Direct Pathway and

the Indirect Pathway (fig. 3). Direct Pathway and Indirect Pathway

responses are modeled as a function of both, phasic (d) and tonic

dopamine (�rr), as described below.

Dopamine signal. Dopamine fluctuations are often classified

as phasic, which refers to changes over seconds, or tonic, which

refers to fluctuations over a time-scale of minutes [36].

Phasic dopamine. The work of [37], suggests that phasic

dopamine signals arising from neurons of mesencephalic brain

regions may be interpreted as the temporal difference (TD) error,

which stands for the difference between the total actual future

reward and the total predicted future reward. This signal, which is

used for training the value function, is calculated as:

d(t)~cV (t){V (t{1)zr(t) ð2:1Þ

where

d is the temporal difference in Value,

c is a constant discounting factor,

V (t)is the Value at time t,

r(t)is the reward received at time t.

Tonic Dopamine. Tonic dopamine denotes a long-term

baseline firing rate of mesencephalic dopamine cells. Tonic

dopamine level is represented in the model by a discounted

integration of phasic dopamine signal (eqn. 2.2):

�rr(t)~d(t)zkd(t{1)zk2d(t{2)::: ð2:2Þ

where

�rr(t) is the tonic dopamine level at time t,

d’s are the TD errors (phasic dopamine), k is a constant

factor (k,1)

The values of various parameters used in this model are given in

Appendix S1.

Direct and Indirect pathways (Direct Pathway and

Indirect Pathway). Dopamine signal or the TD error signal

modulates activity in Basal ganglia, and controls its output.

Classically, since activation of Direct Pathway was thought to

result in facilitation of cortically initiated movements, Direct

Pathway was termed the ‘‘Go’’ pathway, while the Indirect

Pathway was termed the ‘‘NoGo’’ pathway since its activation

inhibits movement [38]. Striatal dopamine is thought to switch

between Direct Pathway and Indirect Pathway and therefore,

between Go and NoGo regimes. Recently we had proposed that

the classical Go/NoGo dichotomy may have to be expanded to

Go/Explore/NoGo, with the Explore regime subserved by the

complex dynamics of the Indirect Pathway neurons [19,21,22], In

Figure 1. Architecture of the integrated model that combines both navigation strategies. It combines a Cue-based and a Place-based
navigation module. Each module consists of a unique Critic and a Temporal Difference error signal. Whereas the Cue-based module depends on the
visible target, the Place-based module depends on the spatial context. One of the modules is selected at any given instant, by comparing the values
estimated by the two modules.
doi:10.1371/journal.pone.0047467.g001

Basal Ganglia and Hippocampus Model in Navigation
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the new system, Direct Pathway and Indirect Pathway are selected

for high and low dopamine levels respectively; but for moderate

dopamine levels exploration takes place subserved by Indirect

Pathway. (In RL literature, when the agent chooses an action that

has the highest Value, it is said to be ‘exploiting’; if it is trying out

actions that are known to be suboptimal, it is ‘exploring’.) In the

present model, since the action space is continuous, exploitation

and exploration are combined with a weighting factor that is

dependent on dopamine signal.

The Direct Pathway and Indirect Pathway responses are

modeled as a function of both phasic dopamine, (d) and tonic

dopamine (�rr).

ydp tð Þ~ 1{
1

1ze{l�rr

� �
|tanh dð Þ|ybg t{1ð Þ ð2:3Þ

yip tð Þ~ 1{
1

1ze{l�rr

� �
|e

{d2

2s|y ð2:4Þ

ybg(t)~ydp(t)zyip(t) ð2:5Þ

Dz~eybg ð2:6Þ

where,

ydp is the output of the Direct Pathway,

yip the output of the Indirect Pathway,

y a noise term of variance 1 and mean 0, arising out of

Indirect Pathway,

l a constant that controls the slope of the sigmoid

function,

s the standard deviation of the Gaussian.

Dz the update for the position of the model rat

ybg total output of Basal ganglia

e- a constant that converts Basal ganglia output to

position update

Figure 2. View-vector construction in case of cue-based navigation. The platform is the smaller circle to the right of the circular pool. (The
black dots on the rim are poles used for place-based navigation. Not all poles are shown.) The field of view (angle of vision = 180u) is divided into 30
sectors. Sectors that intersect with the platform are associated with a value of 1; those that do not intersect are given a value of 0. Thus a 30-
dimensional binary Cue-based Visual Input Vector is constructed.
doi:10.1371/journal.pone.0047467.g002

Basal Ganglia and Hippocampus Model in Navigation
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Let us consider a verbal description of the dynamics of eqns.

