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Abstract: Arbuscular mycorrhizal (AM) fungi allocate mineral nutrients to their host plants, and
the hosts supply carbohydrates and lipids to the fungal symbionts in return. The morphotypes
of intraradical hyphae are primarily determined on the plant side into Arum- and Paris-type AMs.
As an exception, Solanum lycopersicum (tomato) forms both types of AMs depending on the fungal
species. Previously, we have shown the existence of diverse regulatory mechanisms in Arum- and
Paris-type AM symbioses in response to gibberellin (GA) among different host species. However, due
to the design of the study, it remained possible that the use of different plant species influenced the
results. Here, we used tomato plants to compare the transcriptional responses during Arum- and
Paris-type AM symbioses in a single plant species. The tomato plants inoculated with Rhizophagus
irregularis or Gigaspora margarita exhibited Arum- and Paris-type AMs, respectively, and demonstrated
similar colonization rates and shoot biomass. Comparative transcriptomics showed shared expression
patterns of AM-related genes in tomato roots upon each fungal infection. On the contrary, the defense
response and GA biosynthetic process was transcriptionally upregulated during Paris-type AM
symbiosis. Thus, both shared and different transcriptional reprogramming function in establishing
Arum- and Paris-type AM symbioses in tomato plants.

Keywords: arbuscular mycorrhizal symbiosis; comparative transcriptomics; Arum-type; Paris-type;
Solanum lycopersicum; Rhizophagus irregularis; Gigaspora margarita

1. Introduction

Approximately 80% of terrestrial plants establish a symbiotic relationship with Glom-
eromycotina fungi; this relationship is referred to as arbuscular mycorrhizal (AM) sym-
biosis [1]. Recently, how host plants and AM fungi communicate in the rhizosphere
has been elucidated. AM fungal-derived short-chain chitooligosaccharides (COs) and
lipo-chitooligosaccharides (LCOs) activate symbiotic signaling in host plants together
with some receptor-like kinases (RLKs) [2–5]. Although AM fungal colonization triggers
transient and weak defense responses in the host plants, AM fungi are known to exude
some signal components to suppress plant immunity [6–9]. On the contrary, host plant
roots exude strigolactones (SLs) to inform AM fungi of their presence and promote fungal
growth [10,11]. SLs are classified as phytohormones and enzymatically biosynthesized from
all-trans-β-carotene by DWARF 27 (D27), CAROTENOID CLEAVAGE DIOXYGENASE 7
(CCD7), CCD8, and MORE AXILLARY GROWTH 1 (MAX1) [12,13]. After AM fungi reach
the host roots, some AM-specific reprogramming begins in the host root cells. For instance,
several studies have demonstrated AM-promoted expression of some symbiotic genes,
namely, PHOSPHATE TRANSPORTER 4 (PT4) and AMMONIUM TRANSPORTER 2;3
(AMT2;3) for symbiotic phosphate and ammonium transport, REDUCED ARBUSCULAR
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MYCORRHIZA 2 (RAM2) and G-type ABC transporters (STR/STR2) for lipid production
and transport, and VAPYRIN (VPY) for arbuscule development [14–19]. These AM-related
genes are transcriptionally activated by several transcription factors, such as RAM1 and
REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1), which belong to the GRAS,
GIBBERELLIC-ACID INSENSITIVE (GAI), REPRESSOR of GAI (RGA), and SCARECROW
(SCR) transcription factor families [20–24]. These are known to localize on the host-derived
peri-arbuscular membrane surrounding arbuscules in highly branched hyphal structures
formed in root cortical cells [25].

Depending mainly on the host plant species, the mutualism established results in
either Arum- or Paris-type hyphal structures of intraradical AM fungi [26–30]. In Arum-type
AM, AM fungal hyphae elongate in the apoplastic space of plant cells and form arbuscules
in the cortical cells. Paris-type AM is characterized by intracellular hyphal elongation
and hyphal coils in the host cortical cells. Despite the distinct AM morphologies, the
reasons why AM morphotypes vary among host plants has been unclear. In addition, how
host plants differentially regulate AM symbioses for each AM morphotype is not fully
understood.

