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Objective: Calcineurin (CaN) interacts with calpains (Calpn) and causes cellular damage eventually
leading to cell death. Calpastatin (Calp) is a specific Calpn inhibitor, along with CaN stimulation has been
implicated in reduced cell death and self-repair. Molecular chaperones, heat shock proteins (Hsp70 and
Hsp90) acts as regulators in Calpn signaling. This study aims to elucidate the role of CaN, Calp and Hsps
during induced ischemia and reperfusion in primary cardiomyocyte cultures (murine).
Methods and results: Protein expression was analyzed concurrently with viability using flow cytometry
(FACS) in ischemia- and reperfusion-induced murine cardiomyocyte cultures. The expression of Hsp70
and Hsp90, both being molecular chaperones, increased during ischemia with a concurrent increase in
death of cells expressing these proteins. The relative expression of Hsp70 and Hsp90 during ischemia
with respect to CaN was enhanced in comparison to Calp. Reperfusion slightly decreased the number of
cells expressing these chaperones. There was no increase in death of cells co-expressing Hsp70 and
Hsp90 along with CaN and Calp. CaN expression peaked during ischemia and subsequent reperfusion
reduced its expression and cell death. Calp expression increased both during ischemia and subsequent
reperfusion but cell death decreased during reperfusion.
Conclusion: The present study adds to the existing knowledge that Hsp70, Hsp90, CaN and Calp interact
with each other and play significant role in cardio protection.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The increase in Ca2þ concentration during ischemia causes
activation of calpains (Calpn) [1]. Calpn activation results in pro-
tein degradation and cell death [2,3]. Calpn activation has been
well studied in normal and ischemic cardiomyocytes [1,4]. Cells at
the ischemic infarct edge, which have undergone partial ischemia
are also vulnerable to remodeling [5]. Due to impaired intracellular
Ca2þ homeostasis, such cells are predisposed to death following
reperfusion [6]. Interestingly, cardiomyocyte proliferation and
progenitor cell recruitment has been observed in the cardiac in-
farct border zone [7]. Calpastatin (Calp) is the most efficient and
specific Calpn inhibitor present in vivo [8–10]. Calp along with its
putative homolog high molecular weight calmodulin-binding
protein (HMWCaMBP) regulate Calpn inhibition [11–15] and may
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lp, Calpastatin; HMWCaMBP,
MCC, primary neonatal
rfusion; NDB, nutrient defi-
sothiocyanate; PE, R-

arma).
reduce I/R injury in heart [16,17].
Among the proteins proteolysed by Calpn, calcineurin (CaN) is

known to regulate cardiac hypertrophy and remodeling and has
been implicated in both cell death and survival following re-
perfusion [18–20]. CaN is a heterodimer consisting of 19- and 57-
59- kDa subunits which are referred to as CaNβ and CaNα, re-
spectively [21–23]. The CaNα subunit has low endogenous phos-
phatase activity and requires Ca2þ , calmodulin (CaM) and CaNβ
for full activity [24]. CaN activation during ischemia occurs due to
elevated Calpn levels [13,25–27] which has been demonstrated
through in vitro proteolytic degradation [28] or via the cleavage of
the endogenous calcineurin inhibitor cain/cabin1 [29]. Recent
studies propose that ischemia induced activation of CaN leads to
further increase in cytosolic Ca2þ levels, which further activates
Calpn during reperfusion [30]. This putative feedback mechanism
can influence CaN–Calpn signaling in cardiomyocytes following
ischemia and reperfusion (I/R) [1,26]. Interestingly, the CaM-de-
pendent phosphatase activity of CaN is stimulated by the 70 kDa
heat-shock protein (Hsp70) in cardiac muscle and thus provides an
on/off switch for the regulation of CaN signaling by Hsp70 [31].
CaN–Hsp70 signaling results in the activation of NFAT which af-
fects apoptosis, development and cellular adaptation in cardiac
cells [31–33]. The importance of CaN–Hsp70 interaction lies with
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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downstream effectors such as NFAT and GATA-4, which are im-
portant in cardiac remodeling and regeneration [34–36].

