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ABSTRACT

This study developed a method to boost the
expression of recombinant proteins in a cell-free
protein synthesis system without leaving additional
amino acid residues. It was found that the nucleot-
ide sequences of the signal peptides serve as
an efficient downstream box to stimulate protein
synthesis when they were fused upstream of the
target genes. The extent of stimulation was critically
affected by the identity of the second codons of
the signal sequences. Moreover, the yield of the
synthesized protein was enhanced by as much as
10 times in the presence of an optimal second
codon. The signal peptides were in situ cleaved and
the target proteins were produced in their native
sizes by carrying out the cell-free synthesis reac-
tions in the presence of Triton X-100, most likely
through the activation of signal peptidase in the S30
extract. The amplification of the template DNA and
the addition of the sighal sequences were accomp-
lished by PCR. Hence, elevated levels of recombi-
nant proteins were generated within several hours.

INTRODUCTION

The cultivation of transformed cells has long been used as a
standard route for preparing recombinant proteins. However,
the recent explosion in the number of the newly identified
open reading frames (ORFs) is now demanding a high
throughput of protein expression that cannot be readily
covered by the present in vivo expression technology.
Cell-free protein synthesis is attracting renewed attention
as an alternative technique for overcoming the limited
throughput of in vivo expression (1-4). While the conven-
tional protocols of cell-free protein synthesis have been
unable to provide sufficient quantities of proteins, recent

improvements in the understanding of the key factors
involved in cell-free synthesis have allowed the development
of more efficient and robust protocols. Among the many
attempts to enhance the accumulation of protein products in
cell-free synthesis reactions, major improvements have been
made through the stable supply of energy and substrates; ATP
and amino acids (5-8). Kim et al. reported that the stable
maintenance of the magnesium concentration against accu-
mulating phosphate is also essential for prolonging the
reaction period of cell-free protein synthesis (9).

However, the efficiency of gene expression is affected by
the nature of the sequence elements as well as by environ-
mental factors. Therefore, providing the optimal biochemical
conditions is not sufficient for obtaining a high protein
yield when the identity and arrangement of the nucleotide
sequences have not been optimized for translation. In addi-
tion to the initiation codon and the Shine-Dalgarno (SD)
sequence, several other sequence elements surrounding the
start codon affect the efficiency of translation initiation
significantly (10-14). In particular, the sequence of the first
few nucleotides in close proximity to the start codon (down-
stream box) has a profound effect on the translation efficiency
of many transcripts.

In this study, it was found that many of the naturally occur-
ring signal peptide sequences stimulate protein synthesis in
a cell-free protein synthesis system derived from Escherichia
coli. For example, when the nucleotide sequence of the
OmpA signal peptide (ompAss) was fused with the target
genes, the amounts of the cell-free synthesized proteins
were enhanced 10 times. The effectiveness of the different
signal sequences were compared in a rapid and parallel man-
ner through the PCR-based generation of the DNA templates
for cell-free protein synthesis. As a result, it was found that
the stimulatory effect of a signal peptide sequence was depen-
dent on the identity of its second codon, and that most of
the effective nucleotide sequences have an AAA triplet at
the +2 position.

Finally, the ‘open’ nature of the cell-free protein synthesis
enabled the in situ removal of the signal peptide from the
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expressed proteins. All the expression products were found
at the native size of the target protein using the cell-free
protein synthesis reactions in the presence of Triton X-100,
most likely through the activation of the endogenous signal
peptidase.

The method presented in this report enables the parallel
expression of authentic proteins at elevated levels, and will
provide a valuable platform for the large-scale translation
of genomic information into protein molecules.

MATERIALS AND METHODS
Materials

ATP, GTP, UTP, CTP, creatine phosphate, creatine kinase
and the E.coli total tRNA mixture were purchased from
Roche Applied Science (Indianapolis, IN). The L-[U-'*C]-
leucine (11.9 GBg/mmol) was obtained from Amersham
Biosciences (Uppsala, Sweden). The detergents were
obtained from Pierce Biotechnology (Rockford, IL). All the
other reagents were purchased from Sigma (St. Louis, MO).
The E.coli strain BL21-Star™(DE3) was purchased from
Invitrogen (Carlsbad, CA). The S30 extract was prepared
from the strain BL21-Star™(DE3) according to the method
reported elsewhere (15,16).

