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Abstract

Aims The present study aimed to evaluate the prognostic value of atrial strain and strain rate (SR) parameters derived from
cardiac magnetic resonance (CMR) feature tracking (FT) in patients with ischaemic and non-ischaemic dilated cardiomyopathy
with heart failure with reduced ejection fraction (HFrEF) but without atrial fibrillation.
Methods and results A total of 300 patients who underwent CMR with left ventricular ejection fraction (LVEF) ≤ 40% and
ischaemic or non-ischaemic dilated cardiomyopathy were analysed in this retrospective study. Major adverse cardiac events
(MACEs) include cardiovascular death, heart transplantation, and rehospitalization for worsening HF. Ninety-four patients
had MACEs during median follow-up of 3.84 years. Multivariate Cox regression models adjusted for common clinical and
CMR risk factors detected a significant association between LA-εs and MACE in ischaemic (HR = 0.94/%; P = 0.002), non-
ischaemic dilated cardiomyopathy (HR = 0.88/%; P = 0.001), or all included patients (HR = 0.87; P < 0.001). LA-εs provided
incremental prognostic value over conventional outcome predictors (Uno C statistical comparison model: from 0.776 to
0.801, P < 0.0001; net reclassification improvement: 0.075, 95% CI: 0.0262–0.1301). Kaplan–Meier analysis revealed that
the risk of MACE occurrence increased significantly with lower tertiles of left atrial reservoir strain (LA-εs) (log-rank
P < 0.0001). Patients in the worst LA-εs tertile faced a significantly increased risk of MACEs irrespective of late gadolinium
enhancement (LGE) (log-rank P < 0.0001).
Conclusions LA-εs derived from CMR FT has a significant prognostic impact on patients with ischaemic or non-ischaemic
dilated cardiomyopathy, incremental to common clinical and CMR risk-factors.

Keywords Cardiac magnetic resonance; Prognosis; Cardiomyopathy; Left atrial strain; Feature tracking

Received: 1 May 2022; Revised: 30 June 2022; Accepted: 28 July 2022
*Correspondence to: Lei Xu and Hui Wang, Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd., Chaoyang District, Beijing
100029, China. Fax: 86-10-64456310; Tel: 86-10-64456071. Email: leixu2001@hotmail.com; hugeren@126.com
Lei Xu and Hui Wang have contributed equally to this work and share corresponding authorship.

Introduction

Heart failure (HF) remains a major challenge for patients and
health care systems worldwide, especially with heart failure
with reduced ejection fraction (HFrEF), who show rapid
progression of HF,1 despite best care, with approximately
50% dying within 5 years of diagnosis.2 For patients with
HF, prognostic evaluation not only performs risk stratification
but is also significant in guiding clinical treatment decisions.3

Cardiac magnetic resonance (CMR), echocardiography, and
other imaging methods can comprehensively evaluate the
structure and function of the heart and play a major role in

the prognostic evaluation of patients with HF. CMR has the
advantages of high spatial resolution, clearer visualization of
atrial endocardial borders, and multiplanar imaging. It is
increasingly used as a standard tool to assess the heart,4

while late gadolinium enhancement (LGE) by CMR reflects
the extent of tissue fibrosis, determines the underlying cause
of left ventricular (LV) dysfunction, and is an independent
predictor of adverse cardiovascular outcomes in patients with
advanced HF.5 For patients with advanced HF, the degree of
impaired LV function loses its prognostic value.6 Atrial
remodelling and functional changes reflect ventricular
systolic and diastolic dysfunction rather sensitively.7 Atrial
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strain from echocardiography or CMR is an independent
predictor of prognosis in patients with HF.8–11 However, these
studies either consider only non-ischaemic dilated cardiomy-
opathy (NIDCM) or focus on a specific atrium. The predictive
value of atrial strain in patients with ischaemic and
non-ischaemic dilated cardiomyopathy has not yet been
studied. The present study aimed to investigate the
long-term predictive value of atrial strain derived from CMR
in patients with ischaemic cardiomyopathy (ICM) and NIDCM
with HFrEF but atrial fibrillation (AF).

