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Simple Summary: Hepatocellular carcinoma (HCC) displays dismal prognosis even after surgical
resection. Metabolic reprogramming is a hallmark of cancers, but the existence of tumor heterogeneity
makes it difficult to comprehensively reflect the overall characteristics of HCC prognosis with only a
single or a few biomarkers. The aim of our study was to elucidate HCC metabolic reprogramming
based on metabolomics and enable HCC prognostic risk evaluation using metabolic characteristics.
We identified three distinct metabolic clusters and a metabolite classifier composed of six fatty acids
for HCC prognosis risk stratification, which was externally validated in another independent dataset.
Metabolic classification may provide a new insight into the molecular pathological characteristics of
HCC for clinical prognosis evaluation and personalized treatment.

Abstract: Hepatocellular carcinoma (HCC) displays a high degree of metabolic and phenotypic
heterogeneity and has dismal prognosis in most patients. Here, a gas chromatography–mass spec-
trometry (GC-MS)-based nontargeted metabolomics method was applied to analyze the metabolic
profiling of 130 pairs of hepatocellular tumor tissues and matched adjacent noncancerous tissues
from HCC patients. A total of 81 differential metabolites were identified by paired nonparametric
test with false discovery rate correction to compare tumor tissues with adjacent noncancerous tis-
sues. Results demonstrated that the metabolic reprogramming of HCC was mainly characterized
by highly active glycolysis, enhanced fatty acid metabolism and inhibited tricarboxylic acid cycle,
which satisfied the energy and biomass demands for tumor initiation and progression, meanwhile
reducing apoptosis by counteracting oxidative stress. Risk stratification was performed based on
the differential metabolites between tumor and adjacent noncancerous tissues by using nonnegative
matrix factorization clustering. Three metabolic clusters displaying different characteristics were
identified, and the cluster with higher levels of free fatty acids (FFAs) in tumors showed a worse
prognosis. Finally, a metabolite classifier composed of six FFAs was further verified in a dependent
sample set to have potential to define the patients with poor prognosis. Together, our results offered
insights into the molecular pathological characteristics of HCC.

Keywords: hepatocellular carcinoma; prognosis; metabolomics; risk stratification; nonnegative
matrix factorization
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1. Introduction

Liver cancer, one of the most common malignances, accounts for about 8.4 million new
cases and 7.8 million deaths annually worldwide [1], and hepatocellular carcinoma (HCC),
as an aggressive cancer with dismal prognosis, accounting for around 90% of primary
liver cancers, typically appears in patients with cirrhosis and chronic infection [2]. Owing
to death from recurrence, metastasis or the underlying liver disease even after surgical
resection, which affects the surgical efficacy and survival of patients seriously, the long-term
survival of HCC is not satisfactory [3]. Different organizations have summarized several
clinical staging systems to define prognostic subclasses and personalized therapies [4–7];
however, there is still no consensus on the optimal classification system, which influences
the therapeutic effect and survival of HCC [8,9].

Metabolic reprogramming is a hallmark of cancers and participates directly in the tu-
morigenesis [10,11]. Metabolic disorder affects the biological behavior of solid tissues, and
the reprogrammed metabolism of tissues could better reflect the functional state of an organ.
Metabolomics study based on tissue is a useful strategy for studying the metabolic abnor-
malities of diseases, which could provide information about the metabolic modifications
and regulatory mechanism, further helping to clarify the basic cancer pathophysiology and
provide potential therapeutic targets for clinical treatment [12]. Currently, metabolomics
studies of HCC tissues are mainly conducted to characterize differential metabolic features
in cancers and further exploited to identify early diagnostic and prognostic markers and
understand the pathogenesis mechanism [13–15].

Different genotypes or phenotypes existing in the same tumor due to their hetero-
geneity result in difference in cell growth, drug sensitivity and prognosis. Although a
variety of prognostic biomarkers of HCC have been reported by previous studies [5,16,17],
it is difficult to comprehensively reflect the overall characteristics of prognosis with only
a single or a few biomarkers. As shown in previous research, an expression pattern of
gene tags screened from the vast tumor genome to enable cancer classification could reflect
tumor status more comprehensively than a single gene and also be more conducive to
predict the prognosis of patients [18]. Similarly, it is worthy trying to identify the HCC
metabotype related to prognosis based on a pattern of tissue metabolic characteristics,
which may contribute to personalized healthcare.