Statistical analysis of nucleotide sequences

The full-length genome sequences of E.coli (strain K-12)
were downloaded from the GeneBank database (NC_000913).
000913). The nucleotide sequences encoding the E.coli signal
peptides were obtained from a signal peptide database
(release 3.2) (17).

Construction of plasmid expression templates

Seven signal peptide sequences were fused to the structural
gene of human erythropoietin (hEPO) using conventional
PCR methods. The sequences were subcloned into the
pK7 vector (18) between the nucleotide sequences of the
T7 promoter and T7 terminator. The plasmid constructs
were sequenced and purified using the Maxiprep kit (Qiagen,
Valencia, CA) before being used as templates for cell-free
protein synthesis reactions (Table 1 and Figure 1).

Table 1. Strains and plasmids used in this study
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Construction of linear expression templates

For the parallel expression of different ORFs, the PCR-
amplified DNAs were used directly as templates for the
cell-free synthesis reactions. The ompA fused-gene constructs
were prepared using overlap extension PCR techniques. In
the first-round PCR, three of the primary PCRs were carried
out in separate reactions as follows: the T7 regulatory ele-
ments and ompA sequence were amplified from pK7ompAss-
EPO using the primers, P1 (5-TGGCACGACAGGTTT-
CCCGA-3’) and P2 (5-GGCCTGCGCTACGGTAGCGA-3).
The target ORFs were amplified using the primers, P3 [5'-
TCGCTACCGTAGCGCAGGCC-(20 nt sequence for target
gene)-3’] and P4 [5-TGATGATGAGAACCCCCCCC-
(complementary 20 nt sequence for target gene)-3'] from
the cloned plasmid or genomic DNA. The 3/-UTR region
including the T7 terminator was amplified from the
pIVEX2.3d plasmid (Roche Applied Science) using the
primer P5 (5-GGGGGGGGTTCTCATCATCA-3’) and P6
(5-CCCAGTCCTGCTCGCTTCGC-3'). The 1st PCR prod-
ucts were purified by gel extraction and used for the second-
round PCR, in which the full-length expression templates
were synthesized using the primers P1 and P6. After ampli-
fication, the PCR products were purified using a PCR
clean-up kit (Promega) before being used in the cell-free
protein synthesis reactions.

Cell-free protein synthesis and analysis of
the expressed proteins

The standard reaction mixture for cell-free protein synthesis
consisted of the following components at a final volume
of 15 ul: 57 mM Hepes—KOH (pH 8.2), 1.2 mM ATP,
0.85 mM each of CTP, GTP and UTP, 2 mM DTT,
0.17 mg/ml E.coli total tRNA mixture (from strain MRE600),
0.64 mM cAMP, 90 mM potassium glutamate, 80 mM
ammonium acetate, 12 mM magnesium acetate, 34 pg/ml
L-5-formyl-5,6,7,8-tetrahydrofolic acid (folinic acid), 1.0 mM
each of 20 amino acids, 2% polyethylene glycol (PEG) 8000,
67 mM creatine phosphate (CP), 3.2 ug/ml creatine kinase
(CK), 001 mM L-[U-"Clleucine (11.9 GBg/mmol,
Amersham Biosciences), 6.7 pg/ml DNA, 4 ul of S30
extract. The cell-free synthesized protein was quantified by
measuring the TCA-precipitated radioactivity using a liquid
scintillation counter (WALLAC 1410), as described else-

Bacterial strains

IM109 el4d (McrA™) recAl endAl gyrA96 thi-1 hsdR17 (g mi)

Laboratory stock

supE44 relAl A(lac-proAB) [F’ traD36 proAB lacl"ZAM15]

