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Detailed conductance-based nonlinear neuron models consisting of thousands of synapses

are key for understanding of the computational properties of single neurons and large neu-

ronal networks, and for interpreting experimental results. Simulations of these models are

computationally expensive, considerably curtailing their utility. Neuron_Reduce is a new

analytical approach to reduce the morphological complexity and computational time of

nonlinear neuron models. Synapses and active membrane channels are mapped to the

reduced model preserving their transfer impedance to the soma; synapses with identical

transfer impedance are merged into one NEURON process still retaining their individual

activation times. Neuron_Reduce accelerates the simulations by 40–250 folds for a variety of

cell types and realistic number (10,000–100,000) of synapses while closely replicating

voltage dynamics and specific dendritic computations. The reduced neuron-models will

enable realistic simulations of neural networks at unprecedented scale, including networks

emerging from micro-connectomics efforts and biologically-inspired “deep networks”.

Neuron_Reduce is publicly available and is straightforward to implement.
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Compartmental models (CMs) were first employed by
Wilfrid Rall1 to study the integrative properties of neu-
rons. They enabled him to explore the impact of spatio-

temporal activation of conductance-based dendritic synapses on
the neuron’s output and the effect of the dendritic location of a
synapse on the time course of the somatic excitatory postsynaptic
potential2. By simulating electrically distributed neuron models,
Rall demonstrated how the cable properties of dendrites explain
the variety of somatic excitatory postsynaptic potential (EPSP)
shapes that were recorded at the soma of α-motoneurons, thus
negating the dominant explanation at that time that the differ-
ences in shapes of the somatic EPSPs in these cells result from
differences in the kinetics of the respective synapses. This was an
impressive example that faithful models of the neuron (as a
distributed rather than a “point” electrical unit) are essential for
the correct interpretation of experimental results. Since Rall’s
1964 and 1967 studies using CMs, EPSP “shape indices” mea-
sured at the soma are routinely used for estimating the electro-
tonic distance of dendritic synapses from the soma.

Over the years, detailed CMs of neurons have provided key
insights into hundreds of experimental findings, both at the
single-cell and the network levels. A notable example at the
single-cell level is the explanation as to why the somatic Na+

action potential propagates backward in the soma-to-dendrites
direction and (typically) not vice versa3. CMs have also pin-
pointed the conditions for the generation of local dendritic Ca2+

spikes4–6 and provided an explanation for the spatial restriction
of the active spread of dendritic spikes from distal dendrites to the
soma7 and see also refs. 8–14. Today, detailed CMs are even
being used for simulating signal processing in human pyramidal
neurons, including their large numbers of dendritic spines/
synapses15.

At the network level, detailed CMs are utilized for such note-
worthy projects as large-scale simulations of densely in silico
reconstructed cortical circuits16,17 and the overarching goal of the
Allen Institute to simulate large parts of the visual system of the
mouse18,19. Because detailed compartmental modeling is
increasingly becoming an essential tool for the understanding
of diverse neuronal phenomena, major efforts have been invested
in developing user-friendly computer software that implements
detailed CMs, the best known of which are NEURON20, GEN-
ESIS21, NeuroConstruct22, PyNN23, and, recently, BioNet24,
NTS25, NetPyNE26, and Geppetto27.

Modern personal computers can simulate tens of seconds of
electrical activity of single neurons comprising thousands of
nonlinear compartments and synapses. However, they handle
poorly cases where many model configurations need to be eval-
uated such as in large-scale parameter fitting for single-neuron
models5,28, or when the dendritic tree is morphologically and
electrically highly intricate and consists of tens of thousands of
dendritic synapses, as with the human cortical pyramidal neu-
rons15. When the aim is to simulate a neuronal network con-
sisting of hundreds of thousands of such neurons, only very
powerful computers can cope. For example, the simulation of a
cortical network consisting of 200,000 detailed neuron models on
the BlueGene/Q supercomputer takes several hours to simulate
30 s of biological time17.

To overcome this obstacle, two approaches have been pursued.
The first involves developing alternative, cheaper, and more
efficient computing architectures (e.g., neuromorphic-based
computers29,30). These have not yet reached the stage where
they can simulate large-scale network models with neurons
consisting of branched nonlinear dendrites having a realistic
number of synapses. The other approach is to simplify neuron
models while preserving their input/output relationship as
faithfully as possible. Rall31 was the first to suggest a reduction

scheme in his “equivalent cylinder” model, which showed that,
for certain idealized passive dendritic trees, the whole tree could
be collapsed into a single cylinder that was analytically identical
to the detailed tree. The “equivalent cylinder” preserves the total
dendritic membrane area, the electrotonic length of the den-
drites, and, most importantly, the postsynaptic potential
(amplitude and time course) at the soma for a dendritic synapse
when mapped to its respective electrotonic location on the
“equivalent cylinder”32,33. However, this method is not applic-
able for dendritic trees with large variability in their cable lengths
(e.g., pyramidal neurons with a long apical tree and short basal
trees), conductance-based synapses, or for dendrites with non-
linear membrane properties.

Over the years, several different reduction schemes have been
proposed; for example, a recent work mapped all the synapses to
a single compartment, taking the filtering effect of the dendrites
into account34. Other methods reduce the detailed morphology to
a simplified geometric model while preserving the total mem-
brane area35–37 or the axial resistivity38; see also refs. 12,39,40.
However, these methods have a variety of drawbacks; in parti-
cular, they are either “hand fitted” and thus lack a clear analytical
underpinning or are complicated to implement, and in some
cases, their computational advantage for realistic numbers
(thousands) of synapses is not quantified. Most of these methods
do not support dendrites with active conductances35,38,39,41,42

and they have not been tested on a broad range of neuron types.
Importantly, none of the previous methods provided an easy-to-
use open access implementation. Thus, today there is no simple,
publicly available reduction method for neuron models that can
be used by the extensive neuroscience and machine-learning
communities.

To respond to this need, the present study provides an analytic
method for reducing the complexity of detailed neuron models
while faithfully preserving the essential input/output properties of
these models. Neuron_Reduce is based on key theoretical insights
from Rall’s cable theory, and its implementation for any neuron
type is straightforward without requiring hand-tuning. Depend-
ing on the neuron modeled and the number of synapses, Neu-
ron_Reduce accelerates the simulation run-time by a factor of up
to 250 while preserving the identity of individual synapses and
their respective dendrites. It also preserves specific membrane
properties and dendritic nonlinearities, hence maintaining spe-
cific dendritic computations. Neuron_Reduce is easy to use, fully
documented, and publicly available on GitHub (https://github.
com/orena1/neuron_reduce).