Recently, Hsp90, another heat-shock protein, has generated
attention due to its cardiac protective role in I/R induced injury
[37–41]. In septic mice models, Calpn induces caspase-3 activation
and apoptosis via the activation of the Hsp90/Akt pathway [42];
however, this activation can also promote CaN recruitment to
prevent apoptosis [43,44]. Hsp90 also plays an important role in
regulating Calpn-1 through specific interactions and associations
at the functional sites. Nevertheless, Hsp90 can get degraded in
concentrations higher than equimolar levels of Calpn [45]. Though
both Hsp70 and Hsp90 are molecular chaperones [46] and appear
to have cardioprotective properties, several differences exist
especially at mRNA induction during I/R [47–51]. The interaction
and the relevance of Hsp70 and Hsp90 in I/R with respect to
Calpn-regulated proteins like CaN and Calp remains vague. The
current study aims to reveal the underlying interplay of CaN, Calp,
Hsp70 and Hsp90 during ischemia and subsequent reperfusion
using flow cytometric analysis (FACS). The expression level of
ubiquitous cardiac protein sarcomeric actin (SarcAct) has been also
studied as a control.
2. Methodology

2.1. Cells

Neonatal murine cardiomyocyte culture (NMCC – primary
cultures derived from isolated murine heart) was used for study-
ing the induced I/R injury. CD-1 Swiss albino mice pups (2–6- day
old) were sacrificed, in accordance to the norms provided by the
Institutional Animal Ethics Committee, University of Saskatch-
ewan. The hearts were instantly extracted, processed and cultured
on 0.02% gelatin-precoated cell culture flasks, based on protocols
previously described [52,53]. The primary cultures were sustained
till the cultures attained �80% and following which I/R injury was
induced in cell cultures.

2.2. I/R injury induction

The media in NMCC cultures (�80% confluent) was replaced
24 h preceding induction. Ischemic conditions were induced by
replacing the standard growth media with a nutrient deficient
buffer (NDB). The NDB contains 136 mM NaCl, 5 mM KCl, 1 mM
CaCl2, 0.5 mM MgCl2 �7H2O and 5.5 mM HEPES (pH 6.8) and
therefore provides no nutrition and minimal buffering to the cells
[54]. For inducing ischemia in NMCC, glucose and FCS were added
to NDB to obtain a final concentration of 5 mM and 2%, respec-
tively to provide basic minimal nutrition [55]. Consecutively, re-
perfusion was performed by switching NDB with standard growth
media [54–56]. In addition, to emulate the oxidative stress in
cardiomyocytes observed in vivo during reperfusion, hydrogen
peroxide (H2O2) was added to the standard growth media (1 mM
final concentration) [54,55]. The methodology was performed as
per a previously published protocol [13,14].

2.3. Assessment of protein expression and viability

The concurrent assessment of protein expression in normal
(untreated), ischemic and reperfused cardiomyocytes along with
viability was performed by FACS based on a methodology carried
out as per a previously published protocol [13,14]. Briefly, the as-
say of live versus dead cells was used to assess viability following
induction and compared to control cells. The assay was performed
simultaneously with FACS analysis using 7-amino-actinomycin D
(7-AAD) [57]. As suggested by the manufacturer, 7-AAD staining
solution in DPBS (�0.25 μg/106 cells) was incubated with control,
ischemia and reperfusion induced cells for 10 min at room tem-
perature in the dark. The cells were washed twice with DPBS and
dislodging for FACS. The ideal I/R injury induction was determined
by inducing the cells at different parameters (ischemia induction –

1, 2 and 4 h; reperfusion induction following ischemia – 1 and 2 h).
The induced cells along with control cells were stained with
7-AAD and dislodged by trypsinization. The cell suspension was
immediately used for FACS to quantify live and dead cells in the
control and induced population. A tabulation of antibodies along
with the dilutions used are provided in Supplementary Table 1.

