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Abstract: Thermoelectric properties of the half-Heusler phase ScNiSb (space group F43m) were
studied on a polycrystalline single-phase sample obtained by arc-melting and spark-plasma-sintering
techniques. Measurements of the thermopower, electrical resistivity, and thermal conductivity
were performed in the wide temperature range 2–950 K. The material appeared as a p-type
conductor, with a fairly large, positive Seebeck coefficient of about 240 µV K−1 near 450 K.
Nevertheless, the measured electrical resistivity values were relatively high (83 µΩm at 350 K),
resulting in a rather small magnitude of the power factor (less than 1 × 10−3 W m−1 K−2) in the
temperature range examined. Furthermore, the thermal conductivity was high, with a local minimum
of about 6 W m−1 K−1 occurring near 600 K. As a result, the dimensionless thermoelectric figure of
merit showed a maximum of 0.1 at 810 K. This work suggests that ScNiSb could be a promising base
compound for obtaining thermoelectric materials for energy conversion at high temperatures.

Keywords: Heusler alloys; thermoelectric; ScNiSb

1. Introduction

Designing efficient thermoelectric generators is considered an important issue in the fight against
waste heat, which causes significant financial, natural, and social losses. The major challenge is to
find proper materials with seemingly conflicting combinations of their transport properties for the
laid-down temperature range of the target application. Half-Heusler (HH) phases with rare-earth
(RE) metals have recently been recognized as possible candidates for thermoelectric materials [1–12],
applicable at high temperatures. These materials show p-type behavior. For some of them (e.g., PtYSb),
thermoelectric parameter values (e.g., ZT = 0.57 at 973 K [8]) are as good as for HH phases without RE
[MNiSn, MCoSb (M = Ti, Zr, Hf) and XFeSb (X = V, Nb, Ta)] before optimization [13–18]. In recent
years, the on-going intense studies on various RE-based HH phases have been focused on their other
remarkable properties, like large magnetocaloric effect, huge magnetoresistance, superconductivity,
presence of Dirac states, etc. [19–26].

ScNiSb is a member of the large family of the HH phases, which crystallize with the cubic
MgAgAs-type crystal structure (space group F43m, no. 216). The compound was discovered by
A. E. Dwight [27]. The first structure refinement from X-ray powder diffraction data confirmed the
equiatomic composition of the substance [27,28]. Later, a structure refinement on X-ray single-crystal
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diffraction data revealed a defect of ca. 14 at % at the nickel position [29]. Based on the results of
low-temperature measurements, Oestreich et al. determined for this compound the thermoelectric
figure of merit (ZT) of an order of 0.024 at 300 K [30,31]. The early calculations performed by Ishida
et al. showed that changing site occupations by different chemical constituents should significantly
affect the electronic band structure of ScNiSb [32]. The crystallographic disorder (Ni vacancies) was
experimentally shown by means of NMR and Mössbauer spectroscopy [29]. Nevertheless, the chemical
bonding analysis reveals a clear energetic preference for nickel location in the heterocubic site (4b) [33].
Most recent ab initio calculations made by Kocak and Cifti and by Winiarski et al. revealed for ScNiSb
the presence of an indirect energy gap [34,35]. The compound was suggested as a good candidate
for p-type thermoelectric material [35]. Furthermore, the potential of using ScNiSb in tandem with
NiMnSb was studied by Attema et al. in the context of spintronics [36,37].

Motivated by the literature data, we decided to investigate high-temperature thermoelectric
properties of ScNiSb, which seemed to be not explored before, and low-temperature thermoelectric
properties in order to not only compare our results with those already published, but also to search for
other physical properties, e.g., superconductivity. This research is a part of our comprehensive studies
on thermoelectricity in RE-based HH phases [38–42].

2. Materials and Methods

A polycrystalline sample was synthesized by arc-melting elemental scandium (lumps, 99.9%),
nickel (rod, 99.99%), and antimony (lumps, 99.999%) in Ti-gettered argon gas atmosphere. In relation
to the intensive evaporation of antimony during the melting, 6% of the nominal mass Sb was added
beforehand. The obtained ingots were hand-ground into fine powder. In order to obtain dense bulk
samples suitable for thermoelectric property measurements, spark plasma sintering (SPS) was applied
(SPS-515 ET, Dr Sinter setup, SDC Fuji, Japan). A consolidation was performed by heating the charge
to 950 K at 50 K min−1 under uniaxial pressure of 100 MPa and dwelling this temperature for 10 min.
The density of the so-casted pellets, determined by the Archimedes method, was over 98% of the
theoretical value.