Methods

Study population and study design

A total of 326 patients with ICM and NIDCM with HFrEF but
AF who visited Beijing Anzhen Hospital, Capital Medical Uni-
versity from January 2015 to April 2020 were included in this
retrospective study. These patients underwent electrocardi-
ography, biochemical analysis, standard echocardiography,
and CMR examinations, including cine and LGE imaging. ICM
was defined as the presence of systolic dysfunction accompa-
nied by one of the following: (i) history of myocardial infarc-
tion or revascularization and (ii) presence of at least 75%
stenosis in the left main or anterior descending artery or
>75% stenosis in at least two coronary arteries.12 DCM is de-
fined as left or biventricular systolic dysfunction and dilata-
tion that cannot be explained by abnormal loading conditions
or coronary artery disease.13 Chronic kidney disease (CKD)
was defined as abnormalities in kidney function or structure
present for more than 3 months, with implications for
health.14 The vean contracta(VC) was typically imaged in a
view perpendicular to the commissural line. A VC of <3 mm
indicated mild mitral regurgitation (MR), whereas a width of
≥7 mm suggested severe MR.15 Pulmonary hypertension
(PH) was considered if patients had a systolic pulmonary arte-
rial pressure (sPAP) of 40 mmHg.16 PH was categorized as
‘mild’ (40–54 mmHg), ‘moderate’ (55–64 mmHg), or ‘severe’
(>65 mmHg).17 The inclusion criteria were impaired left
ventricular ejection fraction (LVEF) ≤ 40% as determined by
CMR.1 Conversely, patients with congenital heart disease,
infiltrative cardiomyopathy, severe valvular heart disease,
history of cardiac resynchronization therapy, implantable
cardioverter defibrillator, and images from CMR that could
not be analysed were excluded. Subsequently, 26 patients
were excluded because the image quality could not be
assessed, and finally, 300 patients (ICM: n = 131, NIDCM:
n = 169) were included in the study.

Cardiac magnetic resonance acquisition

All CMR images were electrocardiogram (ECG)-gated. CMR
was conducted on a 3.0 T scanner (Magnetom Verio; Siemens

AG Healthcare, Erlangen, Germany, or MR750W, General
Electric Healthcare, Waukesha, WI, USA). Standard scanning
protocols, including steady-state free precession (SSFP)
breath-hold cine images and LGE using gadolinium,
conforming to current international guidelines, were
utilized.18 The cine images were obtained in multiple
short-axis and three long-axis views, with the entire LV and
right ventricle (RV) from the base to apex containing slices
(8 mm thickness, no cross-gap) at 25 stages per cardiac cycle
in consecutive short-axis. The long axis planes had 5-mm slice
thickness (2-chamber, 4-chamber, and 3-chamber views)
without spacing intersection gap.6 Using the prospective
ECG-gated gradient echo sequence, LGE images were
obtained 10 min after intravenous injection of 0.2 mmol/kg
gadolinium chelating contrast agent. The sequence parame-
ters were as follows: repetition time/echo time, 4.1/1.6 ms;
flip angle, 20°; image matrix, 256 × 130.

Cardiac megnetic resonance analysis and
assessment of left ventricular and atrial function

The function of the LV and biatrium was analysed using CVI42
commercial software (Circle Cardiovascular Imaging, Calgary,
AB, Canada). Semi-automatic analysis was performed using
ventricular short-axis and 4-chamber or 2-chamber or
3-chamber cardiac sequences to identify and delineate the
ventricular epicardial and epicardial boundaries at the end
of the systole and diastole (papillary muscles were included
in the blood pool); the inaccuracies were corrected by cardio-
vascular imaging professionals with >10 years of experience.
LVEF and body surface area (BSA) functional indicators were
obtained, including end-diastolic volume (EDV), end-systolic
volume (ESV), stroke volume (SV), and ventricular mass
(MASS). Epicardial and endocardial contours were manually
placed on LGE images, which appeared in any area with signal
intensity 5 SD above normal myocardium.

Left atrial (LA) strain parameters were analysed using
2-chamber and 4-chamber cine images, while the right atrial
(RA) strain parameters were analysed using 4-chamber cine
images. LA endocardial and epicardial borders (except
pulmonary veins and LA appendages) were traced manually
when the LA was the largest and smallest in 2-chamber and
4-chamber cine images, respectively, using a point-matching
method by cardiovascular imaging specialists with > 10 years
of experience19 (Figure 1). LA endocardial and epicardial
borders then propagated automatically to all frames during
the heart cycle (25 frames/heart cycle). LA global strain and
strain rate were calculated as the average of 2-chamber and
4-chamber views. The endocardial and epicardial contours
of the RA were manually drawn in end-systolic images,
followed by automatic software-driven tracking of the endo-
cardial and epicardial contours throughout the cardiac cycle20

(Figure 1). In case of unsatisfactory feature tracking (FT), the
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endocardial border was readjusted manually, and the exten-
sion algorithm was reapplied.