2.4. Statistical analysis

Statistical analysis on the data obtained from the various assays
was performed using ANOVA (Sigma Plot version 10 software
package). The significance level of r0.05 is represented as * to
indicate significant differences.
3. Results and discussion

The triple staining was performed by concurrently staining two
proteins with specific antibodies tagged with fluorophore (FITC
and PE, respectively) along with a live–dead assay of analyzed cells
with 7-AAD. The analysis elucidated the expression of various
cardiac proteins in both live and dead cells present in control and
I/R treated cardiomyocyte cultures. This differentiation quantified
cells which survived I/R injury and determined the important
proteins expressed in cells [13,14]. In the present study, the in-
teraction of Hsp70 and Hsp90 with respect to CaN (Figs. 1 and 2)
was compared to Calp (Supplementary Figs. 1 and 2). The ex-
pression levels (as percentages and fold levels) were also com-
pared in a control protein which is ubiquitously expressed (Sar-
cAct) (Fig. 3, Supplementary Figs. 3 and 4).

3.1. Expression of Hsp70 and Hsp90 in CaN expressing cells

On comparing Hsp70 with CaN in normal, ischemia induced
and reperfusion induced cells, we observed a global increase in
expression of both Hsp70 and CaN following ischemia which sig-
nificantly decreased following reperfusion (Figs. 1 and 3). Cardio-
myocytes expressing both Hsp70 and CaN peaked during ischemia
and then significantly decreased during reperfusion (Fig. 1D). A
slight increase in global expression of Hsp90 with respect to CaN
following ischemia and subsequent reperfusion was observed but
not significant (Fig. 3). Conversely, the number of cells expressing
Hsp90 alone decreased during both ischemia and reperfusion,
whereas there was slight increase in cells co-expressing Hsp90
and CaN during ischemia and subsequent reperfusion (Fig. 2).
There was simultaneous increase in number of dead cells ex-
pressing Hsp70 or Hsp90 during ischemia (Figs. 1B and 2B). The
drastic increase in dead cells co-expressing Hsp70 or Hsp90 and
CaN during ischemia was not observed during subsequent re-
perfusion (Figs. 1C and 2C).

The current study clearly shows that the stress induced by is-
chemic treatment simultaneously increased the expression of
Hsp70 and Hsp90 since both being chaperone proteins [46]. The
cells expressing Hsp70 and Hsp90 predominantly died during
ischemia (Figs. 1B and 2B) [50]. Reperfusion did not enhance cell
death indicating that the cells expressing Hsp70 or Hsp90 were
protected against subsequent reperfusion induced injury (Figs. 1C
and 2C). Activation of Heat Shock Transcription Factor 1 during
ischemia stimulates Hsp70 mRNA expression whereas reperfusion
stimulates Hsp90 mRNA [51]. The marked increase observed in
Hsp70 expression in CaN expressing cells (Fig. 1B) suggests the



Fig. 1. (A)–(C) Representative FACS analysis data of NMCC following I/R induction along with live–dead assay. In the horizontal axis FITC labeled anti-CaN antibodies and for
vertical axis PE labeled antibodies against Hsp70 were detected. Rest of the figures in the panel are derived from the quadrants of (A)–(C) and demonstrate the live–dead
assay using 7-AAD. The studied conditions were; normal untreated NMCC (A); NMCC maintained in nutrient deficient buffer (ischemia induction) for 2 h (B); NMCC grown
for 2 h in standard growth media containing 1 mM H2O2 subsequent to 2 h of ischemia induction (reperfusion induction) (C). (D) Histographical representation of com-
parative protein expression in ischemia and reperfusion induced NMCC with those of normal untreated NMCC within stained quadrants (Q1 – Hsp70; Q2 – Hsp70þCaN; Q3
– CaN) represented as fold level change (n¼5). The fold level changes (increase or decrease) of protein expressing NMCC in each quadrant has been represented and
significant values (p-valueo0.05) denoted as *. Standard error was calculated and represented as error bars. (E) Fold level changes in ischemia and reperfusion induced
protein expression in NMCC within stained quadrants (Q1–Q3) in comparison with control cells (n¼5) represented as a table.
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possible interaction between Hsp70 and CaN as previously de-
scribed [13,31]. Hsp70 phosphorylation by cAMP-dependent pro-
tein kinase (PKA) (produced in conditions of stress), can inhibit
Hsps ability to enhance CaN phosphatase activity [31,58]. It is
possible that the cells try to compensate the loss of enhanced CaN
phosphatase activity by producing more CaN and hence the in-
creased CaN expression during ischemia (Fig. 1D and E). The in-
teraction between Hsp70 and CaN is known to dephosphorylate
NFAT resulting in transcriptional induction of various genes in-
cluding GATA4, which is crucial in cardiomyocyte development
and has a significant role in unassisted self-repair [32,36]. Con-
versely, ischemia induced CaN dephosphorylates phospholamban
which results in Ca2þ overload during reperfusion and thus fur-
ther damages the cells [30]. It is also known that increase in
myocardial Hsp90 expression promotes the recruitment of Akt and
CaN, thereby promoting endothelial nitric oxide synthase (eNOS)
activation and subsequently reducing cell injury [43,44]. There-
fore, it can be assumed that the slight increase in cells co-ex-
pressing Hsp90 and CaN (Fig. 2D and E), stimulated eNOS
production which resulted in no further increase in cell death
during reperfusion.

