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Abstract: Proximal sensing as the near field counterpart of remote sensing offers a broad variety of
applications. Imaging spectroscopy in general and translational laboratory imaging spectroscopy
in particular can be utilized for a variety of different research topics. Geoscientific applications
require a precise pre-processing of hyperspectral data cubes to retrieve at-surface reflectance in
order to conduct spectral feature-based comparison of unknown sample spectra to known library
spectra. A new pre-processing chain called GeoMAP-Trans for at-surface reflectance retrieval is
proposed here as an analogue to other algorithms published by the team of authors. It consists
of a radiometric, a geometric and a spectral module. Each module consists of several processing
steps that are described in detail. The processing chain was adapted to the broadly used HySPEX
VNIR/SWIR imaging spectrometer system and tested using geological mineral samples. The
performance was subjectively and objectively evaluated using standard artificial image quality
metrics and comparative measurements of mineral and Lambertian diffuser standards with standard
field and laboratory spectrometers. The proposed algorithm provides highly qualitative results, offers
broad applicability through its generic design and might be the first one of its kind to be published.
A high radiometric accuracy is achieved by the incorporation of the Reduction of Miscalibration
Effects (ROME) framework. The geometric accuracy is higher than 1 µpixel. The critical spectral
accuracy was relatively estimated by comparing spectra of standard field spectrometers to those
from HySPEX for a Lambertian diffuser. The achieved spectral accuracy is better than 0.02% for
the full spectrum and better than 98% for the absorption features. It was empirically shown that
point and imaging spectrometers provide different results for non-Lambertian samples due to their
different sensing principles, adjacency scattering impacts on the signal and anisotropic surface
reflection properties.

Keywords: imaging spectroscopy; reflectance; geometry; geology; laboratory; hyperspectral;
processing chain

1. Introduction

Sampling and successive analysis are basic research tasks to test and evaluate empirical relations
and hypotheses. Here, different analytical instruments, which utilize various physical measurement
principles provide a variety of results. Instruments that utilize the principles of spectroscopy are
widely used and relate the physical responses from incident electromagnetic radiation to the physical
properties of the sample. There are numerous spectroscopic approaches to retrieve the reflectance, the
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absorbance or the transmittance of a sample. Measured unknown sample spectra are then compared
with known spectra from reference libraries to assign specific material properties.

Geoscientific applications in general and geological applications in particular often require
repeatable and precise analyses of the mineralogy and elemental chemistry [1], which may be
delivered by laboratory scans from imaging spectroscopy and data from other optical spectrometers.
However, geoscientific applications are not the only ones, which profit from extensive laboratory
studies. Ecological [2] and soil [3] related applications have benefited a lot from the integration of the
laboratory scans using imaging spectroscopy to study and link, e.g., plant [2] and soil properties [3]
to spectroscopic signatures. This is critical for the understanding of large areas from other imaging
spectroscopy scales (UAV-based, airborne and spaceborne).

However, optical remote sensing and its near field derivative proximal sensing require reflectance
as a common basis for comparisons and assignments. This is the reason why an exact processing
chain for the laboratory scale is so important, as critical reference spectra for comparison may only be
acquired and studied in detail in the laboratory.

The reflectance retrieval comprises illumination and scanning geometry normalization, irradiance
normalization and surface reflectance anisotropies (mostly considered as Bidirectional Reflectance
Distribution Function—BRDF). Any acquisition dependency of the retrieved signal has to be removed
or significantly reduced during the preprocessing. For this, the sensor must be radiometrically calibrated
to establish a mathematical relationship between the physical response and the measured signal. The
sensor should be spectrally calibrated to enable a correct identification of material-dependent spectral
features as a consequence of the materials’ atomic structure. If more than one sensor is utilized, those
sensors must be optically aligned using parallel optical axes and subsequent signal processing, to
provide a broader spectral range and a continuous and spatially contiguous spectrum. Modern image
processing techniques are merged with spectral processing. As more and more hyperspectral imaging
spectrometers become available, those hyperspectral imagers provide hundreds of quasi-continuous
spectral bands per pixel and enable new applications that are not possible with traditional laboratory
spectroscopic techniques. Additionally, imaging spectrometers can be mounted on various platforms
such as satellites, airplanes, drones, tripods, lab racks, underwater vehicles and so forth.

As ground samples are the ones to be mostly analyzed in our laboratory, they were also used in
this work. Those were epidote, hornblende, chlorite, dolomite, illite, goethite, pyrophyllite and calcite,
which are key rock forming minerals and indicator minerals in geology.