To elucidate these enigmas, we have recently compared the regulatory mechanisms
underlying Arum- and Paris-type AM symbioses using several phylogenetically distant
host species [31,32]. Interestingly, the phytohormone gibberellin (GA) promotes the estab-
lishment of Paris-type AM symbiosis in Eustoma grandiflorum and Primula malacoides [31],
whereas GA suppresses Arum-type AM symbiosis in legume plants and rice [33–36]. No-
tably, one of our previous studies demonstrated that AM fungal colonization transcrip-
tionally promotes conserved symbiotic genes such as STR and RAM1 among three host
plants forming distinct AM morphotypes [32]. This previous study also showed that GA
treatment alters the transcriptional responses of the symbiotic genes among the examined
host plants. These studies lead us to predict that host plants have evolved to change
the upstream mechanisms that regulate AM symbioses according to AM morphotype.
However, previous comparative analysis on Arum- and Paris-type AM symbioses cannot
thoroughly investigate our hypothesis due to the possibility that the use of different plant
species influenced the results. For a more precise comparison of Arum- and Paris-type
AM symbiosis regulation, a single host plant that forms both types of AMs is needed to
overcome these issues.

Interestingly, Solanum lycopersicum (tomato) mainly has Arum-type AM in response
to Glomeraceae fungi, such as Rhizophagus irregularis (formerly Glomus intraradices) and
Paris-type AM, in response to Gigasporaceae fungi, such as Gigaspora margarita [6,37]. Here,
we conducted comparative analyses on Arum- and Paris-type AM symbioses in tomato
roots colonized by R. irregularis and G. margarita. R. irregularis and G. margarita infection
showed Arum- and Paris-type AMs in tomato roots, respectively, and significantly promoted
tomato shoot growth. In addition, transcriptome profiling of the tomato roots showed that
colonization by either AM fungus triggered some shared transcriptional reprogramming
in AM-related genes and the SL biosynthetic pathway in tomato roots. On the contrary,
the immune response and the GA biosynthetic process were transcriptionally upregulated
in Paris-type AM symbiosis in tomato roots. Therefore, our comparative transcriptomics
identified both shared and different reprogramming in a single host species during Arum-
and Paris-type AM symbioses.

2. Results
2.1. Comparison of Symbiotic Phenotypes in Tomato Plants Forming Distinct AM Morphotypes

Tomato mycorrhizal roots were sectioned and then subjected to microscopical obser-
vation of the AM fungal morphotypes of R. irregularis and G. margarita in tomato roots.
Tomato roots colonized by R. irregularis had fungal hyphae in the intercellular space and
arbuscules emerged from the intercellular hypha in the cortical cells (Figure 1a) in a manner
typical of Arum-type AM. On the contrary, G. margarita infection exhibited classic Paris-type
AM with a thick and clear hyphal coil to which the arbuscule adhered and intracellular
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hyphal elongation in the tomato root cortex (Figure 1b). As several reports have demon-
strated [37–39], we confirmed that AM fungal traits determine the AM morphotypes of
tomato plants under the same growth conditions.
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Figure 1. Arbuscular mycorrhizal (AM) morphotypes formed in tomato roots colonized by Rhizopha-
gus irregularis or Gigaspora margarita. Tomato roots inoculated with R. irregularis (a) or G. margarita
(b) were collected five weeks post-inoculation (wpi). The collected root samples were stained with
0.05% trypan blue. Scales: 20 µm. White arrow, intercellular hypha; black arrowhead, intercellular
hypha penetrating the tomato cortical cell; asterisks, arbuscules; black arrow, hyphal coil; white
arrowheads, intracellular hypha penetrating the adjacent tomato cortical cells.

Next, we compared the root colonization levels of the two AM fungi (Figure 2a). The
quantification of AM fungal colonization revealed that the colonization rates of G. margarita
were slightly lower than those of R. irregularis, although there was no statistical significance
in Welch’s t-test. In addition, the fresh weight of the tomato shoots was significantly
increased by the colonization of both R. irregularis and G. margarita at five weeks post-
inoculation (wpi) (Figure 2b). Taken together, the symbiotic phenotypes were comparable
to each other, except for the AM morphotype.
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Figure 2. Quantification of AM fungal colonization rates and AM-promoted shoot growth of tomato
plants. (a) The fungal colonization rates of Rhizophagus irregularis or Gigaspora margarita in tomato
roots at five weeks post-inoculation (wpi). Total (%), the percentage of all hyphal structures observed
in the tomato roots; arbuscule (%), the rate of arbuscules formed in the cortical cells. There is no
statistically significant difference in the colonization rates between R. irregularis and G. margarita
in Welch’s t-test. The error bars show the standard errors (n = 6). (b) The shoot fresh weight of
tomato colonized by R. irregularis and G. margarita at five wpi. AMF, non-colonized tomato roots;
R. irregularis, R. irregularis-colonized roots; G. margarita, G. margarita-colonized roots. The bars and
dots indicate the average and individual values, respectively. The error bars indicate the standard
errors (n = 9). The different letters indicate statistical significance (p < 0.05) in analysis of variance
(ANOVA) with a post hoc Tukey-Kramer test.
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2.2. Comparative Transcriptomics of Tomato Mycorrhizal Roots Accommodating Different
AM Fungi