In this study, a metabolic profiling method based on gas chromatography–mass spec-
trometry (GC-MS) was applied to explore the metabolic reprogramming of 130 pairs of
matched tumor tissues (hepatocellular carcinoma tissue (HCT) and adjacent noncancerous
tissue (ANT). Nonnegative matrix factorization (NMF) clustering [19,20] was carried out to
define different metabolic clusters based on differential metabolites and further to identify
a metabolite classifier that could enable HCC prognosis risk stratification. Another batch
composed of 65 pairs of matched tissues was enrolled as an external validation to further
study the relationship between metabolic clusters and clinical prognosis. The flow chart of
the analysis process is shown in Figure 1.
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2. Materials and Methods
2.1. Chemicals

Methanol (high-performance liquid chromatography grade) was purchased from
Merck (Darmstadt, Germany). Ultrapure water was filtered through a Milli-Q water sys-
tem (EMD Millipore Corporation, Billerica, MA, USA). Derivatization reagents including
methoxyamine hydrochloride, pyridine and N-methyl-N-(trimethylsilyl)-trifluoroacetamide
(MSTFA) were supplied by Sigma-Aldrich (St. Louis, MO, USA). Valine-d8, succinic acid-
d4, phenylalanine-d5, tridecanoic acid, citric acid-d4 and myristic acid-d27 were used as
internal standards and obtained from Sigma-Aldrich. Metabolite standards for structure
identification were acquired from Sigma-Aldrich, Alfa Aesar (Ward Hill, MA, USA), Fluka
(Seelze, Niedersachsen, Germany) and J&K Scientific (Beijing, China).

2.2. Patients and Tumor Samples

Matched pairs of HCT and ANT samples were obtained from 130 patients undergoing
curative resection of HCC at the Eastern Hepatobiliary Surgery Institute of the Second
Military Medical University from July 2013 to June 2014. The ANTs were collected from
the adjacent edge, less than 2 cm away from the solid tumor border. Another batch of
65 matched pairs of HCT and ANT samples collected from The First Affiliated Hospital of
Dalian Medical University were used as an external validation cohort. All samples were
freshly frozen and stored at −80 ◦C prior to metabolomics analysis.

Patients were followed up after surgical resection, and overall survival was defined as
the time from the date of surgery to the time of death. For the subjects who still survived at
the end of the follow-up period, the latest follow-up time was counted as the endpoint of
overall survival. During the follow up, 42 of the patients from the Eastern Hepatobiliary
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Surgery Hospital of the Second Military Medical University survived, and 38 of them died
(the other patients were lost to follow up). Among the patients from The First Affiliated
Hospital of Dalian Medical University, 51 of the patients survived, and 14 of them passed
away. The detailed clinical characteristics of all patients are listed in Table 1. Tumor stages
were defined according to the eighth edition of tumor-node-metastasis (TNM) classification
(the American Joint Committee on Cancer/Union for International Cancer Control), and
the Barcelona Clinic Liver Cancer (BCLC) staging system.

Table 1. Clinical characteristics of patients a,b.

Characteristics
Discovery Cohort (n = 130) Validation Cohort (n = 65)

All (n = 130)
Patients

with Follow
Up (n = 80)

Survivors
(n = 42)

Nonsurvivors
(n = 38) All (n = 65) Survivors

(n = 51)
Nonsurvivors

(n = 14)

Age, years 49 (10.9) 49 (10.9) 49 (11.0) 50 (11.0) 60 (9.8) 60 (10.2) 62 (8.4)

Gender,
Male/Female

114 (87.7)/
16 (12.3)

69 (86.3)/
11 (13.8)

36 (85.7)/
6 (14.3)

33 (86.8)/
5 (13.2)

55 (84.6)/
10 (15.4)

44 (86.3)/
7 (13.7)

11 (78.6)/
3 (21.4)

Smoking, Yes/No 61 (46.9)/
69 (53.1)

36 (45.0)/
44 (55.0)

19 (45.2)/
23 (54.8)

17 (44.7)/
21 (55.3)

34 (52.3)/
31 (47.7)

27 (52.9)
/24 (47.1)

7 (50.0)/
7 (50.0)

Hepatitis B,
Positive/Negative

103 (79.2)/
27 (20.8)

62 (77.5)/
18 (22.5)

37 (92.5)/
3 (7.5)

31 (81.6)/
7 (18.4)

48 (73.8)/
17 (26.2)

37 (72.5)/
14 (27.5)

11 (78.6)/
3 (21.4)

Cirrhosis,
Presence/Absence

25 (19.4)/
104 (80.6),

n = 129

12 (15.0)/
68 (85.0)

2 (4.8)/
40 (95.2)

10 (26.3)/
28 (73.7)

45 (69.2)/
20 (30.8)

33 (64.7)/
18 (35.3)

12 (85.7)/
2 (14.3)

AFP level, µg/L,
>400/<400

58 (46.8)/
66 (53.2),
n = 124

38 (48.7)/
40 (51.3),

n = 78

18 (45.0)/
22 (55.0),

n = 40

20 (52.6)/
18 (47.4)

15 (23.4)/
49 (76.6),

n = 64

10 (19.6)/
41 (80.4)

5 (38.5)/
8 (61.5),
n = 13

ALP level, U/L 90 (36–911),
n = 121

86 (36–911),
n = 77

74 (36–735),
n = 40

98 (50–911),
n = 37 98 (51–312) 89 (51–312) 113.5

(65–221)

GGT level, U/L 62 (13–525),
n = 121

62 (14–438),
n = 77

43 (14–438),
n = 40

111 (15–297),
n = 37 67 (14–384) 64 (14–384) 77.5 (20–213)

Bilirubin, µmol/L 13.7 (5.5–32.7),
n = 124

13.9 (6.7–32.7),
n = 78

13.6 (6.7–32),
n = 40

14.6
(6.9–32.7) 14 (7.0–93.0) 14.1

(7.8–93.0)
12.9

(7.0–33.2)