Results
Mapping of a detailed neuron model to a multi-cylinder model.
The thrust of our analytical reduction method (Neuron_Reduce)
is described in Fig. 1a–c. This method is based on representing
each of the original stem dendrites by a single cylindrical cable,
which has the same specific membrane resistivity (Rm, in Ωcm2),
capacitance (Cm, in F/cm2), and axial resistivity (Ra, in Ωcm) as in
the detailed tree (Fig. 1a). Also, each cylindrical cable satisfies two
constraints: (i) the magnitude of the transfer impedance,
jZ0;L ωð Þj ¼ jV0 ωð Þ=IL ωð Þj, from its distal sealed end (X= L) to
its origin at the soma end (X= 0) is identical to the magnitude of
the transfer impedance from the electrotonically most distal
dendritic tip to the soma in the respective original dendrite; (ii) at
its proximal end (X= 0), the magnitude of the input impedance,
jZ0;0 ωð Þj ¼ jV0 ωð Þ=I0 ωð Þj, is identical to that of the respective
stem dendrite (when decoupled from the soma). As shown in Eqs.
(1)–(11) (Methods), these two constraints, while preserving the
specific membrane and axial properties, guarantee a unique
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cylindrical cable (with a specific diameter and length) for each of
the original dendrites.

Because the magnitude of the transfer impedance in both the
original dendrite and in the respective cylindrical cable spans
from jZ0;LðωÞj to jZ0;0ðωÞj, all dendritic loci having intermediate
transfer impedance values can be mapped to a specific locus in
the respective cylinder that preserves this intermediate transfer
impedance. This mapping guarantees (for the passive case) that
the magnitude of the somatic voltage response, V0(ω), to an
input current, Ix(ω), injected at a dendritic location, x, will be
identical in both the detailed and the reduced cylinder
models (see Methods). Consequently, synapses and nonlinear
ion channels are mapped to their respective loci in the
reduced cylinder while preserving the respective transfer
impedance to the soma (see Fig. 1, Step B, and Methods). Based
on Eqs. (1)–(11), Neuron_Reduce generates a reduced multi-
cylindrical tree for any ω value (different reduced models for

different ω values). Conveniently, we found a close match
between the detailed and the reduced models for ω= 0 (the
steady-state case). Therefore, all figures in this work are based on
reduced models with ω= 0 (see Discussion).

Neuron_Reduce implemented on L5 pyramidal cell with
synapses. In Fig. 1, Neuron_Reduce is implemented on a detailed
CM of a 3D reconstructed layer 5 pyramidal neuron from the rat
somatosensory cortex (same model as in ref. 5). This neuron
consists of eight basal dendrites and one apical dendrite (shown
in different colors) stemming from the soma. This neuron model
has active membrane ion channels at both the soma and dendrites
(see below). However, Neuron_Reduce first treats the modeled
tree as passive by abolishing all voltage-dependent membrane
conductances, and only retaining the leak conductance. Imple-
menting Eqs. (1)–(11) for this cell produced a reduced, multi-
cylindrical, passive model (Fig. 1b, Step A) consisting of only 50
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Fig. 1 An analytic method for reducing neuron model complexity (Neuron_Reduce). a Detailed passive model of 3D reconstructed L5 thick-tufted
pyramidal cell from rat neocortex. Its nine stem dendrites (one apical and 8 basal) are depicted in different colors. b Each original stem dendrite is reduced
to a single cylinder that retains the specific passive cable properties (Rm, Cm, and Ra) of the original tree. The diameter and length of the respective
cylinders are computed analytically using Eqs. (1)–(11), such that each cylinder preserves both the transfer resistance from the most electrotonically distal
dendritic tip to the soma as well as the input resistance at the soma end of the corresponding stem dendrite. This generates a unique cylindrical cable for
each of the original stem dendrites. Scale bars in a, b are 100 µm. c Synapses with similar transfer resistance to the soma (exemplar synapses are marked
as 1–4 at top right) are all mapped to the respective locus in the reduced cylinder so that their transfer resistance is similar in the two models. In the
reduced model, these synapses are merged into one “NEURON” process (red synapse in b), but they retain their individual activation time (see Methods
and Supplementary Fig. 1). The same mapping also holds for active membrane conductances (yellow region, denoting the Ca2+ “hot spot” in the apical
tree). d Transfer impedance ðZd;0 ¼ Z0;dÞ between point d on the apical tree (shown in a, b) and the soma (X= 0) as a function of the input frequency in
both the detailed (black trace) and the reduced (red trace) models. e Composite somatic EPSPs resulting from sequential activation of the four distal apical
synapses shown in c in the detailed model (black trace) and the reduced model (red trace). In this simulation the dendritic tree was passive. The synapses
were activated in temporal order 1, 2, 3, 4 as shown by the vertical lines below the composite EPSP. The respective peak conductances of these AMPA-
based synapses were 0.6, 0.3, 0.4, and 0.4 nS (details in Supplementary Table 2 and see Supplementary Fig. 1 for the active case).
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compartments rather than the 642 compartments in the
detailed model.

Figure 1c shows an example of four synapses located at
different apical branches. These synapses all have the same
transfer resistance to the soma in the detailed tree. Therefore,
Neuron_Reduce maps these synapses to a single respective locus
in the respective cylinder, such that their transfer resistance is
identical in both models. In the reduced model, these synapses are
merged into one “NEURON” process (red synapse in Fig. 1b).
However, they retain their individual activation times (see
Methods). Figure 1d compares the transfer impedance between
a specific point in the apical tree (marked by “d” in Fig. 1a, b) and
the soma. By construction, for the passive case, the transfer
resistance (for ω= 0) is equivalent for the respective loci in the
detailed and the reduced model. This is indeed the case in Fig. 1d
(left-most point on the x-axis), thus validating the implementa-
tion of the Neuron_Reduce analytic method. Note that although
constructed using ω= 0, the similarity between the detailed and
reduced model also holds for higher input frequencies. However,
for ω around 10–100 Hz, the transfer impedance from d to soma
(and vice versa, due to the reciprocity theorem for passive
systems43) is somewhat larger in the reduced model (compare the
red and black lines).

To test the performance of Neuron_Reduce on transient
synaptic inputs (composed of mixed input frequencies), we
sequentially activated the four synapses shown in Fig. 1c in both
the detailed and the reduced models (see Methods and
Supplementary Table 2). Figure 1e shows the close similarity in

the composite somatic EPSPs between the two models, further
validating that the mapping of the detailed model to the reduced
model using ω= 0 provides satisfactory results for the passive
case (see also Supplementary Fig. 2).