A total of 30 cases were selected randomly to study the
intra-observer and inter-observer variability regarding atrial
strain parameters. For interobserver variability, measure-
ments were repeated by a second independent observer,
blinded to the results of the first observer. For the
intraobserver variability study, these 30 patients were
analysed repeatedly by the same observer after an interval
of 3 months. Thus, the functional and strain parameters of
the atria were obtained, including reservoir strain (εs),
conduit strain (εe), booster strain (εa), peak positive strain
rate (SRs), peak early negative strain rate (SRe) and peak late
negative strain rate (SRa).

Follow-up

Clinical follow-up is the assessment of patients every
6 months by telephone and/or postal questionnaires. The
primary outcome was a composite of major adverse cardiac
events (MACEs), including cardiovascular death (sudden
cardiac death (SCD), HF death, stroke, or thromboembolic

event), heart transplantation, and rehospitalization for
worsening HF. Patients were followed up until early March
2022. Also, the time point of lost patients was recorded as
the last follow-up.

Statistical analysis

All analyses were carried out using SPSS (version 17.0,
International Business Machines, Armonk, NY, USA) and R
(http://www.R-project.org). For continuous variables, data
are presented as mean ± standard deviation (SD) for
normal distribution and as median and interquartile range
(IQR) for skewed distribution. Discrete data are reported
as percentages and frequencies. Herein, we used a
five-repetition based multiple interpolation approach to
address the missing data issue for the most important
variable, type B natriuretic peptide (BNP). The reproducibility
of atrial strain parameter measurements was analysed using
the intraclass correlation coefficient (ICC), which was <0.4
with poor agreement and >0.75 with good agreement. The
differences in baseline characteristics were compared using
analysis of variance (ANOVA) or its nonparametric equivalents

Figure 1 Measurement of atrial strain. The top panel shows a patient who died and the bottom panel shows a patient who survived.
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(Kruskal–Wallis test) for continuous variables and the χ2 test
for dichotomous variables. Cox regression was used to assess
the prognostic value of various parameters to obtain hazard
ratios (HRs) and 95% confidence intervals (CIs). Univariate
Cox regression analysis was used to assess the association
between each variable and MACEs over 5 years of patient
follow-up. The correlations between covariates were
evaluated using Pearson’s or Spearman’s correlation
coefficient. A correlation r > 0.7 was interpreted as a strong
link between the two variables, and r < 0.3 was considered
as a weak correlation. The association of LA parameters with
outcomes was compared using area under curve (AUC)
analysis. Clinical and radiographic risk factors for univariate
predictors (P ≤ 0.05) were included as covariates in the
multivariate Cox regression model. For variables with correla-
tion >0.7, one variable was selected for inclusion in the
multivariate Cox regression model based on clinical experi-
ence and previous literature. Because 10% of the patients
lacked BNP, we applied the average of the five interpolated
data points to the model with BNP and judged whether the
interpolation was reliable by estimating the difference in the
statistical results before and after interpolation. Survival
curves were constructed using the Kaplan–Meier method
and compared using the log-rank test. The final model was
compared with a model that did not include LA-εs
(LA reservoir strain), and model discrimination was compared
by calculating the C-statistic and the integrated discrimination
improvement.21 The incremental prognostic value of LA-εs for
the prediction of the primary endpoint was assessed using net
reclassification improvement (NRI). A p-value < 0.05 was
considered statistically significant.

Results

Patient characteristics

A total of 300 patients (131 with ICM and 169 with NIDCM)
with HFrEF without AF were included in this study. Tables 1
and 2 summarize the clinical baseline and CMR characteris-
tics of patients stratified by LA-εs tertiles, respectively.
Supporting Information, Table S1 compares the baseline
characteristics of ICM with NIDCM. The median age at base-
line was 56 (IQR: 46–64) years, and 81% were men. The LA
and RA strain and strain rate (SR) were reduced compared
with the corresponding values reported previously in normal
subjects.11 LGE was present in 67.7% of patients. Statistically
significant differences were observed in the functional
parameters of LA and RA among the three groups. In
addition, we counted the echocardiographic findings in 288
patients. There was a weak correlation between the degree
of MR and PH and LA-εs (r < 0.3).Ta
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Inter-observer and intra-observer variability

The reproducibility of atrial strain and SR parameters was
good (ICC = 0.83–0.98, P < 0.05) (Supporting Information,
Table S2). And the reliability of the strain indexes of LA was
higher than the strain and SR of the RA.