(2.3–2.6). When dis positive and high (i.e. current position is better

than the previous one with respect to the goal), it indicates that the

rat is proceeding towards the goal. Hence, exploitative behavior

(following the Value gradient) is required and not exploration. In

this scenario, Direct Pathway response is high, and the model rat

continues in the same direction as in the last step. However, if dis

negative and high, it indicates that the rat is proceeding in the

direction that is perhaps opposite to the direction which would

lead to the goal. The direction of navigation of the rat should now

be reverted. To account for these two conditions in the model,

Direct Pathway response is modeled as a sigmoidal function of

d(eqn. 2.3). If d is low in magnitude, it indicates that the rat could

not make much progress towards (or away from) the goal in the

previous step. In this situation, more of exploratory behavior is

required. The rat should be free to explore new directions. Hence,

Indirect Pathway response is modeled as Gaussian noise, that is a

function of d, with 0 mean (eqn. 2.4).When �rr value is high, it is

likely that the rat has almost reached the goal and is probably

satiated. Therefore, both Direct Pathway and Indirect Pathway

outputs must be low. Movements of the simulated rat should be

dominated by combined Basal ganglia output. To account for this

in the model, Indirect Pathway and Direct Pathway responses are

modeled as sigmoidally decreasing functions of �rr (see eqns.

(2.3,2.4)).The final Basal ganglia output is the sum of the respective

outputs of Direct Pathway and Indirect Pathway (eqn. 2.5). The

update to the position of the model rat is simply a scaled version of

Basal ganglia output (eqn. 2.6).

Training. Training of the critic network in this model, which

is represented by a two-layer perceptron, is described by the

following equations:

Dwck~gdxk ð2:7Þ

Dbc~{gd ð2:8Þ

where,

Wc - weights between the input layer and the single

output node in the Critic network,

bc – bias at the output node

d – TD error as defined in eqn. (2.1)

xk - k’th component of the feature vector Cue-based

Visual Input Vector

2.2. The Place-Based Module
In place-based navigation the animal navigates with the help of

an internal spatial model, which is constructed out of the spatial

context of the world. Information regarding spatial context is

combined with information derived from path-integration. How-

ever, path-integration is not incorporated in the present model.

This internal model of surrounding space is thought to be

represented in the hippocampus. The model presented in this

section describes how basal ganglia and hippocampus work

together in place-based spatial navigation.

The model architecture for place-based or context-based

navigation (fig. 4) is similar to the one described in Section 2.1

(fig. 3). An additional element included in this model architecture

is the hippocampus represented by a combination of Self

Organizing Map (SOM) [39], and a Continuous Attractor Neural

Network (CANN) [40] (fig. 5).

In the present model, the simulated rat has to explore a pool of

muddy water, searching for a submerged platform. The simulated

rat navigates with the help of spatial context, which is provided by

an array of poles of equal height, placed around the pool (fig. 2).

The visual input presented to the rat is a set of heights of retinal

images of landmark (a set of 24 poles, each of height 6, placed

around the pool), which are viewed by the simulated rat from a

certain vantage point. The height of the retinal image of each pole,

which lies within the visual field of the simulated rat, is calculated

according to eqn. (2.9).

xk~hk= l dzcð Þð Þ ð2:9Þ

where,

xk is the height of the retinal image of k’th pole, viewed

by the model rat

hk is the actual height of the k’th pole ( = 6 for all k),

l is a constant (0.01),

d is the distance between the simulated rat and the pole

c – a constant added in the denominator of RHS, to ensure that

xk does not blow up in close proximity to a pole. (c = 1)

The array of values xk constitute the Context-based Visual

Input Vector.

A set of these Context-based Visual Input Vectors constructed

for a set of random positions and orientations are used to train a

two-dimensional self-organizing map [39], of size 20620. For each

Figure 3. Architecture of the module for cue-based navigation.
The striatum receives dopamine signal from SNc, and the sensory input
Cue-based Visual Input Vector, which is processed by Direct Pathway
and Indirect Pathway. Value is computed in striatum. Outputs of Direct
Pathway and Indirect Pathway are combined to compute the action,
which represents the displacement (Dz = [Dx, Dy]) of the simulated rat
in the next step.
doi:10.1371/journal.pone.0047467.g003

Basal Ganglia and Hippocampus Model in Navigation
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visual Context-based Visual Input Vector presented, the output

from the SOM is given as the input to a continuous attractor

neural network (CANN) [40], also of size 20620. Figs. 6 a,b show

the corresponding responses of SOM and CANN to a given

Context-based Visual Input Vector. Justification for use of a

combination of SOM and CANN for modeling Hippocampus is

presented in the discussion.