BL21 star™(DE3) F~ ompT hsdSg(rg mg) gal dem rnel31

Invitrogen

Roche Applied Sciences

Plasmids®
pIVEX2.3d Ampicillin resistant, C-terminal His-tag
pK7hEPO EPO (501 bp) cloned into Ndel/Sall sites

pK7pelBss-EPO
pK70ompAss-EPO
pK7phoAss-EPO
pK7malEss-EPO
pK70mpCss-EPO
pK70mpTss-EPO
pK7heposs-EPO

pK7EPO derivative containing the signal peptide sequence of pelB (66 bp)

pK7EPO derivative containing the signal peptide sequence of ompA (63 bp)
pK7EPO derivative containing the signal peptide sequence of phoA (63 bp)
pK7EPO derivative containing the signal peptide sequence of malE (78 bp)
pK7EPO derivative containing the signal peptide sequence of ompC (63 bp)
pK7EPO derivative containing the signal peptide sequence of ompT (60 bp)

pK7EPO derivative containing the signal peptide sequence of human EPO (81 bp)

(18)

This study
This study
This study
This study
This study
This study
This study

#All the pK7 plasmids have kanamycin resistance and the same 5'-UTR sequences including T7 promoter and RBS.
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pelB (pectate lyase B) from Erwinia carotovora
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Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala Ala GIin Pro Ala Met Ala
ATG AAATAC CTATTG CCT ACG GCA GCC GCT GGATTG TTATTA CTC GCT GCC CAA CCA GCG ATG GCC

ompA (outer-membrane protein A)

Met Lys Lys Thr Ala lle Ala lle Ala Val

Ala Leu Ala Gly Phe Ala Thr Val Ala Gin Ala

ATG AAA AAG ACA GCT ATC GCG ATT GCA GTG GCA CTG GCT GGT TTC GCT ACC GTA GCG CAG GCC

phoA (alkaline phosphatase)
Met Lys GIn Ser Thr

lle Ala Leu Ala Leu Leu Pro Leu Leu Phe Thr Pro Val Thr Lys Ala

ATG AAA CAA AGC ACT ATT GCACTG GCACTC TTACCG TTACTG TTT ACC CCT GTG ACA AAA GCC

malE (maltose-binding protein)
Met Lys lle Lys Thr Gly Ala Arg

lle Leu Ala Leu Ser Ala Leu Thr Thr Met Met Phe Ser Ala Ser

Ala Leu Ala

ATG AAA ATA AAA ACA GGT GCA CGC ATC CTC GCATTATCC GCA TTA ACG ACG ATG ATG TTT TCC GCC TCG GCT CTC GCC

ompC (outer-membrane protein C)

Met Lys Val Lys Val Leu Ser Leu Leu Val Pro Ala Leu Leu Val

Ala Gly Ala Ala Asn Ala

ATG AAA GTT AAAGTACTG TCC CTC CTG GTC CCA GCT CTG CTG GTA GCA GGC GCA GCA AAC GCT

ompT (protease VII)

Met Arg Ala Lys Leu Leu Gly lle Val Leu Thr Thr Pro

lle Ala

lle Ser Ser Phe Ala

ATG CGG GCG AAA CTT CTG GGA ATA GTC CTG ACA ACC CCT ATT GCG ATC AGC TCTTTT GCT

heposp (human erythropoietin)

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly
ATG GGG GTG CAC GAA TGT CCT GCC TGG CTG TGG CTT CTC CTG TCC CTG CTG TCG CTC CCT CTG GGC CTC CCA GTC CTG GGC

Figure 1. Nucleotide and amino acid sequences of the N-terminal regions of the hEPO fused with the signal peptides.

where (15). The size of the cell-free synthesized protein was
analyzed by western blotting after running the reac-
tion samples on a 13% Tricine-SDS-polyacrylamide gel, as
described by Schagger and von Jagow (19).

Removal of the signal peptide from the expressed
fusion proteins

The signal peptides were removed in situ by carrying out
cell-free protein synthesis in the presence of different concen-
trations of Triton X-100 (0.01%-0.5%, w/v) from the start of
incubation in order for the N-terminal signal peptide to be
cleaved-off immediately after its translation in the reaction
mixture.