Next, we conducted comparative transcriptomics between tomato roots separately
colonized by R. irregularis and G. margarita to elucidate the regulatory mechanisms under-
lying Arum- and Paris-type AM symbioses. Our RNA-sequencing resulted in a minimum
of 13 million and a maximum of 20 million raw sequence reads after trimming (Table S1).
More than 80% of the filtered reads were uniquely mapped against the reference genome
sequence of tomato [40]. The numbers of upregulated and downregulated differentially ex-
pressed genes (DEGs) in tomato mycorrhizae relative to non-colonized roots were 440 and
343, respectively (Figure 3a,b, Table S2). A comparison of DEGs between R. irregularis- and
G. margarita-infected root samples revealed that the expression levels of 40.2% of genes
were commonly promoted in both AM fungal colonizations compared with non-colonized
roots (Figure 3a,c). In addition, 9.8% and 50.0% of the AM-upregulated DEGs were specific
to R. irregularis and G. margarita, respectively (Figure 3a,c). On the contrary, AM-suppressed
DEGs were primarily different between R. irregularis- and G. margarita-infected tomato
roots (Figure 3b,c).
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Figure 3. Differential expression analysis of tomato roots colonized by Rhizophagus irregularis or
Gigaspora margarita. (a,b) Venn diagram of 440 AM-upregulated (a) and 343 AM-suppressed (b) genes
compared with non-colonized roots at five weeks post-inoculation (wpi). Genes with |Log2Fold
Change (FC)| > 1 and a false discovery rate (FDR) < 0.05 were considered differentially expressed
genes (DEGs). (c) Hierarchical clustering of the total AM-responsive DEGs. The left-hand heatmap
shows the Log2FC of genes expressed in colonized tomato roots relative to non-colonized roots. Blue
indicates negative values; yellow, positive values; and black, zero change. The right-hand heatmap
illustrates FDR values less than 0.05, with significant DEGs presented in pink. Detailed information
about the DEGs can be found in Table S2.
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Gene ontology (GO) enrichment analysis was conducted to gain insight into how
tomato plants respond to the associating AM fungi (Figure 4, Table S3). Since half of
AM-upregulated DEGs was shared between R. irregularis- and G. margarita-colonized
roots, we first examined the enriched GO terms in the common DEGs. We found that
some GO terms related to the lipid biosynthesis and transport, and SL production was
significantly enriched during association with both AM fungi (Figure 4a). On the contrary,
AM-upregulated DEGs specific to G. margarita had enriched GO terms related to immune
response, such as the response to biotic stimuli, systemic acquired resistance, and cellular
response to reactive oxygen (Figure 4b). Interestingly, GA biosynthesis in tomato roots was
also transcriptionally upregulated upon G. margarita infection. Since the number of DEGs
unique to R. irregularis was not sufficient for enrichment analysis, the GO terms were not
analyzed.
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Figure 4. Gene ontology (GO) enrichment analysis on AM-upregulated genes. (a) GO terms enriched
in the upregulated DEGs shared between tomato roots colonized by Rhizophagus irregularis or Gigas-
pora margarita. (b) GO terms enriched in DEGs upregulated only in roots infected by G. margarita. The
representative GO terms obtained from the tested DEGs are listed. Bigger circles in the hierarchical
clustering trees represent more genes annotated to the respective GO terms. The right-hand color
bars indicate p values (< 0.05). Detailed information is presented in Table S3.