The output of the CANN is presented as input to the basal

ganglia module of the previous section. Thus Basal ganglia drives

navigation based on the place-based information obtained from

Hippocampus. As in the cue-based model, the Direct Pathway and

Indirect Pathway responses are modeled as a function of both,

phasic dopamine, d, and tonic dopamine, �rr. Direct Pathway

response is modeled as a sigmoidal function of d (eqn. 2.3). Indirect

Pathway response is modeled as a Gaussian function of d, with the

mean at 0 (eqn. 2.4). Indirect Pathway and Direct Pathway

responses are modeled as sigmoidally decreasing functions of �rr
(eqns. 2.3 and 2.4). The next step of the model rat is a scaled

version of Basal ganglia output (eqn. 2.6). As in the cue-based case,

the place-based critic also is modeled as a perceptron and trained

similar to the way the critic in cue-based case was trained (eqns.

2.7,2.8).

2.3 Architecture of the Integrated Model
The integrated model developed includes two critic networks,

one for the cue-based critic and the other for the place-based

modules (fig. 1). Separate visual input vectors are presented to the

two modules: visual input representing the context information

Context-based Visual Input Vector to the place-based module and

the visual input regarding the visible platform Cue-based Visual

Input Vector to the cue-based module. The Basal ganglia is also

modeled separately for the two modules and its output is

calculated from both modules. At each position of the model

rat, the values from the two critics corresponding to the two

strategies are compared and weighted by a selection parameter

(g).The parameter g is a slowly changing function of the past

navigational choices made by the animal such that the previously

selected mode of navigation is more likely to be selected again

(similar to gating mechanism used in [17]. It is incremented as

follows:

if gVcuew 1-gð ÞVplace

� �

then

g~gz0:05

else

g~g{0:05

The next step of the simulated rat is determined by a softmax

selection applied to the weighted values of the two strategies (Vcue

and Vplace) as follows [41]:

Pr(cue{based)~
exp(bgVcue)

exp(bgVcue)zexp(b(1{g)Vplace)
ð2:10Þ

where Pr(cue-based) is the probability of selecting the cue-based

strategy, and ‘b’ is the exploration parameter.

Comparison With Experimental Results

The integrated model of Section 2 is applied to explain two

experimental conditions. These results are now described.

Figure 4. Architecture of the place-based module. The striatum
receives dopamine signal from SNc, and the sensory state from
Hippocampus, which is processed by Direct Pathway and Indirect
Pathway. Value is computed in striatum. Outputs of Direct Pathway and
Indirect Pathway are combined to compute the action, which
represents the displacement (Dz = [Dx, Dy]) of the simulated rat.
doi:10.1371/journal.pone.0047467.g004

Figure 5. Representation of the modules that constitute the hippocampus. Visual input from the spatial context is presented to the SOM.
Output of the SOM is the input to the CANN. CANN output is presented as input to the Basal ganglia in the place-based module.
doi:10.1371/journal.pone.0047467.g005

Basal Ganglia and Hippocampus Model in Navigation
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3.1. Simulating the Experimental Study of [10]
Case 1: Both strategies are used in competition with each

other. An experimental training and evaluation procedure for

simultaneous learning by both cue- and place-based modules was

devised by [1]. In this experiment, rats were trained for 9 days,

with interleaving trials involving the visible and hidden versions of

the water maze. On days 1, 2, 4, 5, 7 and 8, the rat was trained to

navigate to a visible target. On days 3, 6 and 9 of the training

phase, the platform is made invisible; the rat then had to navigate

with contextual spatial cues. The location of the platform, visible

or invisible, is held invariant throughout the training.