Albumin, g/L 42.0 (3.5),
n = 124

42.0 (3.7),
n = 78

42.0 (3.0),
n = 40 42.0 (4.3) 40.6 (5.1) 41 (4.5) 38 (6.3)

TNM stage, Stage
I/Stage II/Stage III

57 (43.8)/
32 (24.6)/
41 (31.5)

37 (46.3)/
17 (21.3)/
26 (32.5)

27 (64.3)/
10 (23.8)/
5 (11.9)

10 (26.3)/
7 (18.4)/
21 (55.3)

39 (60.0)/
20 (30.8)/

6 (9.2)

32 (62.7)/
16 (31.4)/

3 (5.9)

7 (50.0)/
4 (28.6)/
3 (21.4)

BCLC stage, Stage
0/Stage A/Stage

B/Stage C

2 (1.5)/82
(63.1)/15
(11.5)/31

(23.8)

1 (1.3)/53
(66.3)/7
(8.8)/19

(23.8)

1 (2.4)/36
(85.7)/0

(0.0)/5 (11.9)

0 (0.0)/17
(44.7)/7

(18.4)/14
(36.8)

0 (0.0)/42
(64.6)/5
(7.7)/18

(27.7)

0 (0.0)/34
(66.7)/3
(5.9)/14

(27.5)

0 (0.0)/8
(57.1)/2
(14.3)/4

(28.6)
Maximum tumor

diameter, cm 7.4 (1.3–17.8) 7.1 (1.7–17.8) 4.7 (1.7–17.8) 9.2 (3.2–17.2) 4.3 (0.3–14.5) 4 (1.5–12.0) 5 (0.3–14.5)

Tumor number,
≥2/1

20 (15.4)/
110 (84.6)

11 (13.8)/
69 (86.3)

0 (0.0)/
42 (100.0)

11 (28.9)/
27 (71.1)

10 (15.6)/
55 (85.9)

6 (11.8)/
45 (88.2)

4 (28.6)/
10 (71.4)

Microvascular
invasion,

Presence/Absence

52 (40.0)/
78 (60.0)

33 (41.3)/
47 (58.8)

13 (31.0)/
29 (69.0)

20 (52.6)/
18 (47.4)

10 (15.6)/
55 (85.9)

8 (15.7)/
43 (84.3)

2 (14.3)/
12 (85.7)

a All parameters were detected before surgery. Age and albumin were expressed as average (SD). ALP level,
GGT level, bilirubin and maximum tumor diameter were expressed as median (range). Other characteristics were
expressed as number (proportion%). b n is as indicated in the column headings unless otherwise state. AFP, alpha
fetoprotein; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; SD, standard deviation.

2.3. Sample Preparation and Metabolic Profiling Analysis

A piece of tissue (~10 mg) was mixed with 600 µL of cold 80% methanol solution
containing 5 µg/mL internal standards (valine-d8, succinic acid-d4, phenylalanine-d5,
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tridecanoic acid, citric acid-d4 and myristic acid-d27) and then homogenized using a high-
speed blender after vortexing for 30 s. The mixture was centrifuged at 4 ◦C (14,000× g) for
10 min to remove the protein fraction. Finally, 480 µL of the supernatant was lyophilized
in Labconco vacuum concentrators and then subjected to an oximation reaction with
50 µL methoxyamine–pyridine solution (20 mg/mL) at 37 ◦C for 1.5 h, and a silylation
reaction with 40 µL of MSTFA at 37 ◦C for 1 h for subsequent metabolic profiling analysis.
Quality control (QC) samples, which were technical replicates by pooling an equal aliquot
of extracts from all experimental samples, were processed with the same method as the
experimental samples and inserted every 10 samples during the analytical batch to monitor
the data quality.

Metabolic profiling analysis was performed on a TQ 8050 NX GC-MS system in
single-quadrupole full-scan mode coupled with AOC-20i automatic sampler (Shimadzu,
Japan), and a DB-5MS fused-silica capillary column (30 m × 0.25 mm × 0.25 µm, Agilent
Technologies, Santa Clara, CA, USA) was used. The column temperature was maintained
at 80 ◦C for the first 1 min, increased to 210 ◦C at 30 ◦C/min, and then ramped to 320 ◦C at
a rate of 20 ◦C/min, and ultimately kept for 4 min. The injection volume was 1 µL with a
40:1 split ratio (50:1 in the external validation) and the detector voltage was set at 1.11 kV
(1.18 kV in the external validation). Other detailed system parameters of the metabolomics
method were published in our previous studies [21].

The peaks in a QC sample were deconvoluted by importing the NetCDF file into
ChromTOF 4.43 software (Leco Co., St. Joseph, MI, USA) and then identified by comparing
the derivatized mass fragments and retention index based on commercial standard libraries
(NIST, Gaithersburg, MD, USA, Wiley, Hoboken, NJ, USA; FiehnLib, Davis, CA, USA, and
Mainlib, Morris, MN, USA) and a house-made metabolite library.