RESULTS

Optimized biochemical conditions are not sufficient
for the efficient cell-free expression of many ORFs

It was previously reported that the efficiency of cell-free
protein synthesis is improved remarkably when the reaction
mixture is supplied with sufficient amounts of energy and
substrates (9). For example, in reactions utilizing creatine
phosphate for the continuous regeneration of ATP, the use
of an excess amount of creatine phosphate enabled prolonged
protein synthesis provided that the reaction mixture was sup-
plied periodically with fresh magnesium ions to compensate
for their loss through the formation of insoluble magnesium
phosphates. Using this approach, as much as 1.2 mg/ml of
chloramphenicol acetyltransferase (CAT) could be produced
from a single batch reaction of cell-free protein synthesis.
An increase in the productivity of many other proteins was

also shown after improving the supply of ATP and amino
acids (9).

However, the provision of optimal biochemical conditions
does not always enhance the productivity of cell-free protein
synthesis. For example, the expression level of hEPO was not
affected significantly in the presence of the elevated levels of
ATP and amino acids, and remained at <100 pg/ml. Since
all of our ORFs were routinely cloned in the same expression
vectors (pK7 and pIVEX2.3d) (9,18), such a discrepancy
would be due to the nature of the nucleotide sequences of
the structural genes.

Signal peptide sequences-mediated stimulation of
protein expression

With respect to the effect of the sequence elements on the
efficiency of gene expression, many recent reports strongly
suggest that the translational efficiency of a gene is deter-
mined primarily by the nature of the initial nucleotide
sequences. For example, Stenstrom and Isaksson recently
demonstrated that the translational efficiency of the lacZ
reporter gene was critically affected by the identity of the
first +2 to +5 codons (13). In particular, the expression
level was dramatically changed according to which codon
was placed at the +2 position. While the expression level of
the reporter gene was strongly stimulated when the AAA
codon was located at +2 position (11), the placement of the
NGG codons (CGG, AGG, GGG and UGG) at the same
position was associated with remarkably lower expression
efficiency (12,20).

Based on their results, it was assumed that the yields of
otherwise poorly expressed genes might be stimulated by
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Table 2. Codon biases of the nucleotide sequence of the E.coli signal peptides

Sequence data Frequency of AAA

codon at position +2

440/4241 (10.3%)
20/45 (48.9%)
16/54 (29.6%)

Whole E.coli K12 genome
Unverified E.coli signal sequences
Verified E.coli signal sequences

E.coli signal sequence data set were obtained from a signal peptide
database (http://proline.bic.nus.edu.sg/spdb/). This database currently contains
99 entries of E.coli signal sequences: 54 of the entries are experimentally
verified signal sequences (the N-terminal amino acid residues were
sequenced), and 45 are computationally predicted sequences (17).

Table 3. Expression level of the signal peptide-EPO fusion constructs

Plasmid Signal Second  Expression Relative level
peptide  codon level (ug/ml)  of expression”
pK7pelBss-EPO pelB AAA 569 + 34 10.3
pK70ompAss-EPO  ompA AAA 588 + 28 10.7
pK7phoAss-EPO phoA AAA 515 £ 31 9.4
pK7malEss-EPO malE AAA 524 + 13 9.5
pK70mpCss-EPO ompC AAA 522 +24 9.5
pK70mpTss-EPO ompT CGG 107 + 17 1.9
pK7heposs-EPO heposs GGG 101 = 13 1.8

“Data from three independent experiments.
Expression level as compared with the expression of the wild-type EPO
(EPO expression level = 1; EPO expression level = 55 pg/ml)

placing the optimal nucleotide sequences beforehand. It
was also expected that such a stimulatory sequence could
be used as a universal translation enhancer to increase the
productivity of recombinant proteins. In search of the nucle-
otide sequences that possibly enhance the expression of
their fusion partners, the python script was used to analyze
the codon usage in the entire E.coli genome. Interestingly,
it was found that the nucleotide sequences of many signal
peptides had strong bias for AAA as the second codon.
Approximately 40% of signal peptides had the AAA triplet
as the second codon (Table 2).

According to the analysis reported by Sato et al. (21),
>10% of the E.coli genes use AAA as their second codon
whereas the frequency of AAA triplet in the entire E.coli
genome is 3.3%. It was also suggested that the higher fre-
quency of the AAA triplet at the +2 position is related to
the translation efficiency of a gene. Therefore, from the
exceptionally high frequency of the AAA triplet as the second
codon, it was assumed that the signal sequences might work
as a translation-enhancing element.