Accuracy and speed-up of Neuron_Reduce for nonlinear
models. To measure the accuracy of Neuron_Reduce for a fully-
active nonlinear neuron model, we ran a comprehensive set of
simulations using the well-established case of the L5 pyramidal
cell model5 shown in Fig. 2a (same cell as in Fig. 1). This neuron
model includes a variety of nonlinear dendritic channels includ-
ing a voltage-dependent Ca2+ “hot spot” in the apical tuft
(schematic yellow region in Fig. 1c) and a Na+-based spiking
mechanism in the cell body. We randomly distributed 8000
excitatory and 2000 inhibitory synapses on the modeled dendritic
tree (the synaptic parameters are listed in Supplementary Table 2)
and used Neuron_Reduce to generate a reduced model for this
cell. We simulated the detailed model by randomly activating the
excitatory synapses at 5 Hz and the inhibitory synapses at 10 Hz
(see Methods). The detailed model responded with an average
firing rate of 11.8 Hz (black trace in Fig. 2b; only 2 out of 50 s
simulation time are shown). The average firing rate of the
respective reduced model in response to the same synaptic input
was 11.3 Hz (red trace, Fig. 2b; spike timings are shown by small
dots on the top). The cross-correlation between the two spike
trains peaked around zero (Fig. 2c), and the inter-spike interval
(ISI) distributions of the two models were similar (Fig. 2d).
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Fig. 2 Neuron_Reduce faithfully replicated the I/O properties of a detailed nonlinear model of a L5 pyramidal cell. a Layer 5 pyramidal cell model5 as in
Fig. 1a, with 8000 (AMPA+NMDA) excitatory (magenta dots) and 2000 inhibitory synapses (cyan dots, see Supplementary Table 2 for synaptic
parameters). Excitatory synapses were activated randomly at 5 Hz and the inhibitory synapses at 10 Hz. This detailed model consists of a dendritic Ca2+

“hot spot” (as in Fig. 1c) and a Na+ spiking mechanism at the cell body. Scale bar 100 µm. b An example of the voltage dynamics at the soma of the detailed
model (black trace) and the reduced model (red trace); spike times are represented by the black and red dots above the respective spikes. c Cross-
correlation between spikes in the reduced versus the detailed models. d Inter-spike interval (ISI) distributions for the two models. e Output firing rate of the
reduced (red) versus the detailed (black) models as a function of the firing rate of the excitatory synapses. Gray dots represent the case shown in b. f
SPIKE-synchronization measure between the two models as a function of the firing rate of the detailed model for the case of only AMPA (blue) and AMPA
+NMDA synapses (orange). The performance of the reduced model with NMDA synapses was lower for low output frequency, but improved significantly
for output frequencies above ~7 Hz (see Discussion). g SPIKE synchronization between the detailed and the reduced models as a function of the firing rate
of the detailed model, for active and passive dendrites, and with/without NMDA-based synaptic conductance.
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The full range of responses to a random synaptic input for
the two models was explored by varying the firing rate of the
excitatory (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA)- and (N-methyl-D-aspartate) (NMDA)-based)
synapses and measuring the degree of similarity between the
firing rates of the two models, which indicated a good fit
between the two (Fig. 2e). We used the SPIKE-synchronization
measure44,45 to further quantify the similarity between the
spike trains of the detailed and reduced models. The SPIKE-
synchronization value for the two spike trains shown in Fig. 2b
was 0.8. In Fig. 2f, the SPIKE synchronization was computed as
a function of the output rate of the detailed model for both the
case where the excitatory synapses consisted of only an AMPA
component (blue) and for when they also consisted of an
NMDA component (orange). For the AMPA-only case, the
SPIKE synchronization was high for all output frequencies, but
was poor for low output frequencies when the synapses
consisted of an NMDA component, although improving
significantly for output frequencies above ~7 Hz (see Discus-
sion). Figure 2g shows the SPIKE-synchronization as a function
of the firing rate of the detailed model, for active and passive
dendrites and with/without NMDA-based synaptic conduc-
tance, demonstrating again that when NMDA synapses are
involved, the performance of the reduced model is low for low
output rates. We also tested other spike trains similarity
metrics46,47 (Supplementary Fig. 3) and found comparable
results to those shown in Fig. 2. We have also analyzed
the performance of Neuron_Reduce on two additional
patterns of synaptic input. In one case, the synaptic input was
activated in an oscillatory manner at different frequencies
(see Methods). In these cases, the spike-synchronization
measure ranged between 0.75 and 1 (Supplementary Fig. 4a,
b). In the other case, the synaptic input was taken from a
spontaneously active Blue Brain circuit17 (see Methods). In this
case, the spike-synchronization measure was 0.71 (Supplemen-
tary Fig. 4c).

We compared the performance of our reduction method to two
other reduction approaches, one of which was Rall’s “equivalent
cable” reduction method31,48. The other method maps all the
dendritic synapses to the somatic compartment, after computing
the filtering effect of the dendritic cable for each synapse34 (see
Methods). Neuron_Reduce outperformed both these reduction
methods (Supplementary Fig. 5).

Figure 3 compares the run-time of the detailed versus the
reduced model for the neuron model shown in Fig. 2a. For
example, simulating the detailed model with 10,000 synapses for
50 s of biological time required 2906 s of computer time (run-
time), whereas it took only 68.7 s in the reduced model, a ~42-
fold computational speed-up (see Supplementary Table 1). The
larger the number of synapses in the detailed model, the longer
the run-time (Fig. 3a). In contrast, the run-time in the reduced
model is only shallowly dependent on the number of synapses.
This is expected when considering the synaptic merging step in
our algorithm (see Discussion). The run-time of the reduced
model depends on the number of compartments per cylinder; it
increases sharply with an increasing number of compartments
(the run-time ratio between the detailed and the reduced models
decreases, gray line in Fig. 3b). However, there was no
improvement in the SPIKE-synchronization measure when the
spatial discretization, ΔX, per compartment was <0.1λ, where λ is
the length constant (Fig. 3b blue line and see also previous
research on the subject49). Therefore, all the results presented
in Figs. 1–7 are based on models with a ΔX that does not
exceed 0.1λ.

In Fig. 4 we compared the dendritic voltage in the detailed
model and in the respective location in the reduced model. We
found that: (i) the voltage transients could differ significantly in
dendritic branches that are all mapped to the same compartment
in the reduced model (e.g., compare the gray traces in the yellow
compartments in Fig. 4b). (ii) the average voltage trace of these
different dendritic branches (black trace in Fig. 4b) is similar to
the voltage in the respective compartment in the reduced model
(red trace in Fig. 4b). The implications of the latter finding for
capturing highly nonlinear local dendritic events is elaborated in
the Discussion.