The aim is to provide a processing chain for a broad set of geoscientific applications using the
VNIR 1600 and SWIR 320 m-e (400–1000 nm Visible and Near Infrared VNIR/1000–2500 nm Short Wave
Infrared SWIR) imaging spectrometer system (HySPEX) that utilizes the broadly used pushbroom
scanning principle as line scanner. Both sensors have different spatial resolutions. The VNIR is spatially
higher resolved than the SWIR, but the SWIR provides the most relevant information for geoscientific
applications as important clay minerals, carbonates and mica predominantly absorb electromagnetic
energy in this spectral region [1]. The proposed processing chain focusses on at-surface reflectance
retrieval and on the geometric and spectral adaptation of the VNIR to the SWIR. This can be easily
reversed, because the proposed approaches are generic. The proposed processing chain for imaging
spectrometers was optimized for HySPEX and is named GeoMAP-Trans. It can be adapted to any
other line scanning imaging spectrometers. The proposed processing chain consists of three modules:
radiometry, geometry and spectroscopy. Each module comprises several modular processing steps. In
the following all steps are described in detail.

2. Materials and Methods

2.1. Materials

Proximal sensing applications are widely used and remote sensing approaches are adapted to
the near field as proximal sensing methods. There are numerous manufacturers of spectrometers
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and imaging spectrometers. The imaging spectrometers from the Norwegian company Norsk Elektro
Optikk (NEO, Skedsmokorset, Norway) were the first cross-platform systems facilitating laboratory,
field and airborne usage. Other manufacturers provide similar cross-platform applications, which
utilize similar sensing principles. The processing chain proposed here would be beneficial for these
systems as well. In this work we focus on the HySPEX VNIR 1600/SWIR 320 m-e imaging spectrometer
system owned by GFZ. The specifications are given in Table 1.

Table 1. Specification of the imaging spectrometer system HySPEX VNIR/SWIR (from manufacturer
online resource http://www.hyspex.no/products/disc.php accessed on 14 June 2017).

Type VNIR 1600 SWIR 320 m-e

Spectral Range 0.4–1.0 µm 1.0–2.5 µm
Spatial Pixels 1600 320

F-number F2.5 F2.0
FOV across track 17◦ 13.5◦

Pixel FOV across/along track 0.18 mrad/0.36 mrad 0.75 mrad/0.75 mrad
Spectral sampling interval 3.7 nm 6 nm

Number of bands 160 256
Binning modes 2, 4, 8 -

Noise floor 40e -
Peak SNR >200 -

Dynamic range 1000 -
Digitization 12 bit 14 bit

Max frame rate 135 fps 100 fps
Sensor head weight. 4.6 kg 7.5 kg

Sensor head dim. (lwh in cm) 31.5 × 8.4 × 13.8 36 × 14 × 15.2
Sensor head pwr. cons. ~6 W ~100 W

FPA cooling temperature - ~195 K
Smile (SSI, from Lenhard et al. [4]) 0.11–0.19 0.13

Average keystone (ASI, from
Lenhard et al. [4]) 0.22 0.09

Laboratory illumination Mercury high-pressure lamp 2× 900 W

We selected geology and related samples, out of the variety of potential applications in the
laboratory, because the number of geological applications and their relevance has grown significantly
in the past years. Geological powder standards were selected as samples, to enable a performance
evaluation of the proposed processing chain. Those samples are homogenised powders, which
provide mainly diffuse reflection and may also be measured by other spectrometers. Broadly used
spectrometers are, e.g., the FieldSpec 4 HiRes by PANalytical (ASD, Boulder, CO, USA) and Lambda
950 (Perkin Elmer, Waltham, MA, USA). Both are sensitive in the spectral range from 350 nm to 2500 nm.
They have been used for comparison of the performance of reflectance retrieval of the processing chain.
A brief summary about the spectral properties of these instruments is given in Table 2.

Table 2. Specifications of ASD 4 FieldSpec HiRes (from manufacturer online resource https://
www.asdi.com/products-and-services/fieldspec-spectroradiometers/fieldspec-4-hi-res accessed on
14 June 2017) and PerkinElmer Lambda 950 [5].