Therefore, the genes of hEPO with different signal
sequences were fused and experiments were carried out to
determine if their presence affects the efficiency of protein
synthesis in our cell-free synthesis system. The nucleotide
sequences of the seven different signal peptides (pelBss,
ompAss, phoAss, malEss, ompCss, ompTss, heposs) were
fused to the upstream of hEPO sequence in the plasmid
pK7hEPO, and the resulting constructs were expressed in
the reaction mixture for cell-free protein synthesis. As
summarized in Table 3, the five signal sequences except for
ompTss and heposs dramatically enhanced the expression
level, yielding 9-10 times higher amounts of the target
proteins (Figure 2). For example, the expression level of
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Figure 2. SDS-PAGE analysis of the cell-free synthesized hEPOs fused with
different signal peptides. The reaction mixture was incubated at 37°C for 2 h.
The reaction mixture (2 pl) was loaded on a 13% Tricine-SDS-PAGE gel
and stained with Coomassie Brilliant Blue.

hEPO was increased from 55 to 588 pg/ml through its fusion
with the ompA sequence.

Effect of the identity of the second codon on
the translation efficiency

However, not all the signal sequences were effective in
enhancing the expression of the downstream ORF. For exam-
ple, the nucleotide sequence of the OmpT signal sequence
(ompTss) failed to stimulate the synthesis of hEPO with the
amount of the accumulated protein being similar to the
wild-type sequence. Similarly, the addition of the natural sig-
nal sequence of hEPO (heposs) did not affect the expression
level of hEPO.

Interestingly, when the second codons of ompTss and
heposs were switched to AAA (from CGG and GGG, respec-
tively), there was an ~4-fold increase in protein synthesis
(Figure 3A). In contrast, switching the second codons of
ompAss and ompCss from AAA to NGG (AGG, TGG,
GGG and CGG) almost completely abolished its stimulatory
effect (Figure 3B). This suggests that the identity of the
second codon critically affects the stimulatory effect of the
signal sequences.

PCR-based addition of the stimulatory signal sequence
and the direct expression of the amplified DNAs

Encouraged by the dramatic increase in hEPO expression in
the presence of the signal sequences, this study examined
whether or not the signal sequence-assisted stimulation of
protein synthesis is generally applicable to the expression
of other proteins. Sixteen different ORFs that normally
show a very low expression level in our cell-free protein syn-
thesis system were selected. Instead of cloning each of the
fusion constructs in the expression vector, the PCR-amplified
DNA with or without the ompAss were used directly as the
templates for cell-free protein synthesis, thereby eliminating
the time- and labor-intensive cloning steps (Figure 4). As
summarized in Table 4, the presence of ompAss remarkably
enhanced the expression of the target proteins in all the
cases examined, which suggests that the proposed strategy
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Figure 3. Effect of the expression level of the fused proteins according to the
identity of the second codon. The efficiency of cell-free protein synthesis was
enhanced by switching the second codon of ompTss and heposs into AAA
(A). In contrast, protein synthesis was repressed when the second codons
(AAA) of ompAss and ompCss were mutated into NGG codons (AGG, TGG,
GGG and CGG) (B). After 2 h incubation, 15 pl of the reaction samples
were withdrawn from the reaction mixture, and the ['*CJleucine-labeled
radioactivity was measured as described in Materials and Methods.

can be employed as a general method for boosting the expres-
sion of the recombinant proteins in a cell-free protein synthe-
sis system. However, the extent of stimulation showed
significant variations among different proteins implying that
the expression of protein can also be substantially affected
by the nucleotide sequences of the target ORFs.

In situ cleavage of signal peptide in an E.coli
cell-free protein synthesis system

Although it was shown that the presence of ompAss dramati-
cally enhances the expression of the recombinant proteins,
it also adds 21 non-native amino acid residues to the target
proteins that might interfere with the biological functions
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Figure 4. Construction and expression of the linear expression templates
by PCR. (A) Schematic diagram of the PCR-based generation of the ompA
fusion constructs. Three primary PCR products with defined overlapping ends
were synthesized by the first PCR. These three fragments were joined in the
second PCR, overlap extension PCR, which also simultaneously introduced
the regulatory elements and the OmpA signal peptide sequence to the target
genes. The red bar indicates the overlapping region. The blue and black bar
indicate UTR and OREF, respectively. (B) Agarose gel electrophoresis of the
PCR products. Second PCR products have an additional 600 bp as a result of
the fusion with 5'-UTR and 3’-UTR. (C) Cell-free expression of ompA-fused
PCR products. The reaction mixture for cell-free protein synthesis was
prepared as described in Materials and Methods. After 2 h of incubation, 2 ul
of the reaction mixture was loaded on a 13% Tricine-SDS-PAGE gel and
stained with Coomassie Brilliant Blue. Cell-free expressed proteins are
indicated by arrows.