Along similar lines, an interleaving training procedure is applied

to the model also. The platform is maintained at the same

location, to the right of the pool, as in fig. 2. Each ‘day’

corresponds to 40trials of training in the model. Training on

various days is conducted as follows. On days 1,2,4,5,7 and 8, the

integrated model is used to train the animal using c = 0.95. Fig. 7

a,b,d,e, g and h show the value profile of the cue-based module at

the end of each of these days. As can be seen from fig. 7(a), the

value function of the cue-based module is already well trained at

the end of day 1. Since the animal was trained with an invisible

platform on days 3, 6 and 9 in the corresponding model situation,

the critic network of the place-based module alone is trained on

these days using c = 0.95. The corresponding value function

profiles of the place-based module are shown in fig. 7c, f and i. On

the other days, both value functions are trained and allowed to

compete with each other. The trained weights of the place-based

critic of one day are carried forward to the next day for further

training. In case of the weights of the cue-based critic also, the

same procedure is followed except on day 4, 7 and 10 when the

weights of the critic from days 2, 5 and 8 are used respectively

(since only place based critic is trained on days 3, 6 and 9). On day

10, the platform is shifted to the left and allowed to be visible. For

this day, two cases were considered – one where the integrated

model is used and the other where only the cue-based critic is

used. In both these cases, no further training of weights was

carried out. The values of various parameters used in this model

are given in Appendix S1.

Performance of the simulated rat is compared with the

experimental results of [1], in fig. 8.Performance of the animal

in experiments is quantified in terms of escape latency (fig. 8a),

which denotes, in the model, average number of steps taken by the

agent to reach the platform (shown on the secondary y-axis in red)

and compared with the experimental escape latency measured in

seconds (shown on the primary y-axis in blue). As can be seen from

fig. 8a, the model and the experimental results both show very

similar trends qualitatively. The main difference being that the

model learns very fast on the first day itself and reaches minimum

escape latency. A similar trend can also be seen from the plot of hit

rate on the different days of the trial (fig. 8 b). Hit rate represents

the percentage of successful trials in a block where the model rat

reaches the platform. As can be seen from this plot, the model rat

learns to find the platform very successfully on day 1 itself, and

does not show much change in its success on later days. On days 3,

6 and 9, when the platform is not visible and only place-based

module is used for navigation, a steady improvement is seen in the

number of successful trials indicating that the place-based critic is

learning though at a slower rate than the cue based one.

On the tenth day, again, both place and cue-based strategies are

used in competition with each other but the location of the

platform is changed and the platform is now visible. However, this

does not decrease the success rate of the model animal or increase

the number of steps taken to reach the platform very much. It

should be noted that no further training of either the cue-based or

the place-based critic is carried out on this day and the results are

due to the already trained weights. A further analysis of the model

shows a clear domination of the cue-based navigation strategy over

the place based with the cue-based being used as the major

strategy in 35 trials out of 50. Fig. 9 shows two sample trajectories

of simulated rat: in fig. 9a the simulated rat goes to the old location

due to predominance of place-based navigation, and in fig. 9b the

model rat first tries to go the former location and then approaches

the current location.

Case 2: Only cue-based strategy is used to assist

navigation. The second testing paradigm is equivalent to

evaluating the performance of the agent when its hippocampus

is lesioned in the experimental setup. In the model, the context-

based response is completely suppressed, only cue-based naviga-

tion is used. Since the platform is now visible to the agent

throughout the testing phase, it manages to reach the platform at

Figure 6. (a) A snapshot of the SOM response for a given Context-based Visual Input Vector. (b) The corresponding CANN response for the same
Context-based Visual Input Vector.
doi:10.1371/journal.pone.0047467.g006
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the new location with considerable ease (fig. 10) compared to the

previous case wherein cue-based response was not always selected.

Average hit rate is 100% and the number of steps taken to reach

the platform is 38, averaged over 50 trials. Under similar

conditions of relocated platform, in experimental case, escape

latency of the hippocampus-lesioned rat is lesser compared to a

control rat [1], Similarly note that the model rat operating under

purely cue-based strategy shows higher hit rate (100% after

training) and fewer number of steps (44) to reach the platform,

than the model that operates by competition between cue- and

place-based strategies (87% hit rate, 129 steps).

3.2. Simulation of Parkinsonian Conditions
Parkinson’s Disease (PD) is a degenerative disorder character-

ized by tremor, bradykinesia, postural instability and rigidity of

muscles [42]. In PD, neurons in the SNc region of Basal ganglia

Figure 7. Critic profiles obtained on (a)cue-based module on Day 1, (b) cue-based module on Day 2, (c) place-based module on Day
3, (d) cue-based module on Day 4, (e) cue-based module on Day 5, (f) place-based module on Day 6, (g) cue-based module on Day
7, (h) cue-based module on Day 8, and (i) place-based module on Day 9. Note that both place-based and cue-based modules are trained on
days 1,2,4,5,7,8, though only value profiles of cue-based module alone are shown. The value for both modules is a function of a high-dimensional
vector. For ease of presentation, the value show in the above plot corresponds to a given position of the simulated rat, when the rat is oriented
towards the center of the platform.
doi:10.1371/journal.pone.0047467.g007