A significant increase in cardiomyocytes expressing CaN only
with respect to both Hsp70 and Hsp90 was observed following
ischemia which then significantly reduced during reperfusion
(Figs. 1D and 2D). The findings on the expression of CaN were si-
milar to our previous study in human and animal heart [59]. In-
terestingly, the percentage of CaN expressing dead cells increased
following ischemia and subsequent reperfusion (Figs. 1E and 2E),
compared to our previous report where the percentages of CaNα
and CaNβ subunit expressing dead cells decreased during ischemia
and subsequent reperfusion [13]. Both CaNα and CaNβ subunits
are required for the phosphatase activity of CaN along with CaM
and Ca2þ [24]. CaNα and CaNβ subunits are more apparent in live
cells in comparison to dead cells where these subunits may be
completely proteolysed by Calpn [28]. Expression of CaN alone in
cells increased by �4 and �8 fold with respect to Hsp70 and
Hsp90 respectively during ischemia (Figs. 1E and 2E). The absence
of Hsp70 and Hsp90 greatly increased cell death and decreased



Fig. 2. (A)–(C) Representative FACS analysis data of NMCC following I/R induction along with live–dead assay. In the horizontal axis FITC labeled anti-CaN antibodies and for
vertical axis PE labeled antibodies against Hsp90 were detected. Rest of the figures in the panel are derived from the quadrants of (A)–(C) and demonstrate the live–dead
assay using 7-AAD. The studied conditions were; normal untreated NMCC (A); NMCC maintained in nutrient deficient buffer (ischemia induction) for 2 h (B); NMCC grown
for 2 h in standard growth media containing 1 mM H2O2 subsequent to 2 h of ischemia induction (reperfusion induction) (C). (D) Histographical representation of com-
parative protein expression in ischemia and reperfusion induced NMCC with those of normal untreated NMCC within stained quadrants (Q1 – Hsp90; Q2 – Hsp90þCaN; Q3
– CaN) represented as fold level change (n¼5). The fold level changes (increase or decrease) of protein expressing NMCC in each quadrant has been represented and
significant values (p- valueo0.05) denoted as *. Standard error was calculated and represented as error bars. (E) Fold level changes in ischemia and reperfusion induced
protein expression in NMCC within stained quadrants (Q1–Q3) in comparison with control cells (n¼5) represented as a table.
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CaN expression which could be due increased Calpn production
(Figs. 1B and 2B). Reperfusion further decreased CaN expression
and there was no significant increase in number of dead cells
compared to ischemic induction in absence of Hsp70 (Figs. 1C and
2C). Absence of both Hsp70 and Hsp90 in cells expressing CaN
only could be attributed to the proteolytic activity of Calpn [25–
27,45,60]. The cardiomyocytes in such conditions try to overcome
the potential cell damage by increasing CaN expression and acti-
vation during ischemia as previously reported [13,27]. Reperfusion
decreases the overall Calpn expression which results in decreased
CaN expression and activation [13].