We also conducted GO enrichment analysis for AM-suppressed DEGs (Figure 3b,
Table S3). Among the shared DEGs downregulated in tomato roots colonized by R. irreg-
ularis or G. margarita, some GO terms corresponding to defense-related functions were
again observed with statistical significance (Table S3). In addition, the GO terms associ-
ated with response to chitin and the salicylic acid biosynthetic process were significantly
and uniquely detected in R. irregularis- and G. margarita-specific downregulated DEGs,
respectively (Table S3).

2.3. Expression Patterns of AM-, SL-, and Defense-Related Genes in Tomato Roots against
Different AM Fungal Colonizations

Several GO terms corresponding to membrane transport, lipid biosynthesis, and SL
production were significantly enriched in the shared AM-upregulated DEGs. Therefore,
we studied the expression pattern of AM- and SL-related genes upon different AM fungal
colonizations. For this analysis, we selected S. lycopersicum PT4 (SlPT4), SlAMT2;3, SlRAM1,
SlRAD1, SlRAM2, SlSTR/SlSTR2, and SlVpy (Table S4). AM fungal colonization signifi-
cantly upregulated the transcription of all the selected genes irrespective of the associating
fungal species (Figure 5a, Table S4). These results were in line with our GO enrichment
analysis.

Next, we analyzed the expression patterns of SL-related genes upon AM fungal
colonization. For the analysis, we selected SlD27, SlCCD7, SlCCD8, and SlMAX1 for the
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SL biosynthetic process and SlD14, SlKAI2, and SlDLK2 for SL perception and signaling
(Table S4) [41,42]. The expression levels of SlD14 and SlKAI2 were comparable to levels
in non-colonized tomato roots (Figure 5b, Table S4). On the contrary, all of the selected
SL biosynthetic genes and SlDLK2 were transcriptionally upregulated by R. irregularis or
G. margarita infection relative to the non-colonized roots (Figure 5b, Table S4). Together,
these expression patterns of selected genes were consistent with the results of the GO
enrichment analysis on the common AM-upregulated DEGs (Figure 4).

Since our GO enrichment analysis also revealed transcriptional changes in defense-
related pathways (Figure 4b, Table S4), the expression patterns of the corresponding genes
were investigated. We determined that genes functioning in “systemic acquired resistance”
and “cellular response to reactive oxygen species (ROS)” were specifically expressed upon
G. margarita infection (Figure 5c). In addition, the gene expression patterns associated with
“response to chitin” and “salicylic acid biosynthetic process” were consistent with the GO
enrichment analysis (Figure 5c, Table S4). On the contrary, the expression levels of some
genes involved in “defense response to other organism” and “antibiotic metabolic process”
were commonly decreased by each AM fungal colonization (Figure 5c, Table S4). These
results indicate that R. irregularis suppressed defense responses in tomato roots, whereas G.
margarita also stimulated some parts of the immune pathways.
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Figure 5. Expression patterns of AM-, strigolactone (SL)-, and defense-related genes during AM
symbioses established by different AM fungi in tomato roots. At five weeks post-inoculation (wpi),
the transcriptional response of the selected tomato genes against Rhizophagus irregularis or Gigaspora
margarita colonization was analyzed. Log2-transformed fold changes (FC) of AM-related (a) and
SL-related (b) genes versus the non-colonized roots are presented in each left-hand heatmap. (c) The
expression patterns of DEGs involved in the defense-related pathways (Figure 4b, Table S3). The
calculated values are written on the heatmaps. The Log2FC values of DEGs are shown in bold.
Asterisks indicate the significance in the Log2FC (*: false discovery rate (FDR) < 0.05, **: FDR < 0.01,
and ***: FDR < 0.001). The Log2FC and FDR values are listed in Table S4.
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3. Discussion

AM morphotypes are known to change depending mainly on host traits. In previous
studies, we used several host species and one AM fungal species to compare the molecular
mechanisms underlying AM symbioses forming different morphotypes [31,32]. In this
study, we focused on the transcriptional responses occurring in a single host species,
tomato, associating with two AM fungi, namely, R. irregularis and G. margarita. Our
findings revealed some shared and different transcriptional responses in tomato roots when
the associating fungi and resulting AM morphotypes are distinct.