Figure 8. (a) Comparison of the escape latency of the agent in the experimental set-up, shown in seconds [1], and that of the simulated rat on
different days of training shown as number of steps to reach the platform. (b) The hit rate of the model rat (expressed as percentage) on the different
days of training.
doi:10.1371/journal.pone.0047467.g008
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Figure 9. (a) Sample trajectory of the model rat going to the old location of the platform due to dominance of place-based trajectory on the 10th

day. (b) A sample trajectory in which the model rat first goes towards the old platform and then goes to the new platform location on the 10th day.
doi:10.1371/journal.pone.0047467.g009

Figure 10. Sample trajectory of the simulated rat when only cue-based response assists navigation. Dotted circle refers to the previous
location of the platform, while the solid circle on the left denotes the current location.
doi:10.1371/journal.pone.0047467.g010
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degenerate, reducing the production and release of dopamine. PD-

related motor impairment is thought to result due to disruption of

dopamine signal from neurons of SNc [43].To simulate dopamine-

deficient conditions, we constrain the upward fluctuations of d,

which signifies the phasic Dopamine signal, as follows:

dPD~min(d,DAceil)

where min(x,a) is defined as:

y~x,for xva

~a,for aƒx

In the above equation, d is the error signal directly calculated by

eqn. (2.1), and dPD denotes a weakened dopamine signal. DAceil is

chosen to be a value less than the maximum value of d. Thus lesser

values of DAceil denote a greater dopamine loss, and a smaller dPD

than in normal conditions. A similar implementation of dopamine

deficiency was used in The upper limit of d, DAceil, is gradually

reduced and the performance of the rat in solving the navigation

task is evaluated by determining escape latency for each value of d.

Dopamine for the cue-based module varies from 22.7 to 2.1

whereas for the place based module, it varies from 22.9 to 2.2. We

rounded this off to a range of 23.5 to 3 to include the full range of

variation in dopamine levels and then computed the DAceil

commonly for both the modules as follows. The idea is that before

PD conditions, DAceil is at the highest level, and there is zero cell

loss; at the end of the duration of interest DAceil is at the lowest,

and the cell loss is complete.

DAceil~{3:5z6:5(1{
i

ntrials
) ð3:1Þ

The value of DAceil is mapped onto ‘%Dopamine cell loss’ as

follows:

%DA cell loss~(1{(DAceilz3:5)=6:5) ð3:2Þ

The integrated system with random initial weights is trained for

100 trials while there is a progressive cell loss from 0% to 100%.

The behavior of the simulated rat afflicted with PD is demon-

strated for dopamine loss between 0 (intact basal ganglia) and 100

(total loss). It can be seen that the loss of dopamine does not affect

learning or hit rate upto a certain level (around 40%). The average

number of steps continues to decrease up to this point (fig. 11).

Correspondingly, hit rate increases and remains constant till about

55% (fig. 12), beyond which there is a rapid deterioration of

performance. Fig. 13 shows a sample trajectory of the model rat

for cell loss of 50%.

Discussion

The proposed model integrates hippocampus and basal ganglia

into a single framework based on RL and explains experimental

data in two instances. One of these experiments involves a

navigation task in a Morris water maze, wherein the joint

contributions of cue-based and place-based navigations are

examined [1].The second experiment compares navigation

performance of an MPTP rat with a control rat in a Morris

water maze [44]. To our knowledge this is the first computational

model of a PD/MPTP model rat navigating a water maze.

Navigation models that incorporate hippocampus and basal

ganglia do exist [5,17,18]. The novelty of the proposed model

lies in that it is an extension of a novel line of research that

proposes that the indirect pathway of basal ganglia serves a

subcortical substrate for the Explorer component of RL [19]. In

the specific context of navigation, it is suggested that the indirect

pathway drives the exploratory activity necessary for navigation.

The model consists of separate modules for cue-based and

place-based navigation systems. Each of these modules is an

independent RL system, with its own critic, temporal difference

(TD) error and mechanism for exploration. The neural substrates

for these two modules are as follows. The critic for cue-based

module is dorsolateral striatum with state information drawn from

direct cortical inputs to this part of striatum. The critic for place-

based module is dorsomedial striatum with the state information

arising out of hippocampal projections to this part of striatum [1].