3.2. Expression of Heat Shock Protein (Hsp) 70 and Hsp90 in Cal-
pastatin (Calp) expressing cells

In normal (untreated), ischemia induced and reperfusion in-
duced cardiomyocytes on comparing with Calp, we observed a
global increase in expression of both Hsp70 and Hsp90 following
ischemia which significantly decreased following reperfusion
(Fig. 3, Supplementary Figs. 1 and 2). Cardiomyocytes expressing
Hsp70 only slightly decreased during ischemia and showed in-
crease in number of dead cells (Supplementary Fig. 1B). Sub-
sequent reperfusion did not increase the expression of Hsp70 as
the number of dead cells increased significantly (Supplementary
Fig. 1C). The cardiomyocytes expressing both Hsp70 and Calp in-
creased slightly during ischemia with significant increase in dead
cells (Supplementary Fig. 1D and E). Reperfusion further increased
the number of dead cells co-expressing both Hsp70 and Calp
(Supplementary Fig. 1C). Increased expression of Hsp90 in cardi-
omyocyte following ischemia and subsequent reperfusion was
observed (Supplementary Fig. 2). However, the number of cells co-
expressing Hsp90 and Calp remained same as untreated cells
during ischemia with a considerable increase in dead cells (Sup-
plementary Fig. 2B). A slight increase in number of cells co-ex-
pressing Hsp90 and Calp was observed during subsequent re-
perfusion along with no significant increase in dead cells (Sup-
plementary Fig. 2C). Ischemia enhanced the relative expression of
Hsp70 and Hsp90 in cardiomyocytes with respect to Calp as
compared to CaN. The increase in expression is related to the in-
crease in number of live cells expressing Hsp70 and Hsp90



Fig. 3. Tabulated representation of percentage of cells expressing Hsp70 and Hsp90 relative to SarcAct, CaN and Calp under different conditions. The study conditions used
were; normal untreated NMCC (A); NMCC treated with nutrient deficient buffer (ischemia induction) for 2 h (B); NMCC grown for 2 h in normal media containing 1 mM
H2O2 following 2 h of ischemia induction (reperfusion induction) (C). The averaged live and dead cell percentages was used to calculate the percentage of cells expressing
Hsp70 or Hsp90 only or with cells co-expressing Hsp70 or Hsp90 with SarcAct or CaN or Calp. The total percentage of cells was then determined by adding the percentage of
cells expressing Hsp70 or Hsp90 only, along with cells co-expressing Hsp70 or Hsp90 with SarcAct or CaN or Calp. Significant values (p-valueo0.05) denoted as * was
determined. Standard error was calculated and represented as error bars.
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expression was much higher than the increase in number of live
cells (Fig. 3B). Reperfusion produced a decrease in number of live
cells expressing Hsp70 and Hsp90 with a slight increase in number
of dead cells (Fig. 3C).

The overall expression of Calp increased during ischemia and
subsequent reperfusion (Supplementary Figs. 1 and 2). The ex-
pression of Calp marginally increased during ischemia and sub-
sequent reperfusion in cardiomyocytes co-expressing Hsp70
(Supplementary Fig. 1B and D). There was an increase in number of
dead cells during ischemia, and subsequent reperfusion did not
increase the number of dead cells. The number of Calp only pro-
ducing cells relative to Hsp70 did not increase much during
ischemia though the death rate was considerably increased (Sup-
plementary Fig. 1D). Subsequent reperfusion induced a significant
increase (�4 fold) in number of Calp only producing cardiomyo-
cytes with a significant increase in number of dead cells than in
ischemia.

