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Abstract

The improvement of meat quality and production traits has high priority in the pork industry. Many of these traits show a
low to moderate heritability and are difficult and expensive to measure. Their improvement by targeted breeding programs
is challenging and requires knowledge of the genetic and molecular background. For this study we genotyped 192 artificial
insemination boars of a commercial line derived from the Swiss Large White breed using the PorcineSNP60 BeadChip with
62,163 evenly spaced SNPs across the pig genome. We obtained 26 estimated breeding values (EBVs) for various traits
including exterior, meat quality, reproduction, and production. The subsequent genome-wide association analysis allowed
us to identify four QTL with suggestive significance for three of these traits (p-values ranging from 4.9961026 to
2.7361025). Single QTL for the EBVs pH one hour post mortem (pH1) and carcass length were on pig chromosome (SSC) 14
and SSC 2, respectively. Two QTL for the EBV rear view hind legs were on SSC 10 and SSC 16.
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Introduction

One of the most challenging tasks in pork production is the

improvement of traits with low heritability [1–3]. Most commer-

cially important traits are complex and influenced by multiple

interacting factors including genetics and environment. The

observed albeit low heritabilities suggest that these traits could

be successfully improved by selection. However, the cost and

difficulty to obtain direct measurements are limiting the improve-

ments of these traits. In addition, the estimation of many breeding

values relies only on the phenotypes of relatives, which limits their

accuracy. Therefore, these traits are ideal candidates for the

application of molecular genetic tools in future breeding programs.

The identification of genes and polymorphisms associated with

commercially important traits can provide useful markers for the

selection of genetically superior animals. Knowledge of the genetic

and molecular background is required to accelerate the genetic

improvement.

Since the first QTL genome scan in pigs was reported [4]

numerous QTL analyses have been conducted to identify QTL for

various traits in pig production. For example Karlskov-Mortensen

et al. reported QTL on chromosomes SSC 1, 4, 9, 10, 13 and 16

affecting fat deposition and lean meat content [5]. For various

growth traits QTL were detected on SSC 1, 4, 7 and 8 by de

Koning et al. [6]. Several QTL for pH at 45 minutes post mortem

have been shown to be located on SSC3, 4, 5, 6, 8, 11, 13 and 17

[7]. Identification of multiple loci associated with one trait suggests

an underlying complex genetic architecture. Originally, QTL

scans have been mainly performed on experimental crosses

between a domestic breed and wild boar or Meishan [8–10].

Over the last decade, a number of QTL scans have been carried

out on commercial pig line crosses, including Large White,

Piétrain, Berkshire and Yorkshire [11,12].

So far, over 6,800 QTL for 585 different traits have been

identified in pigs (PigQTLdb, http://www.animalgenome.org/

cgi-bin/QTLdb/SS/index), more than in any other livestock

species. The reported QTL were shown to influence meat quality,

health, production, reproduction and exterior traits. However,

only a few have been further investigated and led to discovery of

associated or even causative mutations. These include a single base

pair substitution in a non-coding region of IGF2 on SSC 2 that

explains variation in muscle mass and back fat thickness and a

nonconservative substitution in the PRKAG3 gene on SSC 15

having an effect on meat quality [13,14]. Since most loci explain

just a small fraction of the phenotypic variation, the identification

of the causative genetic variations underlying QTL remains

challenging [15].

The recent development of the PorcineSNP60 BeadChip [16]

facilitated by the efforts of the International Swine Genome

Sequencing Consortium and Illumina now enables us to perform

genome-wide association studies (GWAS) in pigs. Numerous

GWAS for quantitative traits have been reported in humans

[17,18] and other domestic animals [19,20]. However, due to a

lack of SNP genotyping arrays, the first GWAS for quantitative

traits in pigs have only recently been published. In the last few
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months several GWAS investigating various traits of commercial

or scientific interest in different pig populations were published

[21–28]. The aim of this study was to identify QTL affecting

economically important traits in a Swiss commercial boar line

using the PorcineSNP60 BeadChip.

Results

We used 26 estimated breeding values (EBVs) rather than raw

phenotypes for our GWAS. Breeding values have the advantage

that they are free of systematic environmental effects on measured

phenotypes, as these effects are considered in the statistical model

used for the estimation of EBVs. Additionally, they reflect the

genetic makeup more accurately because they do not solely rely on

own records but include information from all measured relatives.

The analyzed traits with available EBVs and key figures of their

distribution are shown in Table S1. The EBVs are expressed as a

deviation from the mean of a defined group of animals. Therefore

the median is close to zero.