3.1. Shared Transcriptional Reprogramming upon Different AM Fungal Colonizations

This study found some shared transcriptional programs during AM symbioses in
tomato roots colonized with R. irregularis or G. margarita. Membrane transport and lipid
biosynthesis were transcriptionally activated in mycorrhizae accommodating R. irregularis
or G. margarita (Figure 4a, Table S3). These results indicate that the nutrient exchange
between the host plants and fungal symbionts is activated, which contributes to symbiotic
growth promotion in tomato plants (Figure 2b). In line with these findings, the expression
levels of several symbiosis-related genes required for phosphate transport (SlPT4), ammo-
nium transport (SlAMT2;3), lipid production and transport (SlRAM2, SlSTR, SlSTR2), and
GRAS transcription factors regulating these symbiotic genes (SlRAM1, SlRAD1) were com-
monly and significantly increased by both AM fungal colonizations (Figure 5a, Table S4).
These findings indicate that the symbiotic exchange of nutrients between tomatoes and AM
fungi is irrespective of AM morphotype. As for SlVpy, both R. irregularis and G. margarita
infections enhanced the expression levels of SlVpy. This result indicates that SlVpy is
necessary for the development of arbuscule in both Arum- and Paris-type AMs.

Our transcriptome analysis also revealed another shared transcriptional reprogram-
ming upon AM fungal colonization, the SL biosynthetic process. R. irregularis and G. mar-
garita colonization transcriptionally upregulated all selected genes for SL production at five
wpi (Figure 5b, Table S4). These results were consistent with our GO enrichment analysis
(Figure 4a). Moreover, the expression of SlDLK2 was also upregulated by the two AM
fungi (Figure 5b, Table S4). Recent work has elucidated the involvement of SlDLK2 in the
negative regulation of arbuscule branching [43]. In addition to AM-upregulated SlVpy
expression, the mechanisms underlying arbuscule formation would be shared in Arum-
and Paris-type AMs.

3.2. Specific Responses to Paris-Type AM Symbiosis

With respect to the different responses of tomato to AM fungal species, some genes
involved in biotic stimuli such as the defense response to a pathogen and ROS were tran-
scriptionally upregulated during Paris-type AM symbiosis established by G. margarita
(Figure 4b, Table S3). In general, the perception of pathogen-associated molecular patterns,
such as chitin, by pattern recognition receptors (PRRs) and penetration of the plant cell
wall, triggers ROS production and transcriptional activation of some defense-responsive
genes [44,45]. In addition, the disruption of the plant cell wall by pathogen penetration
releases oligomeric fragments of plant cell wall polysaccharides, referred to as damage-
associated molecular patterns (DAMPs), and can cause PRR-mediated local defense re-
sponses [46]. Taken together, the continuous invasion of G. margarita hyphae into tomato
cortical cells in Paris-type AM roots might promote ROS production by increasing DAMPs.

Interestingly, a previous study has demonstrated that colonization by Gigasporaceae
fungi in tomato (S. lycopersicum cv. 76R) roots results in high but transient expression levels
of some defense-related genes, such as PATHOGENESIS-RELATED PROTEIN 1 (PR-1)
and extracellular acidic chitinase (CHI3) [6]. On the contrary, Gao et al. (2004) showed
that relatively weak accumulations of defense-related genes are observed in tomato roots
forming Arum-type AM with the Glomeraceae family, such as R. irregularis and Glomus
mosseae. Therefore, the continuous invasion of intracellular hyphae of G. margarita forming
Paris-type AM roots possibly activates biotic responses in tomato roots. In fact, we found
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that G. margarita colonization significantly upregulated some defense pathways in tomato
roots (Figures 4b and 5c, Tables S3 and S4).

Nevertheless, our study demonstrated that G. margarita could colonize tomato roots
comparably to R. irregularis (Figure 2a). Recent studies have shown that LCOs, CO4, and
several small, secreted proteins derived from AM fungi alleviate the immune responses in
host plants [3,5,9,47], which are consistent with the AM-suppressed chitin response and
salicylic acid biosynthesis (Figure 5c, Table S3). These findings lead us to predict that AM
fungal chitin oligomers and/or effectors might enable the two fungi to effectively colonize
tomato plants by compromising defense responses, which might show comparable fungal
colonization in tomato roots (Figure 2a). In addition, the function of SAR- and ROS-related
genes whose expression levels were increased by G. margarita infection might be irrelevant
or insufficient to inhibit fungal colonization. These ideas need further investigation.