The prepared material was characterized at room temperature (RT) by X-ray powder diffraction
(X′pert Pro PANalytical, CuKα radiation, Almelo, Netherlands). Powder diffraction data were collected
using an upgraded Huber G670 type Guinier camera with an imaging plate detector. The large focal
circle at 360 mm diameter provides for excellent resolution, in particular with hard X-rays. Due to the
quite small unit cell for half-Heusler-type compounds, we took advantage of doubling the number of
observable Bragg reflections by using the MoKα doublet of the incident beam. As monochromator,
a focusing 1D multilayer optics (AXO Dresden, Dresden, Germany) was used. It provides for high
usable intensity, along with excellent suppression of the Kβ component in the direct beam.

The reflection positions obtained by profile deconvolution were corrected for sample displacement.
The structure refinement was done by employing the programs FULLPROF (version 6.30) [43] and
WinCSD (version 4.19) [44]. Sample composition was checked by energy-dispersive X-ray (EDX)
analysis on a FEI scanning electron microscope (FEI, Hillsboro, OR, USA) equipped with an EDAX
Genesis XM4 spectrometer.

The Seebeck coefficient and the electrical resistivity of the sintered samples were measured
simultaneously under helium atmosphere in the temperature range 350–950 K using the temperature
differential and the four-probe methods, respectively, implemented in commercial equipment Linseis
LSR-3 (Linseis Messgeraete GmbH, Selb, Germany) and Ulvac ZEM-3 (ULVAC, Methuen, MA, USA).
In these measurements, the temperature difference between the ends of each sample was kept equal to
50 K for the LSR-3 device and 20 K, 30 K, and 40 K for the ZEM-3. The thermal diffusivity was measured
in the temperature range from 300 K to 923 K using the laser flash method (NETZSCH LFA-457).

Low-temperature (2–300 K) measurements of electrical resistivity, specific heat, Seebeck coefficient,
and thermal conductivity were carried out on a Physical Property Measurement System (PPMS-9,
Quantum Design, San Diego, CA, USA). The electrical resistivity was measured by standard four-point
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DC technique, where electrical contacts were made from silver wires attached to the sample by silver
paste. The heat capacity measurements were carried out using the relaxation method with the two-τ
model. For Seebeck and thermal conductivity measurements, gold-plated copper electrodes were
attached to the specimen using silver-epoxy paste.