Primary outcomes

A total of 94 patients experienced MACEs, including 42 with
ICM and 52 with NIDCM. The median follow-up time was
3.84 (IQR: 2.4–5.4) years.

Univariate and multivariate analysis and
incremental prognostic value

Supporting Information, Table S3 summarizes the results of
the univariate analysis for all patients. AUC was highest for
LA-εs (0.765), followed by LA-εe (0.753) and LA-SRs (0.751)
(Figure 2). The results of correlation analysis are shown in
Supporting Information, Table S4. We included the covariates
in Table 3 in the Cox regression model based on their clinical
value, previous references, and correlation between
parameters. After adjustment for clinical and radiographic
risk factors, LA-εs remained a significant independent predic-
tor of endpoint events (HR = 0.87/%; P < 0.001). Additionally,
for each 1% decrease in LA-εs, the risk of MACEs increased by
13% (Table 3). Meanwhile, LGE extent (HR = 1.04/%;
P < 0.001) and LA ejection fraction (LAEF) (HR = 1.03/%;
P < 0.001) is significantly associated with MACEs. The
addition of LA-εs to the model with clinical and radiographic
predictors resulted in a significant increase in C statistic from
0.776 to 0.801 (P < 0.0001) and a combined differential
improvement of 0.261 (95% CI: 0.0722–0.1301) compared

with the original model with an NRI of 0.075 (95% CI:
0.0262–0.1301).

Outcomes stratified by left atrial-εs and late
gadolinium enhancement

LA-εs was divided into three groups according to the tertile
method (<8, 8–15.9, and >15.9). Kaplan–Meier survival
analysis (Figure 3A) showed a significant difference between
patients stratified by LA-εs values; as the LA-εs tertile
worsened, the risk of MACE increased significantly (log-rank
P < 0.0001). According to Kaplan–Meier analysis, the pres-
ence of LGE was significantly associated with an increased
risk of MACEs (log-rank P = 0.0001) (Figure 4A). Kaplan–Meier
analysis stratified by the highest and lowest LA-εs tertile for
those with LGE and without LGE showed that patients in
the worst LA-εs tertile faced a significantly increased risk of
MACEs irrespective of LGE (log-rank P < 0.0001) (Figure 4B).

Prognostic value of left atrial-εs in ischaemic and
non-ischaemic dilated cardiomyopathy

In both ICM and NIDCM, the dichotomization of LA-εs values
was assessed by Kaplan–Meier survival analysis (Figure 3B, C),
which showed a significant difference between the two

Figure 2 ROC curve. The ROC curve for the overall performance of left
atrial indexes for MACEs.

Table 3 Multivariate Cox proportional hazards model analysis for
predicting overall survival in patients with HFrEF but without AF

HR 95% CI P-value

Age, years 1.02 (1.00–1.04) 0.041
Male, % 1.07 (0.57–2.03) 0.828
BMI, kg/m2 0.99 (0.93–1.06) 0.861
SBP, mmHg 0.99 (0.97–1.01) 0.172
QRS duration, ms 1.01 (1.00–1.02) 0.050
Diabetes mellitus, % 0.99 (0.60–1.65) 0.971
Medication: ACEI/ARB 0.96 (0.50–1.82) 0.889
BNP, pg/mL 1.00 (1.00–1.00) 0.039
ALT, U/L 1.00 (1.00–1.00) 0.084
Creatinine, μmol/L 1.00 (0.99–1.01) 0.682
Cl�, mmol/L 1.00 (1.00–1.01) 0.177
Red blood cell, g/L 0.67 (0.49–0.92) 0.012
CMR-LVEDV, mL 1.00 (1.00–1.00) 0.521
CMR-LVPGLS, % 0.92 (0.83–1.03) 0.149
CMR-LVPGCS, % 0.98 (0.89–1.09) 0.718
CMR-LAVmax, mL 1.01 (1.00–1.01) 0.086
CMR-LAEF, % 1.03 (1.01–1.06) 0.007
CMR-LA-εs, % 0.87 (0.82–0.92) 0.000
CMR-RAVmax, mL 1.01 (1.00–1.01) 0.083
LGE extent, % 1.04 (1.02–1.05) 0.000