The expression of Calp barely increased during ischemia and
subsequent reperfusion in cardiomyocytes co-expressing Hsp90
(Supplementary Fig. 2D and E). As with Hsp70 co-expression, the
number of dead cells increased during ischemia and persisted
during subsequent reperfusion. The number of Calp only produ-
cing cells relative to Hsp90 slightly increased during ischemia with
increase in number of dead cells (Supplementary Fig. 2B). Re-
perfusion induced a slight increase in number of Calp only pro-
ducing cardiomyocytes with a decrease in number of dead cells
than in ischemia.
Ischemic treatment increased the expression of Hsp70 and
Hsp90 since both are chaperone proteins (Supplementary Figs. 1B
and 2B). However, a significant number of cells co-expressing
Hsp70 or Hsp90 with Calp died during ischemia. Reperfusion
significantly enhanced the killing of cells expressing Hsp70 or
Hsp90 only compared to those co-expressing Calp with Hsp70 or
Hsp90. This suggests that the expression of Calp also protected
cardiomyocytes against reperfusion induced injury. Calp seques-
ters Calpn from its substrates in the normal myocardium, but may
be proteolysed during the early phase of Calpn activation during I/
R [12,14]. Calpn activation results in the proteolysis of Calp fol-
lowed by other calpain substrates [61]. It is known that Calpn
cleaves in Hsp70 during neuronal degradation [60]. It is therefore
possible that the absence of Hsp70 in Calp only expressing cardi-
omyocytes makes them more susceptible to death. An increase in
number of Calp only expressing dead cells relative to Hsp70 sug-
gests that Hsp70 plays a critical role in cardioprotection. On the
other hand, the decrease in number of Calp only expressing dead
cells relative to Hsp90 during reperfusion is significant such that
the levels return to almost normal (untreated). Hsp90 has both
cardioprotective and antagonistic characteristics [37–42,45]. Ab-
sence of Hsp90 occurs during ischemia, makes Calp more sus-
ceptible to Calpn degradation. Calpn activity can be regulated by
pathways other than AKT also since Calpn can degrade AKT-as-
sociated Hsp90 [27,42]. In such context, it can be inferred that
Calpn can proteolyse Hsp90 and Calp and killed the cardiomyo-
cytes and in these dead cells neither Hsp90 nor Calp expression
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could be detected. It should be noted that there was a concurrent
and drastic increase in number of dead cells following reperfusion
which did not express Hsp90 or Calp.

3.3. Expression of Hsp70 and Hsp90 in SarcAct expressing cells

On comparing with SarcAct, we observed a global increase in
expression of both Hsp70 and Hsp90 following ischemia which
significantly decreased following reperfusion (Fig. 3, Supplemen-
tary Figs. 3 and 4). Non-cardiomyocytes expressing Hsp70 only
significantly increased during ischemia and showed increase in
number of dead cells (Supplementary Fig. 3B). Subsequent re-
perfusion did not increase the number of dead cells but reduced
the number of Hsp70 expressing cells (Supplementary Fig. 3C). The
cardiomyocytes expressing both Hsp70 and SarcAct remained
consistent during ischemia with significant increase in dead cells
(Supplementary Fig. 3D). Reperfusion further increased the num-
ber of dead cells co-expressing both Hsp70 and Calp but the ex-
pression of Hsp70 remained same. Increased expression of Hsp90
alone in non-cardiomyocytes following ischemia was observed
with increased cell death (Supplementary Fig. 4B). Subsequent
reperfusion decreased Hsp90 only expression in cells without any
increase in dead cells (Supplementary Fig. 4C). However, the
number of cells co-expressing Hsp90 and SarcAct remained same
as untreated cells during ischemia with a considerable increase in
dead cells (Supplementary Fig. 4D and E). The number of cells co-
expressing Hsp90 and SarcAct remained consistent during sub-
sequent reperfusion along with no significant increase in dead
cells. Ischemia slightly decreased the number of cardiomyocytes
expressing SarcAct only with respect to Hsp70 but with a marginal
increase in cell death. Subsequent reperfusion produced no change
in number of cardiomyocytes expressing SarcAct only with respect
to Hsp70 with no change in number of dead cells (Supplementary
Fig. 3). With respect to Hsp90, number of cells expressing SarcAct
only, decreased during ischemia with no significant increase in cell
death (Supplementary Fig. 4). Ensuing reperfusion also induced a
decrease in number of cells expressing SarcAct only with respect
to Hsp90 but with significant increase in cell death.