3. Results and Discussion

First, crystal structure determination was performed with the X-ray powder diffraction pattern
obtained using the CuKα radiation (Bragg–Brentano geometry, 2θmax = 90◦, 11 reflections available
in the measured range). All the Bragg peaks were well indexed with the cubic system (space group
F43m), except traces of impurity phase Sc2O3, spotted around 31.3◦. The lattice parameter (a = 6.0749(2)
Å) obtained is slightly larger than the experimental values reported before in the literature (between
6.0498 Å and 6.0620 Å) [27–29,31], yet smaller than the calculated ones [32,34,35]. The differences
between experimental values may have resulted from a different level of structural disorder caused,
for example, by slightly different stoichiometry (cf. below). The structure refinement was performed
first, considering that Sc, Ni, and Sb atoms occupy the 4b (1⁄2 1⁄2 1⁄2), 4c (1⁄4 1⁄4 1⁄4), and 4a (0 0 0) sites,
respectively, and the occupancy factors were assumed to be equal to unity. Despite the obtained low
residuals (RI = 0.031, RP = 0.043), the atomic displacement parameters reveal non-systematic change
with the atomic masses: B(Sc) = 1.0(1) Å2, B(Ni) = 1.3(2) Å2, B(Sb) = 0.75(7) Å2. An attempt to refine
the occupation of the Ni site (vacancy on this position was suggested in [29]) was not successful:
RI = 0.031, RP = 0.04; B(Sc) = 0.93(1) Å2, B(Ni) = 1.0(2) Å2, B(Sb) = 0.78(7) Å2; Occ(Ni) = 0.98(1).
Another reason for enhanced B(Ni) may have been the off-center location of the atoms at this position.
Indeed, the Ni could be refined at 16e position (xxx) with x = 0.262(2). This did not change the residuals
(RI = 0.031, RP = 0.043) but allowed a more logical distribution of the atomic displacement parameters
to be obtained (B(Sc) = 0.98(14) Å2, B(Ni) = 0.85(15) Å2, B(Sb) = 0.75(7) Å2). Despite the low residuals,
the used powder diffraction data did not allow a final decision about the structural details in ScNiSb.
To shed more light, high-resolution X-ray powder diffraction data were measured, employing Huber
G670 type Guinier camera with double radius and using MoKα radiation (2θmax = 100◦, 84 reflections
available in the measured range). In this experiment, the application of the ideal atomic distribution
on the crystallographic sites confirmed the atomic displacement parameters not following the atomic
masses (B(Sc) = 0.64(3) Å2, B(Ni) = 0.75(3) Å2, B(Sb) = 0.61(2) Å; RI = 0.027, RP = 0.093). An attempt to
refine the occupancy of the nickel position did not reveal any vacancies. The stoichiometric composition
of the material is in agreement with the lattice parameter, which is clearly larger (a = 6.0761(4) Å) than
that for the Ni-defect compositions ScNi0.87Sb (a = 6.0521(6) Å) and Sc Ni0.85Sb (a = 6.0498(6) Å) [29].
The off-center model with Ni at the 16e position (x = 0.256(2)) yielded similar residuals (RI = 0.024,
RP = 0.097). Yet the sequence of the atomic displacement parameters (B(Sc) = 0.66(3) Å2, B(Ni) = 0.61(4)
Å2, B(Sb) = 0.59(2) Å) is in much better agreement with the atomic masses of the elements. The final
results of the crystal structure refinement of ScNiSb from powder X-ray diffraction (MoKα radiation)
data are presented in Figure 1. Further details of the real crystal structure may be revealed using
the high-resolution X-ray single-crystal data at the equiatomic composition. Nonetheless, in most
possible scenario with off-center Ni atoms, the crystal structure reveals clear deviation from the
translation symmetry, which should reduce the lattice thermal conductivity, as was recently shown for
the intermetallic clathrates [45].
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intrinsic region, the resistivity can be well described by a standard Arrhenius model: 1/ρ = σ0 + 
σexp(−Eg/2kBT), where σ0 stands for the residual conductivity, and Eg is the activation energy. The so-
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and a broad maximum (Smax = 240 μV K−1) near T = 450 K. This maximum is related to the 

Figure 1. X-ray diffraction pattern of the half-Heusler compound ScNiSb (MoKα radiation). The solid
line through the experimental points represents the refinement profile. Black ticks show the angular
positions of the reflections of the ScNiSb phase. The asterisk marks a strongest reflection due to the
Sc2O3 phase. The difference pattern is shown as a black solid line on the bottom.

The experimental sample density obtained by the Archimedes method is only 1.5% smaller than
the theoretical value (Table 1). The prepared sample of ScNiSb was hard and brittle, as predicted from
theoretical calculations [34].

Table 1. Microstructural parameters determined for the studied sample of ScNiSb.

Nominal
Composition

Estimated
Composition a (Å) V (Å3) Theoretical Density (g/cm3) Measured Density (g/cm3)

33.3:33.3:33.3 33.7(4):32.9(2):33.4(2) 6.0761(4) 224.32(5) 6.674(2) 6.58(1)

The elements distribution on the polished surface of the specimen is presented in Figure 2.
Consistent with the PXRD results, the sample appears fairly homogeneous, except for tiny amounts
of scandium-rich phase, probably an oxide. The chemical composition derived as an average over
three different points examined on the sample surface is in very good agreement with the nominal one
(see Table 1). This supports the off-center position of Ni in the crystal structure.
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Figure 2. Element mapping of the ScNiSb sample investigated.

The temperature dependencies of the electrical resistivity (ρ) and the Seebeck coefficient (S) of
ScNiSb, determined in a wide temperature interval, are shown in Figure 3. At elevated temperatures, the
experiments carried out on heating and cooling the specimen yielded very similar results, and hence only
the data obtained on cooling are shown. Moreover, it should be noted that near 300 K the measurements
performed employing different techniques/equipment (LSR-3, ZEM-3, PPMS) converged to almost the
same values. Therefore, in the following discussion, the data collected using LSR-3 will be evaluated.
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Figure 3. Temperature dependencies of (a) electrical resistivity (note semi-logarithmic scale), (b) Seebeck
coefficient, and (c) thermoelectric power factor of ScNiSb. The inset in panel (a) shows the
high-temperature ln(1/ρ −σ0) data vs. 1000/T fitted with the Arrhenius model. Open, half-filled,
and filled symbols represent the data collected using LSR-3, ZEM-3, and PPMS device, respectively.