and proper folding of the expressed proteins. Therefore, it
would be desirable if the signal peptides are removed during
protein synthesis so that the resulting polypeptide of the
target protein follows its natural folding pathway. Since the
reactions of cell-free protein synthesis are carried out in a
crude lysate of E.coli (S30 extract), it was presumed that
most of the soluble E.coli proteins are present in the reaction
mixture. In addition, the signal peptidase of E.coli retains its
activity even when it is detached from the cellular membrane
(22,23). Therefore, the added signal peptide should be
removed in situ by the endogenous signal peptidase activity.
As shown in Figure 5A, SDS-PAGE and western blot anal-
yses confirmed that a significant proportion of the cell-free
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Table 4. Cell-free expression of the ompAss fused genes
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Protein Wild-type ompA fusion Relative level GenBank ID/references Molecular weight Origin

(ug/ml) (ug/ml) of expression® of protein (kDa)
1L-2 91 545 6.0 S77834 15.5 Homo sapiens
TNF-a 226 513 23 X01394 17.5 Homo sapiens
DsRed2” 98 665 6.8 — 259 Synthetic gene
BMP2 128 431 34 M22489 13.0 Homo sapiens
UK 83 387 4.7 NM_008873 30.5 Mus musculus
VEGF n.d. 489 — X62568 223 Homo sapiens
IFN-y 45 460 10.2 K00083 16.0 Mus musculus
®-TACc 125 487 39 AAK25105 47.8 Caulobacter crescentus
®-TAMI 206 537 2.6 BAB48961 48.2 Mesorhozobium loti
®-TATr 173 436 2.5 AAL44116 49.0 Agrobacterium tumefaciens
®-TAVE 237 539 23 (32) 50.3 Vibrio fluvialis
®-TAXc 198 529 2.7 AAM41635 48.4 Xanthomonas axonopodis
smTG 11 358 325 AAS68222 45.7 Streptomyces mobaraensis
oleV 35 645 18.4 AADS55451 53.1 Streptomyces antibioticus
oleW 26 689 26.5 AAD55450 35.8 Streptomyces antibioticus
urdR n.d. 702 — AAF72551 26.8 Streptomyces fradiae

“The relative expression level was determined by dividing the amount of the ompA fused protein by the expressed wild-type protein.

PPlasmid pDsRed?2 is obtained from Clontech.
n.d., not determined.
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Figure 5. In situ cleavage of the signal peptides during cell-free protein
synthesis. (A) The indicated concentration of Triton X-100 was added to the
reaction mixture from the start of the synthesis reaction, and examined to
determine it could increase the level of signal peptide cleavage. After
incubation, the reaction mixture was centrifuged at 10 000 g for 10 min, and
the soluble and pellet fractions were analyzed by 13% Tricine-SDS-PAGE
stained with Coomassie Brilliant Blue (upper panel) and western blot
using the anti-EPO antibody (lower panel). P and S represent the insoluble
and soluble fractions of the cell-free synthesized EPO, respectively.
(B) ['*C]leucine-labeled radioactivity of the expressed protein was measured
as described under Materials and Methods.

expressed protein had the native size without the signal
peptide. This indicates that the S30 extract retains the signal
peptidase activity under the reaction conditions for cell-free
protein synthesis.