Neuron_Reduce keeps dendritic nonlinearities and computa-
tions. To determine the capabilities of the reduced models to
support nonlinear dendritic phenomena and dendritic com-
putations, we repeated two classical experiments in both the
detailed and the reduced models of the L5 pyramidal cell shown
in Fig. 1. The first simulated experiment started by injecting a
brief depolarizing step current to the soma of the detailed
model to generate a somatic Na+ action potential (AP, black
trace in Fig. 5a). This AP propagated backward to the apical
dendrite, the BPAP (red trace in Fig. 5a). Repeating the same
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Fig. 3 Neuron_Reduce enhances the simulation speed by up to several hundred fold. a Simulation run-time for the detailed (black) and the reduced
models (red) of layer 5 pyramidal cell shown in Fig. 2a, for a simulation of 50 s, and their ratio (the speed-up, gray) as a function of the number of
simulated (GABAA-, AMPA- and NMDA- based) synapses. Due to the almost constant run-time of the reduced model, the run-time ratio increases with
larger number of synapses. Above 75,000 synapses, an additional effect becomes visible: the detailed model no longer fits into the cache of the CPU and
exhibits a supralinear increase in run-time. This can be seen by the black curve deviating from the dotted red curve, which shows the expected simulation
time for the detailed model assuming a constant computation cost per synapse (see also Supplementary Table 1). b Accuracy (blue) of the reduced model
and its speed-up in simulation run-time (gray) as a function of the number of electrical compartments per length constant for a neuron with
10,000 synapses (50 s per simulation).
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current injection in the reduced model led to a similar phe-
nomenon, but with a larger BPAP (Fig. 5c). The detailed model
also included a “hot region” with voltage-dependent calcium
conductances in its apical dendrite (see also Fig. 1). Combining
somatic current injection with synaptic-like transient depolar-
izing current injected to the apical nexus evoked a prolonged
Ca2+ spike in the distal apical dendrite (red trace at the apical
tree), which, in turn, generated a burst of somatic Na+ spikes
(the BPAP-activated Ca2+ spike (BAC) firing4,5,50, Fig. 5b).
Neuron_Reduce maps the nonlinear dendritic “hot” Ca2+

region to its respective location in the reduced model (see Fig. 1
and Methods). Figure 5c, d shows that the exact same combi-
nation of somatic and dendritic input currents also produced
the BAC firing phenomenon in the reduced model. However,
the reduced model was somewhat more excitable than the
detailed model; this resulted in a burst of three spikes with a
higher frequency (and sometimes with an additional spike) in
the reduced model (comparison between Fig. 5b–d).

The second simulated experiment attempted to replicate
theoretical and experimental results reported in previous
studies1,51,52. In these studies, several excitatory synapses were
activated sequentially in time, on a stretch of a basal dendrite,
either in the soma-to-dendrites (OUT) direction or vice versa
(the IN direction). Rall showed that the shape and size of the
resultant composite somatic EPSP depended strongly on the
spatio-temporal order of synaptic activation; it was always

larger and more delayed for the centripetal (dendrites-to-soma)
than for the centrifugal (soma-to-dendrites) sequence of
synaptic activation (this difference can serve to compute the
direction of motion51). It was shown that the difference in the
resulting somatic voltage peak between these two spatio-
temporal sequences of synaptic activation was enhanced when
nonlinear NMDA-dependent synapses were involved and that
it made it possible to discriminate between complex patterns of
dendritic activation52.

To simulate these phenomena, 12 excitatory synapses were
placed along one basal branch in the detailed model (red dots on
the green basal tree, Fig. 6a). At first, the synapses only had an
AMPA component. The synapses were activated in temporal
order from the tip to the soma (IN, cyan traces) or from the soma
to the tip (OUT, blue traces, see Methods for details). As
predicted by Rall, activation in the IN direction resulted in larger
and delayed somatic EPSP (cyan trace versus the blue trace in
Fig. 6b). Neuron_Reduce merged these 12 synapses into five point
processes along the respective cylinder (Fig. 6d). We repeated the
same experiment in the reduced model and found that the EPSP
resulting from the IN direction was larger and delayed, with a
similar EPSP waveform to that of the detailed model (Fig. 6e; see
also Supplementary Fig. 2 and Discussion). Next, an NMDA
component was added to the 12 simulated synapses; this resulted
in larger somatic EPSP amplitudes in both directions (and both
models) and a smaller difference in the peak timing between the

20 ms
20 mV

Soma

Dendrite

a b

Fig. 4 The dendritic potential in the reduced model represents the average dendritic voltage dynamics in the detailed model. a Detailed model (left)
and reduced model (right) of the cell shown in Fig. 2. Dendritic branches of the same color in the detailed model are all mapped to the respective
compartment with identical color in the reduced model. b For each of the four colored regions shown in a (and respective colored sphere at top left), the
voltage transients in individual branches are shown by the gray traces. Superimposed in black is the average voltage of these traces and in red is the voltage
transient in the respective compartment in the reduced model. The somatic spikes in the detailed model (black) and reduced model (red) are also shown.
The simulation is as in Fig. 2e, with excitatory synapses firing at 5.5 Hz. Scale bars for the respective morphologies are 100 µm.
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different directions in both the detailed and the reduced models
(comparison between Fig. 6c–f).

To generalize the impact of the spatio-temporal order of synaptic
activation, we used a directionality index suggested in a previous
study52. This measure estimates how different a given synaptic
sequence is from the IN sequence by calculating the number of
synaptic swaps needed to convert this given pattern into the IN
pattern (using the bubble-sort algorithm, see Methods). We tested
the EPSPs that resulted from different temporal combinations of
synaptic activation (each having a different directionality index),
both without (Fig. 6g) and with an NMDA component (Fig. 6i).
The peak somatic EPSP in the reduced model (red dots) was larger
than in the respective detailed model (black dots), both for the
AMPA-only case (by 1.71 ± 0.43mV; mean ± SD) and for the
AMPA+NMDA case (by 4.80 ± 0.74mV); see Supplementary
Fig. 1. Nevertheless, the behavior of the two models was similar
when the somatic voltage in the two models was subtracted by the
peak value obtained in the OUT direction (Fig. 6h, j). Then, the
difference between the reduced and the detailed models was, on
average, only 0.11 ± 0.43mV for the AMPA-only case and 0.35 ±
0.74mV for the AMPA+NMDA case. Thus, although the detailed
and the reduced models differ to a certain extent (see Discussion),
the capability of the reduced model to discriminate between spatio-
temporal patterns of synaptic activation is similar to that of the
detailed model.