We genotyped 192 artificial insemination boars of a commercial

line derived from the Swiss Large White breed for 62,163 SNP

markers with an average distance of 49 kb. The average call rate

per individual was 96.02%. We removed non-informative markers

and markers with low call rate. After these quality control steps

186 individuals and 47,045 SNPs remained for the final analysis.

We calculated genome-wide pairwise identity-by-state distances

and quantified the population stratification (Figure S1). Depending

on the analyzed trait the calculated genomic inflation factor varied

between 1.15 and 2 indicating that our material was highly

stratified. Performing association studies with stratified samples

can lead to false positive results, i.e. detected associations can be

due to the underlying structure of the population instead of a

biologically meaningful association with one or several genes.

Therefore, we corrected for the population stratification in our

association analysis using the egscore function implemented in

GenABEL and by calculating stratified associations within clusters.

These corrections in addition to genomic control reduced the

genomic inflation factor to reasonable values between 1.00 and

1.01 in all analyses (Figure 1).

We set the p-value thresholds for moderately significant and

highly significant associations at 561025 and 561027, respective-

ly. We did not detect any highly significant associations in our

material. However, we detected four QTL with moderately

significant associations (Table 1).

For the EBV pH1 we detected a QTL on SSC 14. We

determined the positions of the associated markers in the Sscrofa

10.2 assembly of the pig genome. We observed two additional

SNPs that are associated with EBV pH1, which are no longer

contained in the Sscrofa 10.2 assembly. In the previous Sscrofa 9.2

assembly one of these two SNPs resided on SSC 11, while the

other was on SSC 3, and may thus represent potential additional

QTL for the EBV pH1.

For the EBV carcass length we observed two closely spaced

associated SNPs on SSC 2 (Table 1). The highest significance in

our study was observed for a QTL for the EBV rear view hind legs

with a p-value after correction for population stratification of

4.9961026. We observed two QTL supported by multiple closely

spaced SNPs for this trait on SSC 10 and SSC 16, respectively

(Table 1).

We grouped the animals according to genotype at the best-

associated SNPs for the four detected QTL and analyzed their

phenotype distribution (Figure 2). The QTL for EBV pH1 showed

a largely additive effect. In contrast, the genotypes at the QTL for

the EBV carcass length and the QTL on SSC 10 for EBV rear

Figure 1. Manhattan plots of genome-wide association studies
for EBVs of commercially important traits in pigs. The red lines
indicate the significance threshold for moderately significant associa-
tions (p = 561025). ‘‘Chromosome 0’’ harbors SNP markers that have
not yet been mapped to the pig reference genome. The inserted
quantile-quantile (QQ) plots show the observed versus expected log p-
values. The straight line in the QQ plots indicates the distribution of SNP
markers under the null hypothesis and the skew at the right edge
indicate that these markers are stronger associated with the traits than
it would be expected by chance. Please note that in Figure 1A there are
appear to be associated SNPs on SSC 3, 11, and 14. The two associated
SNPs on SSC 3 and 11 mapped to these chromosomes in the Sscrofa 9.2
assembly, but are no longer placed on any chromosome in the Sscrofa
10.2 assembly.
doi:10.1371/journal.pone.0055951.g001
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view hind legs indicated a recessive effect of the variant allele.

Finally, at the QTL on SSC 16 for EBV rear view hind legs,

heterozygous animals showed EBVs that are outside of the range

of animals with the two alternative homozygous genotypes

(overdominance).

Discussion

In this study we identified four QTL with moderate significance

in a Swiss commercial pig population. We think that the relatively

low number of detected QTL is primarily due to the small number

of animals used in this study. The population substructure with

different subclusters in our animal cohort (Figure S1) required

Table 1. Top allelic association hits in the GWAS for QTL affecting commercially important traits.

Trait Marker Chromosome
Position (Sscrofa build
10.2)b Alleles MAF praw

a

pH1 ASGA0061594 14 14,730,418 C/T 0.49 1.5761025

H3GA0032045 n.d.b n.d.b A/C 0.35 2.5961025

ASGA0105130 n.d.b n.d.b C/T 0.49 2.7461025

carcass length ASGA0010032 2 42,938,876 A/G 0.38 2.7361025

H3GA0006598 2 42,886,909 C/T 0.23 4.7661025

rear view hind legs H3GA0045902 16 6,289,550 T/G 0.50 4.9961026

ASGA0072056 16 6,198,618 A/G 0.44 7.6861026

H3GA0045917 16 6,343,134 C/T 0.40 1.4261025

H3GA0045908 16 6,312,026 T/C 0.41 1.9661025

ALGA0058443 10 40,670,821 C/A 0.37 3.3561025

ALGA0058422 10 39,424,934 A/G 0.44 4.5661025

MARC0010334 10 39,538,944 T/C 0.44 4.5661025

ALGA0058431 10 39,626,717 C/T 0.44 4.5661025

DRGA0010453 10 39,667,084 C/T 0.44 4.5661025

ap-values were calculated using x2 tests in an allelic association study.
bThe positions of the associated SNPs on the latest version of the pig reference genome were determined by BLAST searches with the flanking sequences of the SNPs as
provided by illumina with respect to the Sscrofa 10.2 assembly. Some of the flanking sequences did not give a significant BLAST hit with respect to this genome
reference sequence.
doi:10.1371/journal.pone.0055951.t001