The TD error in both modules represents dopamine signals on

nigrostriatal pathway, corresponding to specific projections to

dorsomedial and dorsolateral parts of striatum. On the whole, the

parallel basal ganglia loops that connect all basal ganglia nuclei,

corresponding to dorsomedial and dorsolateral parts of striatum,

Figure 11. Average number of steps as a function of
percentage Dopamine cell loss in PD model rat.
doi:10.1371/journal.pone.0047467.g011

Figure 12. Hit rate as a function of percentage Dopamine cell
loss in PD model rat.
doi:10.1371/journal.pone.0047467.g012
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may be thought of as two ‘‘copies of Basal ganglia,’’ subserving the

two navigation systems.

The ultimate goal of our modeling efforts is not to develop an

engineering or robotic system like, for example, [45,46], that can

navigate as efficiently as a biological system. Our goal is to develop

a neurobiologically realistic model of basal ganglia, that can

explain its role in navigation. But such a model seems quite

ambitious in the context of the state of art of basal ganglia

modeling. At the moment, even at systems level, with models

involving abstract neurons, there are several ‘‘schools of thought’’

about basal ganglia function, without much coherence, with each

group perfecting its own line of modeling. Even if we confine

ourselves to Actor-Critic models of basal ganglia, there are so

many variations, and diverse interpretations of Basal ganglia

anatomy, that there is hardly any consistency [24].

When it comes to biophysical models of Basal ganglia, there

exist a lot of models of single Basal ganglia nuclei, like, for example

[47]. To our knowledge there is only one full-system, biophysical

model of basal ganglia, that includes striatum, STN, GPe, GPi,

dopamine signaling – all in a single model [48]. Even this model

only captures certain firing patterns, and makes no attempt to link

to any behavioral task. Therefore, to expect a detailed biophysical

model of basal ganglia that captures neural firing patterns, and

also explains behavioral results in navigation, in the current state

of research, seems to be slightly unrealistic. In the current work, we

present a network of simplified neuron models and link the

network performance with behavioral results, though we reiterate

that a biophysical model is the ultimate objective.

Another aspect of the present model that deserves to be taken

up as a separate study in the future, is a quantitative comparison of

the proposed model of exploration with similar models of

exploration in navigation (like, eg, [5], and also basic mechanisms

of exploration in RL (like, e.g., e-greedy or softmax policy

[49].Recently we applied the proposed basal ganglia model [21],

to the card choice experiment used to study exploratory behavior

by [50]. Performance of the proposed model closely resembles that

of a RL-based behavioral model reported in [51].

In the proposed model, place-based strategy makes use of the

spatial context encoded by the pattern of appearance of the poles

that surround the pool. This approach to modeling place-based

strategy is what [18], dubs as ‘‘place-recognition triggered

response’’ and has been used in the past by several models of

Hippocampus in spatial navigation [17,45,52,53]. However, it

must be noted that place-based navigation, ideally, would combine

visual information with path integration (PI) information, and

would be incorporated in future versions of our model.

Several models of Hippocampus assume that the location of the

animal is known explicitly as (x,y) coordinates in some arbitrary,

absolute coordinate system [17,52]. But access to such information

is artificial and unrealistic. In the present model, we extract spatial

information from views which are based either on the visible cue,

or the spatial context determined by the poles that circumscribe

the pool. Such view-sensitive cells are indeed found in real

hippocampal cells [54].

The present model has resemblances in its broad outlines to the

spatial navigation model proposed by [17], which encompasses

both cue-based and place-based strategies. However, the model of

[17] does not clearly specify the mechanism of exploration, which

is a key underlying mechanism of any form of navigation. Our

group has been developing a line of basal ganglia models, that

embody the hypothesis that the Direct Pathway part of basal

ganglia subserves exploitation while the Indirect Pathway

subserves exploratory behavior [19]. Successful navigation de-

pends on the right mixture of goal-oriented and wandering/

searching movements. Therefore, in the present model, as it was

done earlier in a simpler model [23], we link the exploratory

dynamics of Indirect Pathway with the wandering movements

necessary for navigation. When an agent is introduced to a new

environment, it first explores the environment and at later stages

tends to exploit its knowledge about the environment, which is

encoded in the internal representations of space.

Interestingly, the proposed approach to Basal ganglia modeling

wherein the Direct Pathway subserves exploitation while the

Indirect Pathway subserves exploration, has been applied in the

past to explain a range of PD motor deficits like those observed in

handwriting [55], reaching movements [22], and saccadic

movements [56]. The same approach adapted to model avian

homolog of basal ganglia, was able to explain impairments in bird

song generation [57]. Therefore the uniqueness of the proposed

model of the role of basal ganglia in navigation is that it is not a

model that is exclusively developed for navigation; it is a general

model of Basal ganglia that is shown to be consistently applicable

for navigation also.