It is evident from the experiments in this study using CaN and
Calp that ischemia induces an overall increase in expression of
Hsp70 and Hsp90 (Fig. 3) and this trend was observed when
Hsp70 and Hsp90 expression was measured relative to SarcAct. A
comparable trend was observed during reperfusion where the
expression of Hsp70 and Hsp90 decreased slightly but still more
than normal levels. SarcAct is ubiquitous and is not affected by the
changes in the proteins studied in this study (Hsp70, Hsp90, CaN,
Calp). It is known that sarcomeric proteolysis via calpain and
caspase activation may be involved to cooperatively degrade
proteins including myosin, actin, troponin, and tropomyosin
[62,63]. Our previous studies using Calpn [13,14] demonstrated
the interaction between Calpn and other CaM-regulated proteins.
Since Calpn has the potential to degrade SarcAct, we did not use
the Calpn to avoid any confusion, as we intended to compare the
expression of other proteins used in this study with a protein
which is integral and consistently present in cardiomyocytes.
Therefore cells which did not express SarcAct were considered as
non-cardiomyocyte population which includes fibroblast, macro-
phages, and other cells present cardiac tissue [64]. The expression
of SarcAct was observed to be consistently about �60% of the total
cells. Compared to SarcAct, the expression of other proteins varied
depending on the treatment and interactions. In relation to Hsp70,
the reduction of SarcAct only expressing cells suggests that the
cells started co-expressing Hsp70 during both ischemia and re-
perfusion (Supplementary Fig. 3D). The rise in SarcAct only ex-
pressing cells in relation to Hsp90 during reperfusion (Supple-
mentary Fig. 4D) suggests reduction in expression of Hsp90 which
correlates to a simultaneous decrease in Hsp90 expression in non-
cardiomyocyte population.

A semi-quantitative estimation of Hsp70, Hsp90, CaN, Calp and
SarcAct levels in cells was determined by Western blotting. The
results obtained showed insignificant changes in the expression
levels in proteins studied (data not shown). The absence of cur-
rently used methodologies or technologies to determine the ex-
pression level of proteins simultaneously in live and dead cells,
other than FACS, hinders data validation. Repetition of experi-
ments is the only proof of evidence in this circumstance. The
drawback of the potential loss of floating dead cells which is often
discarded during the washing steps has been negated in our pre-
vious studies [13,14], by the adding the pellets of pooled media or
buffering solution discarded after cell treatments.

This is the first report which compares the expression of CaN,
Calp and Hsps (70 and 90) in cardiomyocytes during ischemia and
subsequent reperfusion. Previous studies were only able to gauge
the global expression of these proteins in cardiomyocytes without
any distinction of being live or dead [12,59,65–67]. The current
study uses FACS based assay to differentiate live and dead cells and
also quantifies the protein expression in these cells separately.
Further studies using animal knockdown models and rescue as-
says using over-expressed proteins can support these novel
findings.

In brief, the present study describes the use of triple staining
for comparative protein expression analysis of Hsp70, Hsp90, CaN,
Calp and SarcAct in normal, ischemia-induced and reperfused
cardiomyocytes by FACS. Ischemia induces an increase in the ex-
pression of molecular chaperones Hsp70 and Hsp90 in cardio-
myocytes along with increase in cell death. The expression of
Hsp70 and Hsp90 decreases slightly during reperfusion. The ab-
sence of enhanced cell death suggests the cardioprotective nature
of these proteins (Hsp70 and Hsp90). CaN expression peaks during
ischemia and reduces during subsequent reperfusion similar to
our previous studies [13]. An increase in cell death was observed
in cells expressing CaN following ischemia but no further increase
in cell death during reperfusion implies that the CaN expression
promotes cell survival and is therefore cardioprotective. Calp ex-
pression increased during ischemia and subsequent reperfusion
much similar to previous reports [13,14]. Decreased cell death was
observed in cells co-expressing Calp with Hsp70 and Hsp90 during
reperfusion compared to cells expressing only hsp70 or Hsp90 or
Calp. This suggests the cardioprotective role of Calp by inhibiting
Calpn. Expression of SarcAct remained consistent in cardiomyo-
cytes since being ubiquitous and used as a control. Thus this study
validates the cardioprotective nature of Hsp70, Hsp90, CaN and
Calp previously reported by many groups.
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