2.4. Statistical Analyses

Before statistical analysis, all metabolic features were calibrated to internal standards
with the RSD-minimum principle and tissue weight [22]. QCs and samples were unsuper-
vised clustered by principal component analysis (PCA) to observe the degree of clustering,
and the global alteration of metabolic profiling between the ANT group and the HCT
group was monitored by supervised partial least squares discriminant analysis (PLS-DA)
by SIMCA-P program (version 11.0, Umetrics, Umeå, Sweden). A permutation test was
applied to assess the reliability of the multivariate model and avoid overfitting. To explore
the metabolic variation, paired (Wilcoxon test) and nonpaired (Mann–Whitney U-test)
nonparametric tests were used to identify the significantly differential metabolites between
two groups, and the Kruskal–Wallis test was used for comparison among the three clusters
using SPSS Statistics software (version 25.0, IBM SPSS, Chicago, IL, USA). False discovery
rates (FDRs) were also calculated to the correct p value using the Benjamini–Hochberg
method through the MATLAB program (MathWorks, Portola Valley, CA, USA). Hierar-
chical cluster analysis (HCA) was performed using the MultiExperiment Viewer software
package (MeV, version 4.7.1) (http://mev.tm4.org (accessed on 31 December 2021)), and
the relative responses of differential metabolites were plotted in histograms using the
GraphPad software (version 5.01, La Jolla, CA, USA). Metabolic clustering was run by a
flexible R package named NMF [19] based on NMF algorithms [20] for 200 iterations of
best rank, with default settings of method brunet and seed random. Rank survey was
completed using 200 iterations of ranks 2–10, the value of k when the magnitude of the
cophenetic correlation coefficient began to fall was chosen as the optimal number of clus-
ters [23]. Volcano plots were drawn to visualize the metabolic differences between groups
or clusters. Metabolic clustering and volcano plots were implemented by R 4.0.2 version.
Kaplan–Meier curves and log-rank test results were generated using MedCalc Software
(version 19.0.4, MedCalc Software, Ostend, Belgium). Cox regression analyses of metabolic
cluster and clinicopathological parameters associated with overall survival were completed
by using SPSS Statistics software (version 25.0, IBM SPSS, USA).

http://mev.tm4.org
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3. Results
3.1. Metabolic Profiling Analysis of HCC Tissues

To enable comprehensive metabolic disturbance in HCC, a nontargeted GC-MS-based
metabolomics strategy was applied to obtain metabolic profiling in 130 pairs of matched
fresh HCT and ANT samples, encompassing tumors of different clinical TNM and BCLC
staging systems (Table 1). A total of 135 metabolic characteristic ions from 115 metabolites
were quantified and corrected by internal standards and tissue weight. In QC samples,
94.8% of the metabolites had RSD values less than 30%, and the corresponding area
accounted for 92.2% of total peak area (Figure S1a). The PCA score scatter plot based on
metabolites with RSD value less than 30% was constructed, which showed that the tumor
tissues were clearly separated from the noncancerous tissues, and QC samples were tightly
clustered (Figure S1b). Therefore, the metabolomics method was sufficiently stable and
reliable, and the data of metabolic profiling was well measured. Metabolites with RSD%
value less than 30% in QC samples were retained for further analysis.

3.2. Metabolic Reprogramming of HCC

As shown in the PLS-DA score plot, the HCT group was clearly separated from the
ANT group on the first principal component (Figure 2a), and no over-fitting was observed.
The result of running the permutation test 200 times showed the intercept values of R2Y
and Q2Y were 0.097 and −0.270, respectively (Figure S1c), meaning there was no overfitting.
After FDR correction, 81 metabolites (21 higher and 60 lower in HCT) were identified as
differential metabolites by paired nonparametric tests (Wilcoxon test), which displayed
differential abundance between HCT and ANT samples (FDR corrected p value < 0.05)
(Tables S1 and S2, and Figure 2b). Among them, palmitoleic acid, palmitelaidic acid, 2-
hydroxyglutaric acid, O-phosphocolamine and elaidic acid were most abundant in tumors
(fold change > 2), while glucose, malic acid, fumaric acid and 10 other metabolites (threitol,
ribitol, isopropyl beta-D-1-thiogalactopyranoside, xylitol, glycerol 3-phosphate, lyxose,
xanthine, uric acid, mannose and cytidine-5-monophosphate) were notably downregulated
(fold change < 0.5).