Phasic and Tonic Dopamine
The proposed model has explicit representations for phasic and

tonic dopamine signals, with the latter being an integrated version

of the former (see eqn. (2.2)). Phasic and tonic Dopamine signals

control the switch between Direct Pathway and Indirect Pathway

in distinctive ways (see eqns. (2.3–2.4)).In experimental literature,

phasic Dopamine release is thought to act on a time-scale of

seconds, while tonic release acts over a few minutes [36]. Phasic

release is linked to the difference in expected future reward and

actual reward. Tonic and phasic dopamine releases are thought to

have differential roles in updating of working memory information

in the prefrontal cortex. Tonic Dopamine is thought to increase

stability of maintained information in PFC by increasing the

signal-to-noise ratio of the pattern to be stored. By contrast, phasic

Dopamine is thought to determine when an activity has to be

maintained or updated [58,59]. It has also been suggested that

Figure 13. A sample trajectory of the PD model rat to reach the
platform for % Dopamine loss = 50. The model rat’s movements
are confined to a small part of the pool, and show no consistent
progression towards the platform.
doi:10.1371/journal.pone.0047467.g013
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tonic dopamine can regulate the intensity of phasic dopamine by

the effect of the former on extracellular dopamine levels [60].

Niv et al [60], present a theory of phasic/tonic dopamine by

invoking the notion of vigor of responding. Traditional RL-based

theoretical models of dopamine emphasize the role of dopamine in

learning. However, an aspect of behavior viz., vigor of response,

which is observed to be affected by dopamine manipulations, is

ignored by traditional models. Niv et al [61]proposed that tonic

dopamine signal represents the average reward rate, �rr, and were

able to expand RL framework to explain not just action choice but

also vigor of action. In the proposed model too, we have phasic

dopamine denoted by d, used for learning and switching between

exploitation and exploration, and also tonic dopamine, �rr,

computed by summing past values of d with a discount factor,

and used to implement satiety. At high values of �rr, the simulated

animal would have reached the goal and satiated; it therefore does

not make any significant exploratory or exploitative movements.

Navigation under Parkinsonian conditions
Parkinson’s disease condition, which arises due to disruption of

dopamine signal from the mesencephalic brain regions, has been

simulated to compare the behavior of a normal agent adopting

cue-based strategy of navigation and a PD-affected agent

implementing the same. Results from simulation show that the

capacity to accomplish the navigation task does not reduce till

some critical level of dopamine loss reached beyond which it

diminishes rapidly (fig. 11,12). These results are similar to those

generally reported in the PD literature where the appearance of

the symptoms of PD occurs only after 50–80% loss of

substantianigra pars compacta cells [62]. Evaluation of cue-based

performance of a simulated rat in a Morris water maze shows

higher escape latency in the PD rat compared to a normal rat [44].

Section 2.3 presents an integrated model of navigation that

incorporates both basal ganglia and hippocampus. A scheme for

selecting between the actions suggested by the basal ganglia and

hippocampus modules is described. The integrated system consists

of two critics for the two forms of navigation considered. Echoing

the conclusions of [1], we suggest that the value corresponding to

the cue based or Stimulus-Response (S-R) type navigation is

computed in the dorsolateral striatum and the value corresponding

to place-based navigation is computed in dorsomedial striatum.

(However, alternative substrates for these computations can also

be suggested, as we discuss in the later part of this section). The

basal ganglia and hippocampus modules are trained on specific

days as in [1]. The integrated system captures the trends seen in

Figure 14. Schematic depicting a hypothetical, expanded view of the roles of basal ganglia and hippocampus to spatial navigation.
In this view, both basal ganglia and hippocampus are capable of computing their own unique value functions by combining the respective sensory
states accessible by them, and the dopamine projections from midbrain dopamine centers. Navigation subserved by basal ganglia based on
visuospatial information is cue-based navigation. Navigation subserved by basal ganglia based on visuospatial information is S-R type navigation.
Navigation subserved by hippocampus based on visuospatial information is place-based navigation. Navigation subserved by hippocampus based on
proprioceptive information is path-integration.
doi:10.1371/journal.pone.0047467.g014
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the experiment of [1], which reveals the competition between the

cue- and place-based navigation.