Some GO terms associated with manganese or divalent metal transport were enriched
within DEGs in G. margarita-colonized roots (Figure 4b, Table S3). One of the annotated
genes, Solyc02g092800.3, is known as Natural Resistance-Associated Macrophage Protein 1
(NAMP) metal transporter [48]. The NRAMP genes in legume plants have been reported
to be transcriptionally upregulated in root nodules and localized on the peribacteroid
membrane, where host plants and rhizobia exchange nutrients [49,50]. Therefore, tomato
plants could take up divalent metals, such as iron and manganese, from intraradical
G. margarita hyphae and utilize them for their growth.

3.3. Transcriptional Activation of the GA Biosynthetic Process

Our previous work demonstrated that bioactive GA production is upregulated in
E. grandiflorum Paris-type AMs [31]. AM-promoted bioactive GA accumulation has also
been reported in Lotus japonicus forming Arum-type AM roots [34]. However, our GO
enrichment analysis revealed transcriptional upregulation of the GA biosynthetic process
only in tomato roots forming Paris-type AM with G. margarita (Figure 4b, Table S3). In
addition, we found that Paris-type AM symbiosis in E. grandiflorum and Primula malacoides is
promoted by exogenous GA treatment [31]. Taken together, bioactive GAs might contribute
to the establishment of Paris-type AM symbiosis in tomatoes colonized by G. margarita;
however, this hypothesis needs to be investigated further.

4. Materials and Methods
4.1. Biological Materials and Growth Conditions

Seeds of Solanum lycopersicum L. cv. Micro-Tom were obtained from the University of
Tsukuba, Tsukuba Plant Innovation Research Center, through the National Bio-Resource
Project. The seeds were cleaned with 70% ethanol and then rinsed twice with sterilized
distilled water. The pre-washed seeds were immersed and agitated in 1.5% (v/v) NaClO
solution for 15 min. After the solution was removed, the seeds were set on two pieces of
filter paper in a light chamber at 24 ◦C and a 14-h light/10-h dark/light cycle and incubated
for six days. Spores of Gigaspora margarita MAFF520052 were obtained from the Genebank
Project (National Agriculture and Food Research Organization, Japan) and sterilized in
0.1% (v/v) NaClO and 0.04% (v/v) Tween-20 for 15 min, followed by replacement of the
solution with sterilized distilled water. Rhizophagus irregularis DAOM197198 spores were
purchased from Premier Tech (Quebec, Canada).

For the inoculation of six-day-old tomato seedlings with R. irregularis, 50 mL of 1/5
strength Hoagland solution (20-µM inorganic phosphate) containing 3000 spores was
poured into a washed and autoclaved (121 ◦C for 20 min) 300-mL soil mixture of river
sand and shibanome soil (2:1, v:v). Three tomato seedlings were then transplanted to
the soil mixture. Each six-day-old tomato seedling was directly inoculated with 20 G.
margarita spores. The inoculated seedlings were grown under the same conditions for five
weeks. Subsequently, the lateral roots were harvested, and the fresh weight of shoots was
measured.
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4.2. Observation and Quantification of Mycorrhizal Roots

AM fungal colonization was quantified by staining the root samples with trypan blue
and microscopically observing them as previously reported [31]. Briefly, mycorrhizal roots
were fixed in a FAA solution (5% formaldehyde, 5% acetic acid, and 45% ethanol [v/v]),
rinsed twice with distilled water. The fixed root samples were heated at 90 ◦C for 15 min
and neutralized in 2% HCl solution. Subsequently, the root samples were immersed in
trypan blue diluted by lactic acid at 0.05% and heated at 90 ◦C for 15 min. The stained
samples were sliced with a scalpel under a SZX16 stereomicroscope (Olympus, Tokyo,
Japan), and images were taken using a BX53 light microscope (Olympus) equipped with a
digital camera (DP27; Olympus).