Figure 2. Genotype-phenotype correlations. The animals were grouped according to genotype at the best associated SNPs of each of the four
detected QTL. Animal numbers are indicated at the bottom. The call rates for these SNPs were .98.9%. For each of the four QTL the homozygous
alternative genotype classes have different phenotypic distributions (p,0.05, Welch’s t-test). (A) EBV pH1 distributions with respect to genotype at
SNP ASGA0061594 on SSC 14. (B) EBV carcass length in boars with respect to genotype at SNP ASGA0010032 on SSC 2. (C) EBV rear view hind legs
distributions in Swiss Large White boars with respect to genotype at SNP ALGA0058443 on SSC 10. (D) EBV rear view hind legs distributions in Swiss
Large White boars with respect to genotype at SNP H3GA0045902 on SSC 16.
doi:10.1371/journal.pone.0055951.g002
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correction of the p-values for the effects of the population

stratification, which also negatively affected the power of the

GWAS. The limited power of our study design is reflected by the

fact that we only found QTL with very even allele distributions.

The best-associated SNPs at the four detected QTL had MAFs

between 0.37 and 0.50. Considering all associated SNPs, the

lowest MAF was 0.23 at marker H3GA0006598 on SSC 2. The

detection of QTL caused by rare alleles of the same effect size

would have required larger animal numbers.

For three of the four detected QTL, similar QTL have

previously been identified at roughly the same locations in other

pig populations. Lee et al. reported a QTL for carcass length in an

experimental Meishan6wild boar family on SSC 2 at 20.8 cM

[29]. Additionally, Evans et al. identified a QTL for carcass length

on SSC 2 in the region of 0–10 cM in a Landrace population [30].

A QTL for ‘‘rear upright legs’’, which might be a correlated trait

to the rear view hind leg score of our analysis, was identified at

43 Mb on SSC 10 [31] This QTL was identified by genome-wide

association study in commercial pigs from Large White or Large

White6Landrace crosses. Another study identified a QTL for rear

leg score in a Japanese Landrace population at 82 cM on SSC 10

[32]. Finally, Lee et al. reported QTLs for the trait ‘‘back legs’’ in

a Large White6Meishan crossbred population on SSC 10 and

SSC 16 at 126 cM and 10 cM, respectively [33]. It is very difficult

to evaluate whether these reported QTL are really the same QTL

that we found as QTL from linkage analyses were typically

mapped with very low resolution and have very large confidence

intervals. If QTL are independently discovered in different

populations, this suggests that they may indeed be due to a

biologically relevant genetic variation rather than to confounding

effects such as e.g. population stratification artifacts.

So far, we have no knowledge of a study concerning the trait pH

one hour post mortem. There are several studies about the pH 45

minutes post mortem which closely correlates with the trait used in

our analysis (PigQTLdb, http://www.animalgenome.org/cgi-bin/

QTLdb/SS/index). However, a QTL for pH 45 minutes post

mortem has not been reported on SSC 14. Given the moderate

significance of our QTL, a replication study with independent

animals would be desirable to confirm the results. Nonetheless, our

findings offer a chance to unravel new QTL that contribute to the

meat maturation.

The QTL for EBV pH1 detected in our study shows a largely

additive effect (Fig. 2A) whereas the QTL for EBV carcass length

and EBV rear view hind legs on SSC 10 indicate a recessive effect

of the variant allele (Fig. 2B & C). This could be either due to

coding variants or to regulatory variants that change the

quantitative expression levels of the causative genes. On the other

hand, the QTL for EBV rear view hind legs on SSC 16 does not

show a simple additive effect (Fig. 2D). For this QTL, animals

being heterozygous at the best associated SNP show more extreme

phenotypic levels than animals with either homozygous genotype.

It seems unlikely that such an overdominance effect can be caused

by simple quantitative differences in mRNA expression of the

underlying genes. One possible explanation would be provided by

non-synonymous variants in genes encoding oligomeric proteins.