To visualize the variation trends of differential metabolites, the logarithms of the
fold changes (HCT/ANT) to the base 10 were plotted in a heatmap (Figure 2c), and the
metabolites were clustered according to their types. Overall, significant differences between
the HCT group and ANT group existed in amino acids, central carbon metabolism-related
metabolites, lipids, saccharides, polyols, organic acids, nucleotides, vitamins and other com-
pounds. The levels of tumor-dependent serine and tryptophan were significantly increased
in the HCT group, which have been reported to become therapeutic targets for tumor
targeted therapy [24,25]. Consistent with the Warburg effect [26], most of the metabolites
involved in the tricarboxylic acid (TCA) cycle were decreased, including succinic acid,
fumaric acid and malic acid, while pyruvate and lactic acid were significantly increased
corresponding to highly activated glycolysis. An obvious increase was observed in the
levels of monounsaturated fatty acids (MUFAs), whereas the polyunsaturated fatty acid
(PUFA) levels decreased, which confirmed our previous findings [12]. It was noteworthy
that all detected saccharides and most of the polyols had a low abundance in tumor tissues
(e.g., glucose, mannose, threitol, ribitol), which may be associated with the abnormally
activated glucose metabolism and greatly decreased fructose metabolism in malignant
tumors, representing the impact of cancerization on energy metabolism. In addition, hy-
poxanthine presented an elevated trend in the HCT group, whereas xanthine declined
drastically, which was consistent with the prior metabolomics analysis of paired HCC
tissues [12].
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Figure 2. Metabolic signatures of the adjacent noncancerous tissue (ANT) and hepatocellular carci-
noma tumor (HCT) group. (a) Partial least squares discriminant analysis (PLS-DA) score scatter plot
of ANT and HCT groups. (b) Volcano plot of the 81 significant differential metabolites (FDR < 0.05)
between ANT and HCT groups. Paired nonparametric test (Wilcoxon test) was used to calculate
statistical significance, and p values were corrected using the Benjamini–Hochberg method. FDR,
false discovery rate. FC, fold change. (c) Heatmap of 81 metabolites with significant changes by
comparing HCT group with ANT group. Red, increased metabolite. Blue, decreased metabolite. The
red arrows represent significant upregulation in the HCT group.

To investigate the metabolic reprogramming, a metabolic pathway map to depict
changes between the two groups was constructed based on the differential metabolites
(Figure 3). Elevated levels of pyruvate and lactate, the major glycolytic products, were
observed in the HCT group, indicating an enhanced global glycolysis flux. Moreover,
three intermediate products (succinic acid, fumaric acid and malic acid) in the TCA cycle
were markedly reduced, which suggested a low level of ATP production through aerobic
phosphorylation. As sources of one carbon unit, serine and tryptophan showed increased
abundance to accelerate fueling on synthesis of purine and pyrimidine. Due to the vigorous
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catabolism and high energy demand in cancer cells, FFA metabolism played a pivotal
role in tumor metabolic reprogramming as well. Interestingly, the content of PUFA was
obviously decreased contrary to the increase of MUFA, which may suggest inhibition of the
desaturation pathway and the promotion of β-oxidation [12]. Hypoxanthine was oxidized
to xanthine under the catalysis of xanthine oxidoreductase (XOR), and then converted to
uric acid subsequently. Accumulation of hypoxanthine and the reduction of downstream
metabolites may be connected to the inhibited activity of XOR in HCC that blocked the
purine catabolism.
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3.3. HCC Risk Stratification Based on Metabolic Phenotypes

To evaluate whether HCC tumors could be clustered according to their own distinct
metabolic phenotypes, unsupervised metabolic clustering was performed by applying NMF
consensus clustering. The fold changes of differential metabolites in the HCT compared
to the ANT groups were subjected to clustering. Cophenetic correlation coefficients were
calculated after NMF rank survey, and k = 3 was determined as the optimal number of
clusters (Figure 4a). Three metabolic clusters were yielded as shown in the consensus
matrix heatmap (Figure 4b). To better understand the metabolic characteristics of the three
HCC clusters, the Mann–Whitney U-tests were used to determine which metabolites were
significantly altered in each cluster relative to the remainder of the cohort (FDR corrected
p value < 0.05). For each cluster, the log10-(FDR-corrected p value) of significantly changed
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metabolites was plotted as the X-axis, and the log2-(fold change ratio) of these metabolites
was plotted as the Y-axis. Interestingly, Cluster 3 was characterized by the highest fold
change of six FFAs (palmitoleic acid, palmitelaidic acid, elaidic acid, myristic acid, oleic
acid and palmitic acid) in the HCT to the ANT, while Cluster 1 had the most significant low
fold change of four FFAs (palmitoleic acid, palmitelaidic acid, myristic acid, elaidic acid),
and Cluster 2 mainly displayed a higher fold change of nucleotides (Figure 4c). Meanwhile,
nonparametric test results showed that increasing and decreasing trends of metabolites in
each cluster were basically consistent (Table S3).
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To further characterize the HCC metabolic clusters, differential metabolites in tumor
tissues among the three clusters were defined by performing the Kruskal–Wallis test. A
total of 14 differential metabolites had discrepant levels after FDR correction, of which the
same 6 FFAs (elaidic acid, palmitelaidic acid, palmitoleic acid, myristic acid, oleic acid and
palmitic acid, p value from low to high) showed the most striking differences in tumor
tissues. Notably, Cluster 3 still had significantly higher levels of six FFAs than Clusters
1 and 2, but different from the ratio analysis of HCT to ANT, Cluster 2 exhibited higher
levels of eight other metabolites (1,3-propanediol, lactic acid, nucleoside monophosphate,
glycerophosphoric acid, leucine, tryptophan, valine and tyrosine, p value from low to high)
(Figure 5a).
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In addition to significant differences in metabolic characteristics, the alpha fetoprotein
(AFP) level was also distinct among the three clusters. The proportion of patients with
higher AFP level (>400 µg/L) in Cluster 3 accounted for 80%, which was significantly
higher than that in the other clusters, and this was consistent with the poor prognosis of
Cluster 3 (Figure 5a, Table S4). The overall survival of patients in each cluster was assessed,
and it was found that Cluster 3 with higher levels of FFAs exhibited the worst clinical
outcome among three clusters (log-rank test, p = 0.016) (Figure S2a). Three clusters were
classified into low-risk (Clusters 1 and 2) and high-risk (Clusters 3) groups of mortality,
and they were clearly stratified as well (log-rank test, p = 0.004) (Figure 5b). Univariate
and multivariable Cox regression analyses with overall survival were performed, and risk
stratification defined by metabolic clustering was shown to be an independent prognostic
factor for HCC, indicating an association between metabolic characteristics and prognosis
(Table 2). In addition, TNM stage was also a significant prognostic risk predictor, and
the high-risk group had the highest proportion (44%) of advanced stage (III) tumors
(Figure S2b).