4.3. Extraction of RNA from Tomato Roots

To conduct transcriptome analysis by RNA-sequencing (RNA-seq), we prepared RNA
samples from fresh tomato roots. The lateral roots from three seedlings in a nuclease-
free tube (INA-OPTIKA, Osaka, Japan) containing two 5-mm beads were frozen in liquid
nitrogen and then homogenized in a ShakeMan6 (Bio-Medical Science, Tokyo, Japan);
afterward, 450 µL of Fruit-mate for RNA Purification (Takara Bio, Shiga, Japan) was added
to each tube. After thoroughly mixing the tubes, the slurry was transferred to another
tube and centrifuged at 12,000× g at 4 ◦C for 5 min. The supernatant was mixed with
450-µL ethanol and RNAiso Plus (Takara) in a new tube. The genomic DNA-free total RNA
was prepared using a Zymo-spin IIICG Column (Zymo Research, Orange, CA, USA). The
column membrane was treated with DNaseI (Takara) before extracting the RNA according
to the manufacturer’s protocols. The purity and quantity of total RNA were measured at
260 and 280 nm (A260: A280) using DeNovix DS-11 + (Scrum, Tokyo, Japan). The prepared
samples were stored at −80 ◦C until use.

4.4. RNA-seq, Data Analysis, and Gene Identification

The library preparation and RNA-seq were performed by Genewiz (Tokyo, Japan)
using DNBSEQ-G400 and resulted in more than 14 million strand-specific paired-end
(2 × 150 bp) reads per sample (Table S1). The obtained raw reads were filtered (<QV30),
and the adapter sequence was trimmed using Fastp [51]. The purified single-end reads
were mapped to tomato genome sequence version SL4.0 and annotation ITAG4.0 built by
the International Tomato Genome Sequencing Project (https://solgenomics.net/organism/
Solanum_lycopersicum/genome, accessed on 2 December 2021) using the STAR pro-
gram [52]. The resulting data were processed with featureCounts v1.6.4 [53] to quantify
gene expression. Then, we extracted the DEGs using the EdgeR package [54] in the R
software v4.0.2. In this study, genes with FDR < 0.05 were considered DEGs. In addition,
the GO terms significantly enriched within the DEG datasets were identified using Shiny
GO v0.61 [55]. Tomato genes with zero count in at least one of the root samples were
removed before expression pattern and GO enrichment analyses. To investigate the effects
of R. irregularis and G. margarita infections on the expression of AM symbiosis- or SL-related
genes, we selected several tomato genes required for the mutualism. To this end, known
genes in M. truncatula and Arabidopsis thaliana were used as queries for tBLASTx searches
in the Sol Genomics Network using the default setting (Table S4). Raw nucleotide sequence
data from this study are available from the DDBJ Sequence Read Archive under accession
number DRA013369.

4.5. Biological Replicates, Statistical Analysis, and Heatmap Production

To quantify the root colonization rate (%), we considered ten pieces of root fragment
from one tomato sample on a microscope slide as one biological replicate. When preparing
a sample for RNA-seq, one pool of total RNA extracted from three seedlings was one
biological replicate. Finally, we used three RNA samples for the RNA-seq. Statistical
analysis was conducted in the R software v4.0.2. Welch’s t-test and analysis of variance
(ANOVA) followed by a post hoc Tukey-Kramer test were applied for the colonization

https://solgenomics.net/organism/Solanum_lycopersicum/genome
https://solgenomics.net/organism/Solanum_lycopersicum/genome
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rates and shoot fresh weight, respectively. The R package heatmaply was used to draw the
heatmaps [56].

5. Conclusions

We found some common AM-specific transcriptional programs for the membrane
transport, arbuscule development, and SL biosynthetic pathway in Arum- and Paris-type
AM symbioses in tomato roots. These similarities indicate that the primary and downstream
mechanisms for accommodating AM fungi would be common, irrespective of the AM
morphotype. In addition, our study demonstrated that the colonization of phylogenetically
distant AM fungi differentially affected the defense-related pathways and GA biosynthetic
process in tomato roots. These different transcriptional responses would enable tomatoes
to fine-tune the mutualism between tomato roots and diverse AM fungi to optimize the
host growth. In addition, the upstream regulation underlying Arum- and Paris-type AM
symbioses in tomato plants might be differentially modulated by GA. Further investigation
of how GA regulates Paris-type AM symbiosis established by tomato roots and G. mar-
garita would improve our understanding of the regulatory mechanisms underpinning AM
symbioses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11060747/s1, Table S1: Results of RNA-sequencing, read
mapping, and read count; Table S2: Information of symbiosis-responsive DEGs; Table S3: Gene
ontology enrichment analysis on tomato mycorrhizae; Table S4: Blastp results and expression patterns
of genes listed in Figure 5.
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