Type ASD FieldSpec 4 HiRes Perkin Elmer Lambda 950

Spectral Range 0.35–2.5 µm 0.175–3.3 µm
Spectral sampling 1.4 nm @ 350–1000 nm; 1.1 nm @ 1001–2500 nm UV/VIS 0.05 nm; NIR 0.2 nm

Wavelength accuracy 0.5 nm UV/VIS 0.08 nm, NIR 0.3 nm
Illumination Halogen Deuterium (UV),Tungsten-halogen

The laboratory setup is illustrated in Figure 1a,b where the sensor platform that holds all the
sensors (left hand side) and the illumination mount that holds the illumination sources (right hand side)

http://www.hyspex.no/products/disc.php
https://www.asdi.com/products-and-services/fieldspec-spectroradiometers/fieldspec-4-hi-res
https://www.asdi.com/products-and-services/fieldspec-spectroradiometers/fieldspec-4-hi-res
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can be rotated by 90◦ and are mounted on moveable racks. This enables a high degree of freedom for
different setups considering a wide variety of applications. The translation stage that holds the samples
is electronically controlled by the HySPEX translation stage controller that is connected to the HySPEX
PC and the measurement software. The software facilitates different setups including variations of the
integration time, binning, averaging and stage speed. The speed of the translation stage that moves the
samples through the field of view (FOV) of the imaging spectrometers is automatically adjusted to the
selected integration time in order to provide a uniform ground instantaneous field of view (GIFOV), or
in other words, quadratic pixels to the user.
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Figure 1c. This is based on the experience from numerous measurements and the fact that low cost 
illumination sources tend to change their irradiance over time. That also enables the estimation of the 
spatial distribution of the irradiance that is necessary to estimate the at-surface reflectance of the 
samples as shown later. The VNIR and SWIR sensor should be mounted in parallel to enable a 
consistent ratio of the individual instantaneous field of views (IFOV) of both sensors, which eases the 
succeeding geometric co-registration. The geological samples as shown in Figure 1c are ground 
standards or powders having a grain size of less than 63 μm. These are from right to left two 
variations of epidote, chlorite, hornblende, dolomite, illite, goethite, pyrophyllite and calcite in  
Figure 1c. They were selected to offer a broad spectrum of important geological materials. 

2.2. Methods 

The architecture of the proposed approach is modular. It consists of the radiometric module, the 
geometric module and the spectroscopic module as shown in the processing scheme in Figure 2. The 
modular approach has several benefits. Any module can be updated, extended or exchanged 
separately. This is useful if the chain contains generic approaches as the proposed approach and will 
be adapted to other sensors or other applications. However, the order of the modules is related to the 
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the outlier reduction of the spectral module to avoid misregistrations based on these extreme points 
or the jump reduction of the spectral module should be applied after co-registration to avoid ‘de-

Figure 1. Translational imaging spectroscopy in the laboratory and the (a) CAD model, (b) experimental
setup and (c) arrangement of the samples.

A reflectance standard should be always placed along the sample scan direction as shown in
Figure 1c. This is based on the experience from numerous measurements and the fact that low cost
illumination sources tend to change their irradiance over time. That also enables the estimation of
the spatial distribution of the irradiance that is necessary to estimate the at-surface reflectance of
the samples as shown later. The VNIR and SWIR sensor should be mounted in parallel to enable
a consistent ratio of the individual instantaneous field of views (IFOV) of both sensors, which eases
the succeeding geometric co-registration. The geological samples as shown in Figure 1c are ground
standards or powders having a grain size of less than 63 µm. These are from right to left two variations
of epidote, chlorite, hornblende, dolomite, illite, goethite, pyrophyllite and calcite in Figure 1c. They
were selected to offer a broad spectrum of important geological materials.

2.2. Methods

The architecture of the proposed approach is modular. It consists of the radiometric module, the
geometric module and the spectroscopic module as shown in the processing scheme in Figure 2. The
modular approach has several benefits. Any module can be updated, extended or exchanged separately.
This is useful if the chain contains generic approaches as the proposed approach and will be adapted to
other sensors or other applications. However, the order of the modules is related to the characteristics of
the different corrections and reductions, e.g., the geometric module should succeed the outlier reduction
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of the spectral module to avoid misregistrations based on these extreme points or the jump reduction
of the spectral module should be applied after co-registration to avoid ‘de-jumping’ of not registered
points that are not spatially coincident. All modules are explained in detail in the next sections.
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2.3. Module 1: Radiometry

2.3.1. Step 1.1: Radiometric Scaling

Incident electromagnetic radiation in the visible, near infrared and shortwave infrared can be
related to Digital Numbers (DNs) by the following equation, according to [6]:

DN(x, λ) = NI(x, λ) · QE(λ)·SF·RE(x, λ) + BG(x, λ), (1)

where DN is digital number, x is the across track pixel, λ the wavelength, NI the number of incoming
photons reaching the detector matrix at position x, λ during the integration time, QE is the quantum
efficiency of the whole system, SF is a scaling factor that relates DN to photoelectron, RE is the relative
response matrix for each detector element and BG is the background matrix or dark current. Polynomial
coefficients are estimated that relate recorded DN to radiance as physical unit of the received radiant
flux in the process of radiometric calibration. Radiometric scaling balances differences on the detector
characteristics and enables further analyses, as visualized in Figure 3.
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Figure 3. (a) False colour, raw HySPEX SWIR image (Red 2414.0955 nm, Green 2312.0591 nm,
Blue 2210.0225 nm), (b) False colour, radiometrically scaled HySPEX SWIR image (Red 2414.0955 nm,
Green 2312.0591 nm, Blue 2210.0225 nm).

A variety of different calibration approaches have been proposed throughout the years, such as
vicarious calibration [7–9], flat field calibration [10] or laboratory calibration. The estimated coefficients
are used to transform measured DN to at-sensor radiance in the process of radiometric scaling [11].
Physically well-defined calibration targets are recorded in the calibration process. Sensor response is
mathematically related to the targets by polynomial modelling [12–14]. The data can be related to as
at-sensor radiance [4,6] after radiometric scaling:

L1.1(x, λ) =
h·c·(DN(x, λ)− BG(x, λ))

t·A·Ω·∆λ(λ)·λ·QE(λ)·SF·RE(x, λ)
=

DN(x, λ)− BG(x, λ)

R(x, λ)·t , (2)

where h is the Planck constant, A is the area of the entrance aperture, Ω is the solid angle of one
pixel, ∆λ(λ) is the spectral sampling of the camera, t is the integration time and R(x, λ) is the
radiometric response in DN. Spatiospectral distortions are then contemporarily estimated using sharp
spatiospectral test patterns and collimator lasers in the process of radiometric calibration. The impact
of the individual distortions on successive analysis depends on the magnitude and shape of the
distortions. Most relevant distortions are the ‘Smile’ or ‘Frown’ as a centre wavelength shift and the
‘Keystone’ as a band-to-band misregistration [15]. Those projection related non-uniformities have to be
reduced beforehand. This is usually performed using spline interpolation.

2.3.2. Step 1.2: Anomaly Detection and Reduction

The distribution of erroneous pixels should be controlled after radiometric scaling. These changes
over time may be caused by, e.g., sensor aging or dust on detector surfaces. Erroneous pixels may
also be considered as spatiospectral gradients of their local pixel neighbourhood. This is valid for
edges, corners and impulse noise. Edges, corners and erroneous pixels represent strong spatiospectral
gradients in the x, λ-domain that can be detected using high-pass filtering techniques, in contrast to
impulse noise that might be randomly distributed. At first, radiance data is averaged along-track
or along the y-direction to separate random noise from object related gradients and erroneous pixel
information. The along-track average is then low pass filtered using a standard boxcar filter (moving
average) of size n. The result is subtracted from the along-track average. The absolute is then finally
used to derive a first high pass result as given in Equation (3):

HP(x, λ) = |L1.1(x, y, λ)y − (L1.1(x, y, λ)y ⊕
(1

n,n
)

n2 )|, (3)
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where HP(x, λ) is the high pass result, L1.1(x, y, λ)y is the along track average, ⊕ is the convolution

operator in the spatial domain and
(1

n,n
)

n2 is the two-dimensional boxcar filter of size n by n. This
high pass result is now considered as anomaly map that contains all gradients. Assuming that object
corners and object edges don’t have the same extent as the number of rows or lines (y) they resemble
smaller gradients compared to erroneous pixels that represent contiguous, strong gradients. Numerous
approaches can be applied to separate object related gradients from erroneous pixel gradients. This
work uses a Laplacian approach to amplify the gradients of the high pass along track average as shown
in the following equation:

LAP_HP(x, λ) = |∂
2HP(x, λ)

∂x2 +
∂2HP(x, λ)

∂λ2 | = |∆|L1.1(x, y, λ)y − (L1.1(x, y, λ)y·
(1

n,n
)

n2 )||, (4)

where LAP_HP(x, λ) denotes the result of the high pass filtering, ∂ denotes the differential and ∆
the Laplacian operator. In addition the modulus of the Laplacian is used to relate the property of
erroneous pixels to have either higher, lower or no values compared to their local neighbourhood.
A hysteresis can be applied to separate erroneous pixel information from background information and
to determine the pixel location of erroneous pixels after the retrieval of the absolute of the Laplacian of
the absolute of the high pass along track average.