3.4. Validation of Highly Abundant Free Fatty Acids’ Association with Poor HCC Prognosis

Unsupervised metabolic clustering identified one cluster of high-risk patients whose
tumors were characterized by high levels of FFAs (Cluster 3) (Figures 4 and 5). To validate
the correlation between metabolic characteristics and prognosis, another dataset of tissue
metabolomics was acquired and divided into three clusters as well by subjecting the
fold changes of six FFAs to NMF clustering (Figure 6a). Results of Mann–Whitney U-
tests showed that Cluster 3 exhibited a significantly increased fold change in three FFAs
(palmitoleic acid, oleic acid and myristic acid), relative to Clusters 1 and 2 (FDR corrected
p < 0.05), and there was also an upward trend in three other FFAs (Figure S3a). Then, the
overall survival of patients was examined, and results showed that the high-risk group



Cancers 2022, 14, 231 11 of 17

(Clusters 3) exhibited worse clinical outcome than the low-risk group (Clusters 1 and 2)
(log-rank test, p = 0.039) (Figure 6b and Figur S3b). The above results verified that HCC
patients could be classified based on the metabolite classifier composed of six FFAs, and
patients with higher levels of these metabolites in tumors may have a worse prognosis.

Table 2. Univariate and multivariate Cox regression analyses of metabolic cluster and clinicopatho-
logical parameters associated with overall survival a.

Variable

Overall Survival (n = 80)

Univariate Multivariate

HR (95% CI) p Value HR (95% CI) p Value

Metabolic risk stratification b,
High risk/Low risk

3.38 (1.40, 8.18) 0.007 3.16 (1.27, 7.87) 0.013

Cirrhosis, Presence/Absence 3.37 (1.62, 7.02) 0.001 - -
Maximum tumor diameter, cm 1.09 (1.02, 1.16) 0.009 - -

Tumor number, ≥2/1 5.48 (2.58, 11.62) 9.00 × 10−6 - -
Microvascular invasion,

Presence/Absence 1.96 (1.04, 3.72) 0.038 - -

TNM Stage c - 2.29 × 10−5 - 0.014
TNM Stage II 1.65 (0.63, 4.34) 0.309 1.55 (0.59, 4.08) 0.377
TNM Stage III 5.50 (2.56, 11.81) 1.25 × 10−5 3.89 (1.61, 9.42) 0.003
BCLC Stage d - 2.08 × 10−5 - -
BCLC Stage B 6.82 (2.73, 17.06) 4.07 × 10−5 - -
BCLC Stage C 4.01 (1.96, 8.19) 1.39 × 10−4 - -

a HR, hazard ratio; CI, confidence interval. b Clusters 1 and 2 were merged as low-risk group. c Stage I was used
as the reference group. d Stage 0 + A was used as the reference group.

A difference enrichment score (DES) was defined to quantify and evaluate the differ-
ences in six FFAs (palmitoleic acid, palmitelaidic acid, elaidic acid, myristic acid, oleic acid
and palmitic acid) between HCT and ANT samples in each patient.

DES =

√√√√√∑n=6
i=1

(
cFFAiHCT

−cFFAiANT
cFFAiANT

)2

6
, (1)

A significant difference was observed in DES between low-risk and high-risk groups,
with higher DES of Cluster 3 than those of Clusters 1 and 2 (p < 0.001; Figure 5c), which
indicated that DES might be useful for prognostic prediction. The receiver operating
characteristic (ROC) curve of DES was obtained, and the area under the curve (AUC) was
0.979 for discriminating low-risk and high-risk groups in the discovery cohort (Figure 5d).
Based on the average DES of the low-risk group (Clusters 1 and 2), the cutoff value for
HCC prognosis risk assessment was determined as 1.27 with 100.0% sensitivity and 68.1%
specificity. Meanwhile, the Mann–Whitney U-test showed that DES of the validation cohort
was also significantly different between two risk groups (p < 0.001; Figure 6c). Furthermore,
the sensitivity and specificity for identifying high-risk patients from the validation cohort
were 63.6% and 88.9%, respectively, with an AUC value of 0.869 (Figure 6d).
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Figure 6. Unsupervised clustering of HCC based on metabolic signatures of six free fatty acids in
the validation cohort. (a) NMF clustering based on fold change of six FFAs between ANT and HCT
group. (b) Kaplan–Meier curves of overall survival of low-risk group (Clusters 1 and 2) and high-risk
group (Cluster 3). (c) DES of low-risk and high-risk groups. Mann Whitney test was used to calculate
p value, and *** represent p value of less than 0.001. The black dots are not in the 90% confidence
interval. (d) ROC curve of DES for prognosis prediction. Others the same as Figures 2 and 5.