Neuron-Reduce applied successfully on a variety of neurons.
We next tested the utility of Neuron_Reduce on 13 different
neuron models from different brain regions (Fig. 7). Four models

were obtained from the Blue Brain database17,53: L6 tufted pyr-
amidal cell, L4 double bouquet cell, L4 spiny stellate cell, and L5
Martinotti cell, all from the rat somatosensory cortex. Two addi-
tional models were obtained from the Allen Institute cell-type
database11: an L4 spiny cell and an L1 aspiny cell from the mouse
visual cortex. Medium spiny neuron from the mouse basal gang-
lia54; two rat thalamocortical neurons55; Golgi cell from mouse
cerebellar cortex; and one inhibitory hippocampal neuron from the
rat56. We also took two additional neuron models from our
laboratory: rat L2/3 large basket cell57 and a model of a human
L2/3 pyramidal cell from the temporal cortex58. All these models
were based on 3D reconstructions and were constrained by
experimental recordings (see Supplementary Table 2 for details on
the various neuron models and input parameters).

Neuron_Reduce successfully generated a reduced model for all
these different cell types, with highly faithful response properties in
all cases (Fig. 7). Three examples with their respective morphologies
for the detailed and reduced models are shown in Fig. 7a–c. For a
given input, we measured the spiking activity of the detailed and
reduced models (Fig. 7d–f) and calculated the corresponding
SPIKE-synchronization values. For the L6 tufted PC model (Fig. 7a,
d), the L2/3 large basket cell model (Fig. 7b, e), and the L4 double
bouquet model (Fig. 7c, f), the SPIKE-synchronization values were
0.74, 0.85, and 0.91, respectively, for 50-s-long simulations (only 2 s
are shown in Fig. 7d–f). The SPIKE-synchronization values for
additional inputs, and for the other 10 neuron models and their
corresponding reduced models, are shown in Fig. 7g. We have also
tested the performance of Neuron_Reduce and the variability of the
SPIKE-synchronization measure using eight neocortical neuron

Vm

Istim

Vm

Istim

Vm

Istim

Vm

Istim

20 mV
0.9 nA

10 ms

a

b

c

d

Fig. 5 Dendritic Ca2+ spike and BAC firing faithfully replicated in the reduced model. a, b (Left) Detailed L5 pyramidal cell model with nonlinear Ca2+

“hot spot” (same model as in Fig. 2). a Injecting a depolarizing step current to the soma (0.95 nA for 8.5 ms) in the detailed model evoked a somatic action
potential, AP (black trace) that propagated backward semi-actively into the apical tree (red trace). b Combining the somatic input with a transient
synaptic-like current injection (0.95 nA peak value with 0.5 and 5 ms rise time and decay time, respectively; red transient) to the “hot region” in the apical
dendrite evoked a prolonged local Ca2+ spike, which, in turn, triggered a burst of two extra somatic Na+ spikes (the BAC firing phenomenon50). c, d Same
as in a, b, but for the reduced model. Scale bars for the respective morphologies are 100 µm.
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types, with 11 cell models per type taken from the Blue Brain cells
dataset17,53. Supplementary Fig. 6 shows that, for all cells, the
SPIKE-synchronization measure remains similar to that found in
Fig. 7 with mean values per cell type ranging between 0.43 and
0.86. Additionally, as in Fig. 7, it increased with the output
frequency of the modeled cell.

Discussion
Neuron_Reduce is a new tool for simplifying complex neuron
models while enhancing their simulation run-time. It analytically
maps the detailed tree into a reduced multi-cylindrical tree, based
on Rall’s cable theory and linear circuit theory (Fig. 1). The
underpinning of the reduction algorithm is that it preserves the
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magnitude of the transfer impedance jZ0;j ωð Þj from each den-
dritic location, j, to the soma (the dendro-somatic direction, Eqs.
(1)–(11) in Methods). Since in linear systems it holds that
jZ0;jðωÞj ¼ jZj;0ðωÞj, for passive dendritic trees it also preserves
the transfer impedance in the soma-to-dendritic direction (e.g.,
current injection at the soma will result in the same voltage
response at the respective sites in the detailed and reduced
models59).

Note that dendritic voltage transients (e.g., synaptic potentials)
contain a range of frequencies, ω. We however had to select one
frequency to use for the mapping of the detailed-to-the-reduced
tree. Consequently, we examined a whole range of possible ω
values for this mapping. Conveniently, we found that ω= 0 is the
preferred frequency for generating the reduced model (namely,
when the mapping from detailed-to-the-reduced model is per-
formed based on the transfer resistance jZ0;j ω ¼ 0ð Þj ¼ jR0;jj, see
Supplementary Fig. 7). This result is actually not surprising;
Rinzel and Rall33 showed that, in passive trees and current-based
synapses, the attenuation of the voltage time integral (the area
below the EPSPs) is identical to the attenuation of steady-state
voltage. In other words, when using the transfer resistance for our
mapping procedure, we preserved the total charge transfer (which
in our case, was proportional to the voltage time integral) from
the synapse to the soma (and vice versa), but not, for example, the
EPSP peak value.

Neuron_Reduce was proven to be accurate in replicating vol-
tage dynamics and spike timing for a large regime of input
parameters and a variety of neuron types (Fig. 7, Supplementary
Fig. 6, and Supplementary Table 2). This claim is based on using
several metrics for assessing the quality of the performance of the
reduced model (Supplementary Fig. 3). Neuron_Reduce is
straightforward to use, it is fast, and generally applicable, thus
enabling its implementation on any neuron morphology with any
number (even tens of thousands) of synapses. One key advantage
of Neuron_Reduce is that it retains the identity of individual
dendrites and synapses and that it maps dendritic nonlinearities
to their respective loci in the reduced model, hence preserving
local excitable dendritic phenomena and therefore maintaining
nonlinear dendritic computations. Neuron_Reduce also preserves
the passive cable properties (Rm, Ra, and Cm) of the detailed
model, thus preserving synaptic integration and other temporal
aspects of the detailed model. Neuron_Reduce can also be applied
for reducing cells connected with gap junctions. As Neuron_Re-
duce preserves the transfer resistance from the location of the
synapses (in this case the gap junction) to the soma and vice
versa, one expects that the coupling coefficient between the two
connected cells will be preserved in the reduced models, after
mapping the gap junction to its appropriate location in the
reduced model.