In the models of Sections 2, hippocampus is modeled as a

combination of a SOM and a CANN. It may be argued that the

transformation from view vector to CANN output is superfluous,

and that the Value associated with hippocampus can be directly

calculated from the Context-based Visual Input Vector represen-

tation. But there is evidence that suggests that hippocampus

contains mechanisms for path integration [9]. Thus, incremental

displacement (Dx, Dy) information must be integrated with the

spatial information extracted from views, in order to construct a

more reliable representation of space. CANN-based approaches

have been suggested in the literature for this purpose [63]. Since

we expect to incorporate path integration in our hippocampus

model in the future, we used a combination of SOM and CANN

to represent hippocampus in the present model.

Towards a comprehensive understanding of the roles of
Basal ganglia and Hippocampus in navigation

The precise form of cooperation between basal ganglia and

hippocampus as described by [17,52] and even the present work,

wherein the hippocampus merely constructs a representation of

space and offers it to basal ganglia for value computation, perhaps

does not capture the complete story. Although the functional

heterogeneities of striatum (dorsomedial striatum for spatial

learning and dorsolateral for S-R type learning), as they are

described in the present model, have significant experimental

support, there are several exceptions to the rule. For example, in

radial maze learning studies involving lesions of dorsal lateral and

medial striatum [64] and lesions specific to dorsomedial striatum

[65], hippocampus-dependent spatial learning was not impaired.

Also in several other water maze studies [1],[66], dorsomedial

striatal lesions did not completely block spatial learning.

The above studies reveal two things: 1) the picture of functional

heterogeneity of striatum (dorsomedial striatum for spatial learning

and dorsolateral for S-R type learning) is too simplistic. 2)

hippocampus does not need to depend on the striatum for value

computation, and for expression of spatial learning. These

inferences urge us to search for alternative, broader perspectives

of the nature of cooperation between basal ganglia and

hippocampus in driving navigation.

If hippocampus does not need to depend on the striatum for

value computation, then, is it possible that it can compute the

value by itself? In other words, like the basal ganglia, does

hippocampus contain complete reward processing machinery?

The entorhinal cortex, considered the gateway to Hippocampus,

receives inputs from amygdala and orbito-frontal cortex, which

could potentially carry reward-related information into hippo-

campus [67]. Rolls & Xiang (2005) [54] found neurons in

hippocampus that respond, not just to place, like the place cells,

but to the combination of reward and place. These cells responded

more to places that are associated with greater reward. The

question that remains is: what is the precise signal that carries the

relevant reward information to hippocampus? In basal ganglia, it

is generally thought that dopaminergic projections from mesen-

cephalic brain regions to the striatum carry reward signals. Does

Hippocampus have similar sources of reward information? There

is evidence supporting presence of mesencephalic dopaminergic

projections to rat hippocampus [68]. Hippocampal neurons were

found to express mRNA for D1- and D2-like receptors for

dopamine [69]. Dopamine modulates neurotransmission in CA1

[70], and CA3 [71], regions of hippocampus. Cognitive deficits in

PD patients have been linked to impairment of hippocampal long-

term potentiation, a link that has been demonstrated by the fact

that L-Dopa, a dopamine precursor, has been able to ameliorate

the observed cognitive deficits [72].

The above experimental findings envisage a more expanded

view of the contributions of basal ganglia and hippocampus in

spatial navigation (fig. 14). The basal ganglia, as well as

hippocampus, represents space in terms of both visuo-spatial and

proprioceptive forms of sensory data. Basal ganglia uses its

visuospatial representations for cue-based navigation. Likewise its

proprioceptive and motor representations in striatum are perhaps

used for S-R type or praxic form of navigation, which involves

performing stereotyped body movements [73]. On the other hand,

hippocampus uses its visuospatial information for constructing a

spatial map of the surroundings, which is used for driving place-

based navigation. The proprioceptive information received by

hippocampus is used for path-integration. Thus, though basal

ganglia and hippocampus have their unique mechanisms for

representing space: basal ganglia’s representation of space is

probably closely tied to rewarding locations or cues, whereas the

representation in hippocampus is based on a broader spatial

context. Both basal ganglia and hippocampus probably construct

their own internal Critics, using their own representations of the

state and the reward-related information arising out of dopami-

nergic afferents. Competition between the navigational commands

suggested by basal ganglia and hippocampus is perhaps settled by

an appropriate form of gating (Fig. 14). Such an expanded view of

the cooperation between basal ganglia and hippocampus might be

able to explain the perplexing inconsistencies in experimental

findings of spatial navigation [8].
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