ACEI, ACE inhibitor; ALT, alanine aminotransferase; ARB, angioten-
sin II receptor blocker; BMI, body mass index; BNP, brain natriuretic
peptide; CMR, cardiac magnetic resonance; LGE, late gadolinium
enhancement LVEDV, left ventricular end-diastolic volume;
LVpGLS, left ventricular peak global longitudinal strain; LVpGCS,
left ventricular peak global circumferential strain; LAVmax,
maximum left atrial volume; LAEF, left atrial ejection fraction;
RAVmax, maximum right atrial volume; SBP, systolic pressure at
presentation; εs, reservoir strain.
Bold items indicate P-value < 0.05.
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groups of patients. In both ICM and NIDCM patients, LA-εs
was significantly associated with the risk of MACEs after
adjusting for clinical and radiographic risk factors (ICM:
HR = 0.94/%; P = 0.002; NIDCM: HR = 0.88/%; P = 0.001)
(Table 4). Subsequently, LA-εs remained a critical,
independent predictor of the occurrence of MACEs when
LGE presence was used instead of extent (Table 4).

Discussion

The primary findings of our study were as follows: (i) patients
with HFrEF and without AF had reduced reservoir, conduit,
and booster deformation indexes (strain and SR) in LA and
RA. LA-εs was closely related to LA-εe, LA-εa, LA-SRs, and
LA-SRe (r > 0.5). (ii) LA-εs, LAEF, and LGE extent were inde-
pendent predictors of MACEs, and LA-εs increased the incre-
mental predictive value of common clinical and CMR imaging
risk factors for outcomes in patients with HFrEF. (iii) LA-εs
was an independent predictor of outcome in ICM and
NIDCM, respectively, even after adjusting for clinical, labora-
tory, and CMR variables.

The atrium is a container for storing blood and has been
under intensive focus for its role in cardiac function. During
the cardiac cycle, it has three main functions: (i) the atrial
storage function of pulmonary venous blood flow during ven-
tricular systole; (ii) the conduit function of delivering blood
flow into the ventricle during early diastole; (iii) the systolic
function of pumping the remaining blood into the ventricle
by end-diastole auto-systole.22 Impaired atrial function
indicates an elevated ventricular filling pressures, and the
diastolic function of the ventricles determines the degree of
relative atrial contribution to ventricular filling.23 Previous
studies suggested that abnormal LA function in the early
stages of HF is an early indicator of LV diastolic
dysfunction.24,25 Depletion of compensatory mechanisms
translates into overt HF or deteriorated clinical condition.26

In the advanced stage of HF, LA is enlarged and remodelled
to varying degrees with impaired function, which is usually
associated with chronic and severe symptoms.27,28 With the
progression of HF, atrial dysfunction may be a late conse-
quence of systemic and pulmonary circulatory changes
caused by HF. Melenovsky et al.29 demonstrated that HFrEF
is characterized by significant eccentric LA remodelling. The
degree of LA deformation is of great value for the prognostic

Figure 4 Kaplan–Meier survival curves. (A) Stratified by LGE present in all patients. (B) Stratified by tertiles of LA-εs and LGE present in all patients.

Figure 3 Kaplan–Meier survival curves. (A) Stratified by tertiles of LA-εs in all patients. (B) Stratified by dichotomous of LA-εs in ICM. (C) Stratified by
dichotomous of LA-εs in NIDCM.
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evaluation of patients with HFrEF. The measurement of LA
strain by speckle tracking is challenging due to the low
signal-to-noise ratio and a thin atrial wall. CMR has a high
spatial resolution and enables rapid and reliable quantifica-
tion of LA functional parameters with short measurement
times and high reproducibility. Leng et al.’s prospective study
showed that LA strain measured using CMR can be used as a
predictor of long-term outcome in ST-elevation myocardial
infarction (STEMI), thus providing additional prognostic
information for the established predictors of STEMI.24

Cojan-Minzat et al. reported that LA total strain had indepen-
dent predictive value for incremental outcome in NIDCM.11