In such a scenario, it is feasible that oligomers of truly identical

proteins (in homozygous animals) have very different properties

than oligomers of allelic variants (in heterozygous animals).

Our study provides another example of the usefulness of the

PorcineSNP60 BeadChip for genome-wide association studies in

pigs. This tool allows the detection of QTL for commercially

important traits in pigs. However, it must also be noted that due to

the imperfect pig reference genome assembly, the exact genome

positions of many markers on this tool are not clear. We observed

very significant shifts of some associated markers between the

Sscrofa9.2 and the Sscrofa10.2 assembly. Consequently, the

marker spacing may also be expected to be somewhat irregular.

Thus, it is quite possible that some real QTL might have been

missed due to insufficient marker coverage of the PorcineSNP60

BeadChip. With rapidly increasing genomic resources for the pig,

it may be expected that improved genotyping tools will soon

become available.

In conclusion, we have mapped four QTL by genome-wide

association mapping in Swiss commercial pigs. Three of these

QTL coincide with previously detected QTL for similar traits in

other independent pig populations while the QTL for EBV pH1

on SSC 14 is described for the first time.

Materials and Methods

Animals and phenotypic data
We obtained previously archived tissue samples of 192 artificial

insemination boars from the commercial PremoH line, which is

derived from the Swiss Large White breed. The animals were from

the breeding company SUISAG (www.suisag.ch) and born

between 2004 and 2009. All animals underwent a performance

and progeny test according to the test scheme of SUISAG [34].

We obtained 26 corresponding estimated breeding values (EBV)

for different pig production traits and used them as phenotypes in

our analysis (Table S1). The EBVs were routinely estimated by

SUISAG in 3 separate analyses using multiple trait animal models

and BLUP [35]. For exterior traits linear description scores by

trained technicians on animals tested in the central testing station

Sempach and on-farm tested selection candidates were considered.

The trait rear view hind legs describes the hind legs from an

extreme X- (score 1) to an extreme O- form (score 7). Carcass

length was measured in centimeters from the cranial edge of the

first cervical vertebra to the cranial edge of the pelvic bone 24 h

post mortem in all station tested pigs. The estimation for

production traits of field tested crossbred progeny of artificial

insemination sires were included in addition to the animals scored

for exterior traits. pH1 was measured 1 hour post mortem at the

musculus longissimus dorsi in all station tested pigs. Mating and litter

records obtained from herdbook farms were used for the

estimation of breeding values for reproduction traits. There were

less animals with EBVs on reproduction traits, as artificial

insemination sires need litter records of daughters to reach an

acceptable accuracy.

SNP array genotyping
We isolated genomic DNA from tissue samples with the

Nucleon Bacc2 kit (GE Healthcare) according to the manufactur-

er’s protocol. DNA samples with a ratio of A260/280 higher than

1.8 and a concentration of approximately 50 ng/ml were

genotyped at the Leibniz Institute for Farm Animal Biology,

Dummerstorf, Germany using the Illumina Porcine60SNP

BeadChip containing 62,163 markers. We used BLASTN to

determine the positions of the markers in the Sscrofa 10.2 genome

reference assembly of the pig.

Quality control and genome-wide association analyses
We analyzed the data with the GenABEL package [36] in the R

environment. Initially, we removed all individuals with a call rate

,95% and checked the dataset for replicates and gender

mismatch. We excluded markers strongly deviating from Hardy-

Weinberg equilibrium (p,0.0001), markers having a call rate

,95%, and markers with a minor allele frequency of ,5%. After

GWAS Pig Production Traits
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these quality control steps 186 individuals and 47,045 SNPs

remained for the analysis.

We calculated genome-wide pairwise identity-by-state (IBS)

distances to measure population stratification as we used samples

of animals with expected diverse genetics. Based on genetic

distances between individuals projected into two-dimensional

space using multidimensional scaling we grouped the animals into

three subpopulations. Additionally, the procedure egscore which

uses principal component analysis [37] was used to correct for

population stratification in the dataset. We performed allelic

genome-wide association analyses for all 26 EBVs. We considered

p-values,561027 as indicative for strong evidence of association

and p-values between 561025 and 561027 as indicative for

moderate evidence of association according to the recommenda-

tion of the Wellcome Trust Case Control Consortium [38].

Supporting Information

Figure S1 Multidimensional scaling (MDS) plot showing
the genomic kinship between the analyzed animals. This

plot visualizes the overall genetic distances between the boars

based on 2,000 markers randomly selected out of the total of

47,045 SNP markers. We grouped the animals into three

subpopulations based on genetic distances between individuals.

(PDF)

Table S1 Estimated breeding values of genotyped
material with their median and distribution.

(PDF)
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