In this work a threshold related to the standard deviation of the result is used for the hysteresis as
given in the following equation:

mask(x, λ) = { 1 LAP_HP(x, λ) ≥ f actor1·σ(LAP_HP(x, λ))

0 otherwise
}, (5)

where mask(x, λ) denotes the result and f actor1 a factor to utilize the standard deviation. The selection
of 10 as f actor1 turned out to be a good compromise between detection rate of erroneous pixel and
misdetection. After masking all erroneous pixels should be interpolated to avoid negative effects on
successive analyses.

L1.2(x, y, λ) = (1−mask(x, λ)⊗ 1(y)1,y,1) ◦ L1.1(x, λ) + mask(x, λ) ◦ L1.1,interpol(x, λ), (6)

where L1.2(x, y, λ) denotes the result of anomaly reduction, ⊗ is the tensor or dyadic product, ◦ is
the Hadamard product, 1(row)1,row,1 is a tensor of 3rd order having the dimension 1 × row × 1 and
L1.1,interpol(x, y, λ) is the interpolation result. Exemplary results are visualized in Figure 4.
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Figure 4. (a) Along track SWIR average L1.1(x, y, λ)y; (b) zoom of a middle right area of (a); (c) Anomaly
map LAP_HP(x, λ) and (d) zoom of (c) in the same region as in (b)—both erroneous detectors at x = 249,
λ = 1699.84 nm and x = 260, λ = 1783.87 nm where detected as ‘anormal’ and interpolated.

2.3.3. Step 1.3: Reduction of Radiometric Miscalibration

The calibration coefficients are outdated if the characteristics of the detectors are changing over
time. This results in visually perceptible stripes in all processing or analysis levels. In [14,16]
a framework for the—Reduction of Miscalibration Effects—(ROME) has been proposed for the
efficient reduction of striping induced by miscalibration of any type. However, ROME comprises
three approaches for pre-processing—linearity, non-linearity and offset correction. First, the types of
miscalibrations are detected. Then, different reductions are applied step-wise, whereas the change of
the Signal-To-Noise-Ratio (SNR) is evaluated after each reduction step. The processing chain is hybrid,
with gain errors being detected first, then offsets and nonlinearities. The trend correction is the last
step of ROME that aims at suppressing overcorrections. However, it is necessary to automatically
determine the striping status. In this work Equation (6) of the approach of [13] serves as the basis for
the evaluation. There, the stripes s(x, λ) are estimated as bounded across track integral of the column
median of column smoothed across track gradients. The property of scene invariant along track stripes
to have no along track variation is additionally utilized. Defining L1.2(x, y, λ) in the domain Ω that is
a bounded domain of <3 gives the following equations for the evaluation of the striping status:

∫
Ω

medy

(
∂ L1.2(x, y, λ)

∂x
⊕

11,n,1

n

)
dx ≈ s(x, λ) ∧ si(λ) =

{
1 σ(s(λ)) > f actor2

0 otherwise

}
, (7)

where medy is the along track median, si(λ) the wavelength dependent striping indicator, σ is the
standard deviation and a small positive f actor2 above zero. Miscalibration produces strong gradients
(compare (a) and (b) in Figures 3 and 5, which are significantly superimposed on object gradients.

Acceptable evaluation results with respect to succeeding application of the approaches proposed
in [14,16] are achieved using n = 3. The destriping is usually not necessary for this HySPEX system.
However, uncorrelated offset striping may occasionally appear, which may be reduced using the offset
destriping approach of [13]. This results in the computation of the destriped L1.3(x, y, λ). These rare
striping artefacts may be caused, e.g., cooling disequilibrium that is thermally induced by proximal
illumination source. The difference between not corrected and perfectly corrected radiometry are
demonstrated in Figure 5.
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Figure 5. (a) Grey scaled image of the along track smoothed across track gradient of the first band of
raw SWIR, (b) Grey scaled image of the along track smoothed across track gradient of the first band of
radiometrically correct (perfect destriping) SWIR.