Neuron_Reduce enhances the computational speed by a factor
of up to several hundred folds, depending on the simulated
morphology and the number of simulated synapses (Fig. 3 and
Supplementary Table 1). This combination of capabilities, toge-
ther with its user-friendly documentation and its public

availability, make Neuron_Reduce a promising method for the
community of neuronal modelers and computational neu-
roscientists, and for the growing community interested in “bio-
physical deep learning.”

For a large number of synapses and complex morphologies, the
run-time of Neuron_Reduce models can be accelerated by up to
250-fold as compared to their respective detailed models (Fig. 3
and Supplementary Table 1). This is achieved in two associated
steps. First, the algorithm reduces the number of compartments
of the neuron model; for example, for the reconstructed tree in
Fig. 1, it reduced the number of compartments from 642 to 50.
Then, synapses (and ion channels) that are mapped to the same
electrical compartment in the reduced tree (because they have
similar transfer resistance to the soma) are merged into one point
process in NEURON. Each of these steps on its own has a rela-
tively small effect on the run-time. However, when combined, a
large (supralinear) improvement in the computational speed is
achieved (Supplementary Table 1). This is because at each time
step, NEURON computes both the voltage in each electrical
compartment as well as the currents and states of each point
process and membrane mechanism (synapses and conductances).
Reducing the number of compartments in a model decreases the
number of equations to be solved and the number of synapses to
be simulated (due to the reduced number of compartments, a
larger number of synapses are merged together). Importantly,
merging synapses preserves the activation time of each synapse.
Note, however, that in its present state, Neuron_Reduce cannot
merge synapses with different kinetics.

Several other reduction methods for single neurons have been
proposed over the years12,34–39,41. Most are not based on an
analytic underpinning and thus require hand-tuning of the
respective biophysical and morphological parameters. In addi-
tion, most of these methods have not been examined using rea-
listic numbers of dendritic synapses and are incapable of
systematic incorporation of dendritic nonlinearities. In most
cases, their accuracy has not been assessed for a range of neuron
types (but see ref. 41). Many of these methods are not well
documented, thus making it hard to compare them directly with
Neuron_Reduce. Nevertheless, we did compare the performance
of Neuron_Reduce to two other reduction methods and showed
that it outperformed them (Supplementary Fig. 5).

It should be noted that although the transfer impedance from a
given dendritic locus to the soma is preserved in the reduced
model, the input impedance at that locus is not preserved (is
lower) in the reduced model. Consequently, the conditions for
evoking local dendritic events, and the fine details of these events
are not identical in the detailed and the reduced models (e.g.,
compare Fig. 5a, b to Fig. 5c, d and see Fig. 4). Indeed, if there
were highly local dendritic Na+ spikes (as in ref. 60), then Neu-
ron_Reduce will not capture them, as this local dendritic spike
will be averaged out in the respective lumped cable. Similarly,
because the local voltage response to a current injection in the
dendrite depends on the dendritic impedance, the local synaptic
responses are somewhat different in the detailed versus the

Fig. 6 Discriminating spatio-temporal input sequences in the detailed versus the reduced model. a A model of L5PC (detailed model, Fig. 1) with 12
excitatory synapses spatially distributed on one of its basal dendrites (red dots on green basal dendrite). b Somatic responses to sequential activations of
its basal synapses in the IN (cyan) and the OUT (blue) directions. In this case, the synaptic model only consists of an AMPA component. c As in b but the
synaptic model consists of both AMPA and NMDA components. d Reduced model for the detailed model shown in a. Neuron_Reduce mapped the
12 synapses in the detailed model into five synapses in the reduced model. e, f. As in b, c, but for the reduced model. g Pattern separability (see Methods)
of the detailed (black) and the reduced (red) models when the synaptic model only consists of an AMPA component. h As in g, after subtracting the peak
voltage obtained in the OUT direction from each of the voltage responses. i, j As in g, h but when the synaptic models consisted of both AMPA and NMDA
conductances. Note the similarity between the detailed and the reduced models in terms of pattern separability.
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Fig. 7 Neuron_Reduce working successfully on a variety of neuron models. a–c Detailed models of three somatosensory neurons (left, L6 tufted
pyramidal cell in green; middle, L2/3 large basket cell in red; and right, L4 double bouquet cell in blue) and their respective reduced models. Scale bars 100
µm. d–f Voltage responses to an excitatory synaptic input activated at 1.8, 2.9, and 3.17 Hz, respectively, for both the detailed (black) and the reduced
models (corresponding colors). The inhibitory input activation rate was 10 Hz for all models. g The SPIKE-synchronization index for the 13 detailed versus
reduced neuron models. The mean simulation speed-up for the L6 tufted pyramidal cell, L5 Martinotti cell, and L4 spiny stellate cell were 95, 40, and 60,
respectively. See Supplementary Table 2 for cell models and input parameters and Supplementary Fig. 6 for the SPIKE-synchronization measure on
additional 88 modeled cells.
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reduced cases, especially when voltage-gated ion channels (such
as NMDA-dependent synaptic channels) are involved. In fact,
when large dendritic NMDA signals are involved, the resultant
somatic EPSPs are expected to be different in the detailed as
compared to the reduced model, as is the case in Figs. 2 and 6.
Indeed, if one insists on preserving highly local nonlinear den-
dritic events, then the full dendritic tree should be modeled.

Despite these local differences, the reduced model for L5PC did
generate a local dendritic Ca2+ spike in the cylinder representing
the apical dendrite and was able to perform an input classification
task (enhanced by NMDA conductance), as in the detailed tree
(Figs. 5 and 6). Moreover, when embedded in large circuits,
individual neurons are likely to receive semi-random dendritic
input, rather than a clustered input on specific dendrites. For such
inputs, the reduced models generated by Neuron_Reduce capture
most of the statistics of the membrane voltage dynamics as in the
detailed model (Figs. 2 and 7 and Supplementary Figs. 4 and 6).

The next straightforward step is to use Neuron_Reduce to
simplify all the neurons composing a large neural network model,
such as the Blue Brain Project17 and the in silico models by Egger
et al.16 and by Billeh et al.61. By preserving the connectivity and
reducing the complexity of the neuronal models, the reduced
models will make it possible to run much longer simulations and/
or larger neuronal networks, while faithfully preserving the I/O of
each neuron. Such long simulations are critical for reproducing
long-term processes such as circuit evolution and structural and
functional plasticity.