4. Discussion

In recent years, the study of cancer metabolism has attracted great interest due to the
identification of tumorigenic mutations in metabolic genes and the potential discovery of
drug targets from the metabolism characteristics. Accurate early diagnosis and prognosis
evaluation of cancer can be achieved through the detection of various biomarkers. Most
of the metabolic markers are found in biological fluid samples, which help to diagnose
malignant tumors by noninvasive means. However, it is limited to the determination of
organ-specific markers only by biological fluid samples, because they are easily affected by
other organs and systemic environment. In order to provide a systematic insight into the
metabolism of HCC, a nontargeted metabolomics method was used to analyze the metabolic
profiling of paired HCT and ANT samples. Tissue metabolomics comparing tumor tissues
with matched adjacent noncancerous tissues could eliminate as many individual differences
as possible, such as age, gender, region, etc.

4.1. Characteristics of Metabolic Reprogramming in HCC Tissue

Significant metabolic disturbances occurred during the process of tumorigenesis
and development, such as enhanced glycolysis, reduced TCA cycle and upregulated
β-oxidation. Additionally, metabolic reprogramming occurs in nucleotides and other
metabolites to adapt to tumor proliferation and invasion.

Adequate energy supply is essential for the growth and proliferation of tumors. Ac-
cording to the Warburg effect, even in the presence of sufficient oxygen, cancer cells prefer
to activate aerobic glycolysis rather than rely on oxidative phosphorylation. The levels of
glucose, malic acid and other intermediate metabolites in the TCA cycle were significantly
downregulated, while those of pyruvate and lactic acid were significantly upregulated in
the HCT group, which revealed that cancer cells consumed glucose rapidly to produce
energy through glycolysis, while energy acquisition through the TCA cycle was inhibited.
This may be in part due to the dysfunction of mitochondria, or the change of enzymes
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in cancer cells, especially the altered activity of three key glycolytic enzymes (hexoki-
nase, phosphofructokinase and pyruvate kinase) [27–29]. Furthermore, the glycolytic
pathway produces ATP faster than the TCA cycle, and provides NADPH to maintain the
internal redox homeostasis, as well as provides substrates for the synthesis of biological
macromolecules [30–32]. In addition to glucose catabolism, β-oxidation in mitochondria is
another important source to produce a large amount of energy and NADPH [33], which is
regarded to be upregulated in HCC by extended PPARα activation [34], corresponding to
the increased contents of MUFAs. Previous studies confirmed that the ratio of acetylcarni-
tine to carnitine (C2/C0) was increased in the HCT group, suggesting that the β-oxidation
of even-numbered FFAs was upregulated [12]. In addition, the level of PUFA reduced
significantly in HCT group, while PUFA has been shown to exhibit anti-inflammatory and
anti-oxidant properties and to restrain the production of pro-inflammatory cytokines [35,36].
In particular, docosahexaenoic acid, the omega-3 PUFA, has also been reported to reduce
the HCC cell growth through inhibition of the signal transduction of prostaglandin E2
by downregulating COX-2 and upregulating 15-hydroxyprostaglandin dehydrogenase, a
COX-2 antagonist [37].

Amino acids play an important role in cell metabolism. As a nonessential amino acid,
serine is an intermediate connecting saccharide, lipid and nucleotide metabolism, and it
produces a marked effect in maintaining tumor proliferation and homeostasis [38]. Serine
contributing methyl to ensure the one carbon cycle and generate NADPH for anti-oxidant
defense was shown to be upregulated in tumor tissues in our results. A large amount of
serine is needed to maintain cell viability, and exogenous serine starvation stress can inhibit
the proliferation of a variety of cancer cells [24,39]. In vivo, serine is synthesized through the
serine synthesis pathway, from the intermediate product of glycolysis, 3-phosphoglycerate.
It has been found that phosphoglycerate dehydrogenase (PHGDH), the rate-limiting step
of serine synthesis, is overexpressed in triple-negative breast cancer, while the knockdown
of PHGDH significantly affects cell growth [40,41]. In addition to the expression level,
the enzyme activity of PHGDH in rectal cancer cells and sarcoma models also increased
significantly [42], and it has become a new target for cancer treatment and drug discovery
at present. The degradation of glycine provides 5,10-methylenetetrahydrofolate, which
is an intermediate product of the folate cycle, and inhibition of glycine decarboxylase in
the degradation leads to the disruption of cell homeostasis [42]. Although the content of
glycine decreased in tumor tissues in our results, it did not affect cancer cell proliferation
because serine is an important source of glycine synthesis. However, if serine is deficient
and the synthesis of serine is blocked, the growth of cells will be significantly inhibited [39].