As can be inferred from Figure 3, ScNiSb exhibits semiconducting-like behavior, typical for doped
semiconductors, with an ionization (or freeze-out) region from 2 K up to about 150 K, an extrinsic
(or saturation) region up to about 500 K, and an intrinsic region at higher temperatures. A broad
shoulder observed around 50 K has unclear origin. As shown in the inset to Figure 3a, in the intrinsic
region, the resistivity can be well described by a standard Arrhenius model: 1/ρ = σ0 + σexp(−Eg/2kBT),
where σ0 stands for the residual conductivity, and Eg is the activation energy. The so-derived value of
Eg amounts to 0.47(1) eV, which is much larger than that reported in the literature [31,35,46].

The thermoelectric power of ScNiSb is positive in the entire temperature range studied, because the
number of holes in the valence band far exceeds the number of electrons in the conduction band.
Therefore, ScNiSb is a p-type material. The S(T) dependence shows a shoulder-like feature at
120 K and a broad maximum (Smax = 240 µV K−1) near T = 450 K. This maximum is related to the
compensation effect, when the electron concentration starts to overcome the holes concentration.
Using the relationship [47] Smax = Eg/2eTmax (e stands for elementary charge) one finds Eg = 0.22 eV,
in good agreement with the theoretical data [35,46], however more than twice smaller than that
determined from the ρ data. It should be noted that the so-obtained value of Eg may differ from the
actual one because of breakdown of the Maxwell–Boltzmann law in a material with narrow energy gap
or with strong deviation in carriers mobility [48].

The temperature dependence of the power factor (PF = S2/ρ) calculated from the measured data
of ScNiSb is presented in Figure 3c. On increasing temperature, PF starts growing above about 50 K
and reaches a maximum of 0.90(4) × 10−3 W m K2 at 810 K. This value is similar to those determined
for other RE-based HH phases [3,5,38–42] and other thermoelectric materials [49].

In order to inspect the conduction mechanism in ScNiSb, a Jonker plot was constructed
(Figure 4) [50]. The observed linear relationship between the thermopower and logarithm of the
electrical conductivity is a characteristic feature of semiconductor in its intrinsic region, with charge
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carriers scattered mainly on acoustic phonons [51]. At low temperatures, the slope of the straight line
is positive, while at high temperatures it is negative. However, in both temperature regions, slope has
a constant value of ±86.15 µV K−1. The switch in the sign of the Jonker-type correlation occurring near
450 K suggests that the temperature variations of the Seebeck coefficient and the electrical conductivity
in ScNiSb are governed mainly by changes in the carrier concentration.Materials 2019, 12, x FOR PEER REVIEW 6 of 11 
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Figure 4. Jonker plot of the electrical conductivity and the Seebeck coefficient data of ScNiSb.

The low-temperature (T < 300 K) specific heat (Cp) of ScNiSb is featureless, except for little hump
near 3 K (see Figure 5). Possibly, the latter anomaly appears because of the impurity phase detected
in the PXRD and EDX studies. Generally, the Cp(T) of ScNiSb has a shape typical for nonmagnetic
compounds and can be analyzed by Debye formula:

Cp = γT + 9nR
(

T
ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2 dx, (1)

where n is the number of atoms per formula unit, R is the gas constant, ΘD is the Debye temperature,
and x = hν/kBT. The first term of Equation (1) corresponds to the electronic part, while the second one
corresponds to the phonon contribution to the Cp. The electronic specific heat was described using a simple
Sommerfeld term Cel = γT; the fit in the range 4.5–7 K yields γ= 0.5(1) mJ mol−1 K−2 (Inset of Figure 5).
By fitting the experimental data over the whole temperature range, we derived the ΘD = 354(1) K. Close to
room temperature, Cp is approaching the Dulong–Petit limit of 74.8 J mol−1 K−1.