Methods
Neuron_Reduce algorithm and its implementation in NEURON. Neuron_Re-
duce maps each original stem dendrite to a unique single cylinder with both ends
sealed. This cylinder preserves the specific passive cable properties (Rm, Cm, and Ra)
of the original tree as well as both the transfer impedance from the electrotonically
most distal dendritic tip to the soma and the input resistance at the soma end of the
corresponding stem dendrite (when disconnected from the soma). For a sinusoidal
angular frequency ω > 0, the transfer impedance Zi,j(ω) is the ratio between the
Fourier transform of the voltage at point (i) and the Fourier transform of the
sinusoidal current injected into the injection point (j) (note that in passive systems,
Zi,j(ω)= Zj,i(ω)). This ratio is a complex number; its magnitude (|Zi,j(ω)|) is the
ratio (in Ω) between the peak voltage response and the amplitude of the injected
current. In a short cylindrical cable with sealed ends and electrotonic length L, the
transfer impedance, Z0,X(ω), between the somatic end of the cylinder (X= 0) and
any location X is33,43,62

Z0;X ωð Þ ¼ R1
q

cosh q L� Xð Þð Þ
sinhðqLÞ ; ð1Þ

where

R1 ¼ 2
π

ffiffiffiffiffiffiffiffiffiffiffi

RmRa
p
d3=2

ð2Þ

and

q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ iωτ
p

; ð3Þ
where τ is the membrane time constant, RmCm.

From Eq. (1), the input impedance at X= 0 is

Z0;0 ωð Þ ¼ R1
q

cothðqLÞ: ð4Þ

We next want a cylindrical cable of electrotonic length L, in which both
jZ0;L ωð Þj and jZ0;0 ωð Þj are identical to those measured in the respective original
stem dendrite (Fig. 1). For this purpose, we first look for an L value in which the
ratio jZ0;L ωð Þj=jZ0;0 ωð Þj is preserved. Dividing Eq. (1) by Eq. (4), we get

Z0;X ωð Þ
Z0;0 ωð Þ ¼

cosh qðL� XÞð Þ
cosh qLð Þ ; ð5Þ

which can be expressed as

Z0;X ωð Þ
Z0;0 ωð Þ ¼

cosh a L� Xð Þ þ ib L� Xð Þð Þ
coshðaLþ ibLÞ ¼ MexpðiϕÞ; ð6Þ

where a and b are the real and the imaginary parts of q, respectively, and M and ϕ
are the modulus and phase angle of this complex ratio.

As shown previously62, it follows that

M ¼ jZ0;X ωð Þj
jZ0;0 ωð Þj ¼

cosh 2a L� Xð Þð Þ þ cos 2b L� Xð Þð Þ
cosh 2aLð Þ þ cos 2bLð Þ

� �0:5

ð7Þ

and

ϕ ¼ arctan tanh a L� Xð Þð Þ tan b L� Xð Þð Þ½ � � arctan tanh aLð Þ tan bLð Þ½ �: ð8Þ
Importantly, for a fixed M (and a given ω) there is a unique value of L that

satisfies Eq. (7) (see Fig. 4 in ref. 62 and note the-one-to-one mapping between M
and L for a given ω value). However, there are an infinite number of cylindrical
cables (with different diameters and lengths) that have identical L values preserving
a given M value in Eq. (7).

We next need a unique cable, with a specific diameter d, that also preserves the
measured value of |Z0,0(ω)| (and therefore it also preserves |Z0,L(ω)|, see Eq. (7)).

From Eqs. (2) and (4) we get

Z0;0 ωð Þ ¼ 2
πq

ffiffiffiffiffiffiffiffiffiffiffi

RmRa
p
d3=2

cothðqLÞ ð9Þ

and thus

jZ0;0 ωð Þj ¼ 2
πq

ffiffiffiffiffiffiffiffiffiffiffi

RmRa
p
d3=2

cothðqLÞ
�

�

�

�

�

�

�

�

ð10Þ

from which we compute the diameter, d, for that cylinder

jdj ¼ 2
π

ffiffiffiffiffiffiffiffiffiffiffi

RmRa
p
qZ0;0 ωð Þ coth qLð Þ

 !2=3
�

�

�

�

�

�

�

�

�

�

�

�

: ð11Þ

Equations (1)–(11) provide the unique cylindrical cable (with a specific d and L,
and the given membrane and axial properties) that preserves the values of jZ0;L ωð Þj
and jZ0;0 ωð Þj as in the respective stem dendrite. Note that this unique cable does
not necessarily preserve the phase ratio (ϕ in Eq. (8)) as in the original tree.

Practically, in order to transform each original stem dendrite (with fixed Rm, Ra,
and Cm values) into a corresponding unique cylindrical cable, we proceeded as
follows. First, on each modeled stem dendrite (when isolated from the soma), we
searched for a distal location x with minimal transfer impedance, jZ0;x ωð Þj, from
that particular x to the soma. This location provided the smallest M value for this
particular stem dendrite. This distal dendritic locus, x, was mapped to the distal
end, X= L, of the corresponding cylinder. We then used Eqs. (1)–(11) to calculate
the unique respective cylinder for each stem dendrite.

In order to map synapses from the detailed model to the reduced one, we
computed, for each synapse at location j in the detailed model, jZ0;j ωð Þj, and then
mapped this synapse to the respective location y in the reduced model, such that
jZ0;y ωð Þj ¼ jZ0;j ωð Þj. This reduced model is then compartmentalized into segments
(typically with spatial resolution of 0.1λ, see Fig. 3b). We then merged all synapses
with identical kinetics and reversal potential, that are mapped to a particular segment,
onto a single-point process object in NEURON (Fig. 1, Step B). These synapses retain
their original activation time and biophysical properties through the connection of
each of their respective original NetStim objects to the single-point process that
represents them all (each of these connections was mediated by the synapse’s original
NetCon object). As shown in Supplementary Table 1, this step dramatically reduced
the running time of the model. We note that all the results presented in this study
were obtained using ω= 0 in Eqs. (1)–(11), since running the same simulations with
ω= 0 provided the best performance (see Supplementary Fig. 7). However, ω is a
parameter in the algorithm code and can be modified by the user. Note also that
jZ0;0 ωð Þj, jZ0;j ωð Þj, and jZ0;L ωð Þj were analytically computed for each original stem
dendrite using the NEURON impedance tool63.