Tschantz et al. reported that the catalytic activity of truncated
E.coli signal peptidase, which lacks the membrane-anchoring

domain, was stimulated in the presence of the detergent
Triton X-100 (22,24). By taking advantage of the ‘open’
nature of cell-free protein synthesis, an attempt was made
to express the ompAss-hEPO construct in the presence of
Triton X-100 with the anticipation that the enhanced signal
peptidase activity would increase the fraction of the correctly
sized product. Indeed, the efficiency of the cleavage of
signal peptide was improved remarkably upon the addition
of Triton X-100, and virtually all the products were found
at the correct molecular weight (Figure 5A). When tested
at different concentrations, the presence of Triton X-100
>0.1% (w/v) effectively facilitated the removal of the
OmpA sequence, and virtually all of the cell-free expressed
products were found at the native size of EPO. At least up
to the concentration of 0.5% (w/v), the presence of Triton
X-100 did not affect the efficiency of protein synthesis
(Figure 5B). Therefore, enhanced efficiency of the cleavage
of the signal sequence was not due to a reduced yield of
protein synthesis. In addition, solubility of the cell-free
expressed products was substantially enhanced in the pres-
ence of Triton X-100. While the EPO molecules (regardless
of the presence of signal sequences) were almost completely
insoluble in the reaction mixture without any detergents,
~70% of the expressed protein was found in the soluble
fraction.

DISCUSSION

In this study, it was found that the nucleotide sequences of
signal peptides could serve as efficient downstream boxes
to stimulate protein synthesis. When analyzed in a cell-free
protein synthesis system derived from E.coli, different target
genes showed increases in protein expression of 2.3- to 32-
fold through their fusion with the nucleotide sequences of
the signal peptides. The stimulatory effect of the signal
sequences appeared to be closely related to the presence of
the AAA triplet at the 4+2 position.

Based on this discovery, a method was developed to
rapidly generate authentic protein molecules at elevated
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levels. First, overlap extension PCR techniques were used to
amplify the target genes in the fused form with the nucleotide
sequence of signal peptide. The amplified DNA was then
used to direct protein synthesis, and protein molecules were
generated within several hours. In addition, by mimicking
the in vivo process of the signal peptide cleavage, the target
proteins were produced in their native amino acid sequences
without additional signal peptides.

Although the detailed mechanism of the signal sequence-
mediated stimulation of protein synthesis is not completely
understood, it appears that the effect of the initial nucleotide
sequences is not related to the relative abundance or stability
of the mRNA species. Computational analyses of the mRNA
structure did not indicate any notable difference caused by
the presence of these signal sequences. In addition, among
the gene constructs examined in this study, the relative
level of mRNA with or without the signal sequence was simi-
lar (data not shown). Therefore, it appears that the initial nuc-
leotide sequence affects the process of translation initiation
and/or the early phase of elongation (12,20,25). In particular,
Gonzalez de Valdivia and Isaksson demonstrated that the
presence of NGG triplets in the early coding region causes
inefficient translation through an accelerated drop-off of
peptidyl-tRNA (12,20).

Although extensive evidence has been presented that entire
codon context in the early coding region (from positions +2
to +5) influence gene expression, the presence of additional
AAA triplet at the positions +3 to +5 of ompTss did not fur-
ther increase the yield of protein synthesis in our experiments
(data not shown). However, still, it might be of worth to note
that some of the effective signal sequences have additional
AAA triplet in the early coding region (e.g. malEss and
ompCss have an additional AAA triplet at +4 position). It
might be possible to further improve the effectiveness of
the signal sequences by engineering the nucleotide sequences
in this region. Apart from the precise mechanism of action,
the use of signal sequences as a translation-enhancing down-
stream box offers distinctive advantages in cell-free protein
synthesis. In addition to the remarkably enhanced expression
level of the target proteins, the in situ cleavage of the signal
peptides provides a simple way for removing the N-terminal
methionine. The issue of removing the translation initiator,
N-formyl-methionine or methionine, from a recombinant pro-
tein is often critical for obtaining active and stable recombi-
nant proteins (26-30).

It is believed that these results can be further extended to
controlling the expression level of genes. Using the signal
sequences that have been engineered to stimulate protein
synthesis at different efficiencies, a mixture of template DNA
can be co-expressed to generate the proteins in the desired
abundances. Such a system will provide an ideal platform
for constructing an in vitro metabolic network. As demon-
strated by Ku et al. (31), the in vitro reproduction of a meta-
bolic pathway can be ideally used to further understand and
optimize the production of metabolites.
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