Materials 2019, 12, 1723 7 of 11

Materials 2019, 12, x FOR PEER REVIEW 6 of 11 

 

 
Figure 4. Jonker plot of the electrical conductivity and the Seebeck coefficient data of ScNiSb. 

The low-temperature (T < 300 K) specific heat (Cp) of ScNiSb is featureless, except for little hump 
near 3 K (see Figure 5). Possibly, the latter anomaly appears because of the impurity phase detected 
in the PXRD and EDX studies. Generally, the Cp(T) of ScNiSb has a shape typical for nonmagnetic 
compounds and can be analyzed by Debye formula: 𝐶  𝛾𝑇 9𝑛𝑅 𝑑𝑥/ , (1) 

where n is the number of atoms per formula unit, R is the gas constant, ΘD is the Debye temperature, 
and x = hν/kBT. The first term of Equation (1) corresponds to the electronic part, while the second one 
corresponds to the phonon contribution to the Cp. The electronic specific heat was described using a 
simple Sommerfeld term Cel = γT; the fit in the range 4.5–7 K yields γ = 0.5(1) mJ mol−1 K−2 (Inset of 
Figure 5). By fitting the experimental data over the whole temperature range, we derived the ΘD = 
354(1) K. Close to room temperature, Cp is approaching the Dulong–Petit limit of 74.8 J mol−1 K−1. 

 
Figure 5. Temperature dependence of the specific heat of ScNiSb. Solid line represents Debye model. 
Dotted line represents the Dulong–Petit limit (3nR). Inset: the low-temperature Cp/T vs. T2 data, 
dashed line is a linear fit. 

The temperature dependence of the thermal conductivity (κ) in ScNiSb was calculated with the 
T > 300 K data derived from the measured thermal diffusivity (D), using the relationship κ = DCpd, 
where Cp = 3nR represents the specific heat (n is a number of atoms in formula unit, and R is the gas 
constant), while d denotes the density of the material. The overall magnitude of κ is greater than in 
the literature results [31]. A small increase of κ above about 600 K can be related to heat loses during 
the measurement or/and some contribution due to bipolar thermal conductivity [52]. At lower 

Figure 5. Temperature dependence of the specific heat of ScNiSb. Solid line represents Debye model.
Dotted line represents the Dulong–Petit limit (3nR). Inset: the low-temperature Cp/T vs. T2 data,
dashed line is a linear fit.

The temperature dependence of the thermal conductivity (κ) in ScNiSb was calculated with the
T > 300 K data derived from the measured thermal diffusivity (D), using the relationship κ = DCpd,
where Cp = 3nR represents the specific heat (n is a number of atoms in formula unit, and R is the
gas constant), while d denotes the density of the material. The overall magnitude of κ is greater than
in the literature results [31]. A small increase of κ above about 600 K can be related to heat loses
during the measurement or/and some contribution due to bipolar thermal conductivity [52]. At lower
temperatures we observed a well-exposed peak at ~50 K, which is related to the interplay between
different types of phonon-scattering processes, and suggests high quality of our sample.

Assuming the validity of the Wiedemann–Franz law, κel = LσT, where L is the Lorenz number,
one can calculate the electronic contribution (κel) to total κ. Shown in Figure 6 is the estimate of κel in
ScNiSb, derived with L = 1.5 + exp(−|S|/116), as given in Ref. [53]. The so-obtained κel is fairly small
and slightly increasing with increasing temperature. This result implies that the thermal conductivity
in ScNiSb is dominated in the whole temperature range studied by the lattice contribution (κlat).
Remarkably, the magnitude of κlat is much larger than the minimum thermal conductivity calculated
using the Cahill model [54]. This finding opens a prospective of significant reducing κlat by proper
alloying and forming composite materials based on ScNiSb. The values between 5 and 10 W m−1 K−1