Neuron models used in the present study. To estimate the accuracy of the
reduction method, we ran 50-s simulations of cell morphologies of different types,
in both the reduced and detailed models (see also Supplementary Fig. 6). Models of
13 neurons were used in this study; their details are available in Supplementary
Table 2. For each of the models, we distributed 1,250–10,000 synapses on their
dendritic trees. Eighty percent of the synapses were excitatory, and the rest were
inhibitory. The synaptic conductances were modeled using known two-state kinetic
synaptic models17. For simplicity, we did not include synaptic facilitation or
depression. All models had one type of γ-aminobutyric acid type A (GABAA)-
based inhibitory synapses and either AMPA- or AMPA+NMDA-based excitatory
synapses. The synaptic rise and decay time constants were taken from various
works cited in Supplementary Table 2. When no data were available, we used the
default parameters of the Blue Brain Project synaptic models17,53. Inhibitory
synapses were activated at 10 Hz, whereas the activation rate of the excitatory
synapses was varied to generate different output firing rates in the range of 1–20 Hz
(Figs. 2–4, 7 and Supplementary Figs. 3–7); the values used for each model are
listed in Supplementary Table 2. In all models except Supplementary Fig. 4,
synaptic activation time was randomly sampled from a homogenous Poisson
process. In Supplementary Fig. 4a, b the activation time was sampled from an
inhomogeneous Poisson process with a time-dependent intensity
λ tð Þ ¼ r � sin t � f � 2πð Þ þ 1, where t is time in s, r is the firing rate of the
synapse, and f is the oscillation frequency.
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In Supplementary Fig. 4c, we extracted a single-layer five thick-tufted pyramidal
cell with an early bifurcating apical tuft (L5_TTC2; gid 75586) from active blue brain
microcircuit17 with calcium and potassium concentration of 1.23 and 5.0 mM,
respectively. The synaptic activation from the microcircuit was replayed to this
detailed model and also to its respective reduced model. Synaptic depression and
facilitation were disabled, and the synapse time constants, which varied in the
microcircuit, were set to their mean value (the decay time constant was set to 1.74 and
8.68ms for AMPA and GABAA, respectively; the rise time constant for GABAA was
set to 4.58ms); all other variables were as in the blue brain simulations.

Estimating the accuracy of the reduced models. Cross-correlations were cal-
culated between the spike trains of the detailed and the reduced models. The
window size was 500 ms, and the bin size was 1 ms. The resulting cross-correlations
were normalized by the number of spikes in the detailed model (Fig. 2c). ISIs were
binned in windows of 21 ms to create the ISI distribution in Fig. 2d.

SPIKE-synchronization measure is a parameter- and scale-free method that
quantifies the degree of synchrony between two spike trains44. SPIKE-synchronization
uses the relative number of quasi-simultaneous appearances of spikes in the spike
trains. In this study, we used the Python implementation of this method64. To allow
comparison to the literature, Supplementary Fig. 3 depicts three additional metrics
against which to compare the performance of the detailed and the reduced models:
Trace accuracy39, ISI distance44, and Γ coincidence factor65.

Comparison to other reduction algorithms. We compared Neuron_Reduce to
two classical reduction algorithms (Supplementary Fig. 5):

1. Equivalent cable using the d3/2 rule for reduction. Rall and Rinzel32 and
Rinzel and Rall33 showed that for idealized passive dendritic trees, the entire
dendritic tree can be collapsed to a single equivalent cylinder that
is analytically identical (from the point of view of the soma) to the detailed
tree. However, neurons do not have ideal dendritic trees, mostly because
dendritic terminations typically occur at different electrotonic distances
from the soma. Nevertheless, it is possible to collapse any dendritic tree
using a similar mapping (Rall’s “d3/2 rule”) as in the idealized tree; this will
provide an “equivalent cable” (rather than an “equivalent cylinder”) with a
varying diameter for the whole dendritic tree (see details in Rall et al.48). The
electrotonic distances to the soma of synapses and nonlinear dendritic
mechanisms were computed in the original model and then each synapse
and mechanism was mapped to the corresponding segment in the
“equivalent cable” preserving the electrotonic distance to the soma as in
the original tree.

2. Mapping all synapses to the soma. Another recent reduction scheme was
proposed where all dendritic synapses are mapped, after implementing cable
filtering for each synapse, to the somatic compartment34. Here we used a
modified version of this method. We used Neuron_Reduce to generate a
multi-cylindrical model of the cell as in Fig. 1b. Then, all the synapses in the
original tree were mapped to the model soma. To account for dendritic
filtering, for each synapse, we multiplied the original synaptic conductance,
gsyn, by the steady-state voltage attenuation factor from the original
dendritic location, j, of the synapse to the soma. Specifically,

g�syn ¼ gsyn �
jZ0;jj
jZ0;0j

¼ gsyn �
V0;j

V0;0
; ð12Þ

where g�syn is the new synaptic weight for synapse j when placed at the soma
of the reduced model.

Spatio-temporal patterns of synaptic activation. In Fig. 6, 12 synapses, placed at
25 µm intervals, were distributed on a stretch of one basal dendrite. The peak
AMPA conductance per synapse was 5 nS. In cases where the synapses also had an
NMDA component, the NMDA-based peak conductance was 3.55 nS. The
synapses were activated in a specific temporal order with a time delay of 3.66 ms
between them. This resulted in an input velocity of 7 µm/s for the sequential IN
and OUT patterns in Fig. 6. In addition, the temporal order of synaptic activation
was randomized and scored according to the directionality index52, which sums the
number of swaps used by the bubble-sort algorithm to sort a specific temporal
pattern into the IN pattern. In this measure, an IN pattern is attributed the value of
0 (no swaps) and the OUT pattern the value of 67 (67 swaps in bubble sort are
required to “sort” the OUT pattern into the IN pattern52).

All simulations were performed using NEURON 7.4–7.720 running on the Blue
Brain V supercomputer based on HPE SGI 8600 platform hosted at the Swiss
National Computing Center in Lugano, Switzerland. Each compute node was
composed of an Intel Xeon 6140 CPUs @2.3 GHz and 384 GB DRAM. Analysis
and simulation were conducted using Python and visualization using Matplotlib66.

The Neuron_Reduce algorithm is publicly available on GitHub (http://github.
com/orena1/neuron_reduce).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All spike times and somatic membrane potentials presented in the article are available
upon request.

Code availability
The Neuron_Reduce algorithm and most of the models that were used in the paper are
publicly available on GitHub (http://github.com/orena1/neuron_reduce). An interactive
example is available as a live paper (https://humanbrainproject.github.io/hbp-bsp-live-
papers/2020/amsalem_et_al_2020/amsalem_et_al_2020.html). Software used for
visualization of neurons in Fig. 7 is available at https://github.com/BlueBrain/RTNeuron.
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