The activity of DNA and RNA polymerases in tumor tissues was higher than that in
adjacent noncancerous tissues. Correspondingly, the process of nucleotide catabolism was
significantly reduced. XOR, a key enzyme catalyzing the decomposition of hypoxanthine,
had a significantly lower expression level in HCC tissues. The activity and expression of
XOR were confirmed to be abnormal in various tumors and related to the prognosis [43,44],
suggesting that XOR may be involved in tumorigenesis through different molecular mech-
anisms. Recently, XOR was found to aggravate the accumulation of ROS in liver cancer
stem cells by promoting ubiquitin-specific peptidase 15 (USP15)-mediated nuclear factor
erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH associated protein 1 (KEAP1) signaling,
ultimately block liver cancer stem cell and tumor propagation [45]. In summary, cancer
cells obtained energy and substrates needed for survival and proliferation by adjusting
their metabolic pathways, meanwhile reducing apoptosis by counteracting oxidative stress.

4.2. Metabolite Classifier for HCC Risk Stratification

The metabolic abnormalities and phenotypes of HCC are highly heterogeneous, which
suggests that the influence of heterogeneity should not be ignored in the study [46].
With the expanding of the understanding of cancer molecular typing, some genome-
and transcriptome-based molecular classifications of HCC have been revealed in recent
years [18,47]. Previous joint studies of genomics and metabolomics highlighted the het-
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erogeneity of gene expression and metabolic alterations in the same pathway, and the
importance of generating a complete atlas by combining the two data types was high-
lighted [48]. Metabolic risk stratification based on the characteristics of the metabolome
could enrich the molecular pathological information of tumorigenesis and progression, and
provide assistance for clinically individualized therapeutics and prognosis evaluation [10].

Notably, three metabolic clusters were identified by unsupervised clustering analysis,
and high levels of FFAs in tumor tissues were the key characteristics of the cluster with
poor prognosis, accompanied by a high level of AFP. The positive correlation between
abundance of the FFAs and prognosis was further validated by another metabolomics
dataset. The FFAs that composed the metabolite classifier were either saturated or mo-
nounsaturated and have been reported to get involved in the formation and prognosis
of HCC. Upregulated oxidation of fatty acids, as a driving force for tumor proliferation,
may also be closely related to the HCC prognosis. As confirmed, MUFAs produced by
stearoyl-CoA desaturase provided a Wnt-positive signaling loop via stabilization of low-
density lipoprotein-receptor-related proteins 5 and 6, which contributed to liver fibrosis
and tumor growth [49]. Palmitic acid increased the level of acetylated AFP by disrupting
SIRT1-mediated deacetylation, which was associated with poor prognosis and decreased
patient survival [50]. In addition, the growth inhibition caused by knockdown of lipolytic
enzyme acyl-CoA thioesterase 8 could be partially rescued by the addition of myristic acid
in HCC [51]. The indicated importance of FFA metabolism was helpful to improve the un-
derstanding of the pathogenesis of HCC. Nevertheless, the specific molecular mechanism
of HCC still needs to be elucidated thoroughly in the future.

NMF can effectively reduce the dimension of a large-scale matrix, extract and classify
features, indicating the correlation between information, which has great potential in
academic research. The risk stratification defined by NMF unsupervised clustering was
an independent prognostic factor for HCC, revealing an association between metabolic
characteristics and prognosis. ROC analysis results showed that the classifier constructed
by the pivotal metabolic characteristics of the high-risk group could well distinguish the
patients with different levels of HCC prognostic risk. Hence, metabolic classification based
on the metabolic characteristics of HCC tissues in this study offered a new insight for the
heterogeneity of HCC and could be used as a new method to explore the molecular features
of tumors and prognosis.

Clinically, surgical resection is one of the optimal options for patients in early stage, but
for patients who have not received surgical resection or are on drug therapy, the prognosis
cannot be evaluated based on tissue samples. Therefore, it is still necessary to integrate
widely accepted clinical parameters and biomarkers for a comprehensive prognostic risk
assessment.

5. Conclusions

Overall, our study demonstrated that nontargeted metabolomics strategy was a reli-
able tool to explore the metabolic characteristics of HCC. HCC was characterized by distinct
metabolic reprogramming to satisfy energy and substance demand for tumor cell survival
and proliferation. Briefly, the Warburg effect that cancer cells were more inclined to rely on
active aerobic glycolysis was verified in our study, and the TCA cycle showed an obvious
downregulation. Moreover, β-oxidation of FFAs was upregulated to obtain energy and
reductants, while all detected saccharides and most of the polyols had a low abundance in
tumor tissues due to the abnormal activation of carbohydrate metabolism. Three metabolic
clusters with different characteristics were classified by applying NMF consensus clustering
based on the ratio analysis of HCT to ANT. The cluster characterized by the highest fold
change of FFAs exhibited a worst prognosis, which was further validated in another dataset
of tissue metabolomics. Risk-stratification based on a classifier composed of six FFAs may
provide new insights into the clinical prognosis evaluation and personalized treatment
of HCC.
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