above RT are typical for the HH phases [55,56]. The deviations from the translational symmetry found
during the crystal structure determination do not reduce markedly the thermal conductivity, as was
found recently in intermetallic clathrates [45], raising once more the question of the real atomic structure
of the HH phases, as was already discussed for example TiGePt [57,58]. On the other hand, the good
thermal conductivity may be understood from the point of view of chemical bonding. The latter
characterized by the presence of three-center Sc–Ni–Sb and two-center Sc–Ni interactions. Due to
the predominant role of the first type, the bonding may be considered as pseudo homogeneous, i.e.,
all interactions are same or similar. The regular distribution of similar bonds in the crystal structure of
the chemical bonding is described as isotrop. This characteristic of bonding should not influence the
thermal conductivity [59].
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The experimental data collected for ScNiSb allowed us to calculate the thermoelectric figure of
merit (ZT = S2T/ρκ), and the result is shown in Figure 7. With increasing temperature, ZT increased,
reaching the maximum ZT = 0.10 at 810 K. This value is smaller than ZT reported for well-established
p-type thermoelectrics [60], however it is similar to those found for other RE-based HH phases [1,3,51].
At room temperature ZT = 0.01, which is almost two times smaller than the value reported before for
an arc-melted sample [31], yet four times larger when compared with ZT of our sample, prepared by
high-pressure high-temperature (HPHT) sintering [42]. The main reason for the reduced ZT values is
very low electrical conductivity, opening a way for enhancing the thermoelectric figure of merit by
appropriate substitutions.Materials 2019, 12, x FOR PEER REVIEW 8 of 11 
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4. Conclusions

As an extension of the literature data for T < 400 K, the thermoelectric properties of the HH
antimonide ScNiSb were determined from 2 K up to 950 K. Although this material has a high positive
value of the Seebeck coefficient (up to 240 µV K−1 at 450 K), its thermoelectric properties are moderate.
Because of a high electrical resistivity (~100 µΩm around RT) and a relatively high value of thermal
conductivity (>6 W m−1 K−1), the maximum PF and ZT values of 0.91(4) × 10−3 W m−1 K−2 and 0.1 at
810 K were established, respectively.

The results obtained for ScNiSb are similar to the data reported for many other RE-bearing HH
phases and for pure RE-free HH phases. It appears plausible that proper modification of this material
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(nanostructurization, substitution, composite formation, etc.) may lead to significant improvement of
its thermoelectric performance.
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39. Synoradzki, K.; Ciesielski, K.; Kępiński, L.; Kaczorowski, D. Power factor enhancement in a composite based
on the half-Heusler antimonide TmNiSb. J. Appl. Phys. 2018, 123, 235101. [CrossRef]
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Gumeniuk, R.; Ramlau, R.; et al. Structural Transformation with “Negative Volume Expansion”: Chemical
Bonding and Physical Behavior of TiGePt. Chem. A Eur. J. 2012, 18, 6272–6283. [CrossRef] [PubMed]

58. Ackerbauer, S.-V.; Borrmann, H.; Bürgi, H.-B.; Flack, H.D.; Grin, Y.; Linden, A.; Palatinus, L.; Schweizer, W.B.;
Warshamanage, R.; Wörle, M. TiGePt – a study of Friedel differences. Acta Crystallogr. B 2013, 69, 457–464.
[CrossRef]

59. Grin, Y. Inhomogeneity and anisotropy of chemical bonding and thermoelectric properties of materials.
J. Solid State Chem. 2019, 274, 329–336. [CrossRef]

60. Schierning, G.; Chavez, R.; Schmechel, R.; Balke, B.; Rogl, G.; Rogl, P. Concepts for medium-high to
high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic
considerations of module design. Transl. Mater. Res. 2015, 2, 025001. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.matchemphys.2019.01.056
http://dx.doi.org/10.1016/0921-4526(93)90108-I
http://dx.doi.org/10.1107/S1600576714001058
http://dx.doi.org/10.1038/s41467-017-00584-7
http://dx.doi.org/10.1002/adfm.200701369
http://dx.doi.org/10.1007/s11664-999-0211-y
http://dx.doi.org/10.1063/1.4905922
http://dx.doi.org/10.1016/j.mser.2015.08.001
http://dx.doi.org/10.1063/1.2756045
http://dx.doi.org/10.1063/1.4908244
http://dx.doi.org/10.1103/PhysRevB.46.6131
http://dx.doi.org/10.1557/PROC-478-109
http://dx.doi.org/10.1063/1.2168019
http://dx.doi.org/10.1002/chem.201102401
http://www.ncbi.nlm.nih.gov/pubmed/22461109
http://dx.doi.org/10.1107/S2052519213021635
http://dx.doi.org/10.1016/j.jssc.2018.12.055
http://dx.doi.org/10.1088/2053-1613/2/2/025001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