Dick et al. assessed the diagnostic value of LA and RA strain
parameters for acute myocarditis and demonstrated that LA
SRe is the best predictor of condition.20 To the best of our
knowledge, this is the first study to analyse the long-term
prognostic value of atrial indexes obtained by CMR in
patients with ICM and NIDCM of HFrEF without AF, with a
median follow-up of up to 3.84 years. Herein, we showed
that LA strain provides additional prognostic information
beyond clinical and CMR parameter models in both
categories of patients. LAEF was significantly associated with
increased filling pressure of LV.30 As reported by Pellicori
et al., in patients with HF, LAEF predicts the adverse
outcomes independently of other measures of cardiac
dysfunction.31 The aforementioned conclusions were verified
in our study too. When the culprit vessel of ICM causes the
three-vessel coronary artery disease and the symptoms of
HF are distinct, the cavity will enlarge and the overall move-
ment of the wall will be weakened, which can be easily
misdiagnosed as DCM; thus, the distribution of LGE is the
key differential point between the two phenomena. Previous
studies have shown that the presence and extent of LGE can
predict the prognosis of patients with HF caused by ICM and
DCM and is an independent predictor of death32,33; these
findings were confirmed in the current study. In patients with
and without LGE, the grouping of LA-εs is valuable for the
evaluation of prognostic risk stratification. Romano et al.32

demonstrated that LV longitudinal strain is an independent
predictor of death in patients with ICM or DCM. In this study,
the corresponding parameters of the LV did not show inde-
pendent prognostic value in multivariate Cox analysis. This
could be because for patients with advanced HF, the degree
of impaired LV systolic function loses its ability for survival
prediction. HF can lead to secondary MR and PH.34 MR and
PH have previously been reported in the literature to be asso-
ciated with the prognosis in patients with HF.35 However, our
results showed that the degrees of MR, PH, and LA-εs were
weakly correlated. This correlation could be attributed to
the relationship between the severity of HF in our included
patients, and the presence of some MR and PH in the three
groups of patients categorized by LA-εs. In the subsequent
research, we should collect HF with preserved ejection and
mildly reduced ejection to verify this aspect. Nonetheless,

some patients with advanced HF can benefit from advanced
treatments, such as heart transplantation and LV assist device
implantation.36 The present study has potential clinical
implications in the use of LA strains to reclassify such patient
populations that would help in making precise HF manage-
ment decisions in the future.

Limitations

Nevertheless, the present study has some limitations. First,
the proportion of men was relatively high. We grouped the
baseline characteristics (clinical and CMR characteristics,
including LA εs) by sex and showed statistically significant
differences for the six parameters of left bundle branch block,
intraventricular block, smoking, drinking, CMR-RA-εe, and
CMR-RA-SRa (Supporting Information, Table S5). Inclusion of
the aforementioned variables in the univariate analysis
showed that they were not significantly associated with the
outcome. Sex was not statistically significant in univariate
analysis. Furthermore, we included the sex indicator in the
multivariate Cox model, and after multivariate adjustment,
the results showed that there was no significant association
between sex and the outcome. We tried to reduce the impact
of selection bias via the aforementioned work. Second, this
was a single-centre study, and the number of patients was
limited, which might affect the accuracy of the results. Third,
collecting clinical data was not comprehensive. For example,
10% of patients had missing data for BNP. We input the miss-
ing data using statistical methods for multiple interpolation
and confirmed our hypothesis of the missing data pattern
by demonstrating that BNP was an independent predictor
of MACEs before and after data input (P < 0.05). In addition,
similar to ultrasound tracking techniques,37 algorithmic dif-
ferences were detected between different CMR FT software.
Further investigation of the applicability of other FT vendors
is essential. Finally, our data were all derived from 3 T
magnetic resonance, and in subsequent studies, we intend
to use 1.5 T magnetic resonance to verify our results, thereby
enhancing the generalizability of the conclusions.

Conclusion

LA strain is a robust predictor of MACEs in patients with isch-
aemic and non-ischaemic dilated cardiomyopathy, indepen-
dent of common clinical and CMR imaging markers. In HFrEF,
LA-εs adds incremental prognostic information on outcomes
from common clinical and CMR risk factors (including LGE).
The current findings may exert a significant impact on
management decisions based on risk stratification in these
individuals and contribute to the dynamic assessment of
prognosis in patients with HFrEF.
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