2.4. Module 2: Geometry

This module includes the geometric alignment of all different sensors (VNIR and SWIR) in order
to provide spatially contiguous and spectrally continuous pixel spectra. The optical axes of the sensors
should be aligned or mounted in parallel to ensure the same Ground Instantaneous Field Of View
(GIFOV) for all detector elements (considered in the following as pixels). In addition, the parallel
mount reduces relative distortions of the compact support (spatial overlap between VNIR and SWIR).
This enables a constant ratio of the GIFOV between all pixels of all sensors with regard to the parallel
projection. However, VNIR and SWIR may have different Instantaneous Fields Of View (IFOVs), which
requires an application related decision of the data resampling strategy. In relation to the selected
experimental setup the IFOV of the VNIR is on average four times smaller than the SWIR, for all bands
(across track ratio 1:4, along track ratio 1:2, but twice internally binned). Therefore, the first step is
the down sampling the whole VNIR data set using 4 × 4 pixel aggregation (4 × 4 old VNIR pixel are
averaged to one new VNIR pixel) that relates the parallel projection condition. The remaining IFOV
difference is around 5% and allows for scale dependent successive processing. This is not depicted
here for the sake of simplicity and compactness. The geometric alignment is realized with a three step
approach: coarse, fine and hyperfine.

2.4.1. Step 2.1: Coarse Alignment

The VNIR and the SWIR reference bands should cover the same wavelength range, should have
the same band centres and the same spectral response function, ideally for successive relative geometry
estimation [17]. Then, the compact support only differs in geometry. For our setup we selected the
VNIR band 153 having the band centre at 967.584 nm as a representative band for all VNIR bands and
the SWIR band 1 having the band centre at 967.578 nm as a representative band for all SWIR bands.
The geometric differences between the bands of one sensor are functions of different detector (pixel)
characteristics, such as, keystone, point spread function (PSF) and line-of-sight (LOS). However, the
differences between spectrally and spatially adjacent detectors (pixels) are not significant for HySPEX
(<micropixel) and, hence, one band can be selected as having a representative geometry for all other
bands of the same sensor. The along track offset is estimated with a cross-correlation between a middle
VNIRref column and a middle SWIRref column, after the coarse spatial downsampling. This can be
directly performed using the approach proposed in [18], which is an FFT based algorithm that has been
devised for automatic image registration. It is insensitive for affine intra-sensor deviations. A simple
along track cross correlation between the middle image column of VNIR and SWIR can be applied
that provides the same along track shifts as those derived utilizing the Affine Shift Theorem via the
Fourier-Mellin-Transform [18,19], contrary to the utilization of the Affine Shift Theorem. A vector
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having a length of twice the number of rows of the SWIR plus 1 starting with the value 0 and having
an interval of 1 can be used as lag, using the simple lag based cross correlation testing. The position
of the highest value of the resulting cross-correlation vector gives in correspondence to the used lag
vector the integer row offset between VNIR and SWIR if the experimental setup is as proposed above.
The contrast dominance of the reference plate is used in both acquisitions—VNIR and SWIR. As the
integer row or y-shift is estimated the whole VNIR is integer shifted towards the opposite direction
that does not implicate any interpolation (binary pixel indices shifts). The lag based cross correlation
approach is mostly insensitive to low SNR and low object contrast, but the Fourier-Mellin-Transform
gives more precise results. Therefore, we suggest to use the lag based cross correlation for relatively
short integration times and the Fourier-Mellin approach for long integration times. However, there
are different sets of approaches available for coarse image alignment. After this step L1.4(x, y, λ) is
retrieved, which can be considered as coarse co-registered radiance stack of VNIR and SWIR.

2.4.2. Step 2.2: Fine Alignment

After step 2.1—coarse scaling and integer y-shifting - the polynomial model between VNIRref and
SWIRref is estimated. The subpixel precise Scale-Invariant-Feature-Transform (SIFT, [20]) is applied
for both reference images to automatically detect extreme points, whose subset serve as tie points
for polynomial geometry modelling. SIFT became a standard for many image warping approaches
and still is a superior algorithm with numerous implementations. In our work, the open source SIFT
implementation of [21] is utilized. All extreme points are searched within a set of scaled Laplacians,
selected according to their ‘extremeness’ in relation to their local neighbourhood. They are filtered
according to their local contrast and described via the local gradient magnitude and direction field.
Each SIFT point is then described with its subpixel coordinate and a descriptor vector that represents
the local gradient neighbourhood. An exemplary result is given in Figure 6.
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All the resultant tie points are pairwise assigned using multiple processing sub steps. First, the
Euclidean distance between the descriptors of all tie points of VNIRref and all tie points of SWIRref is
computed and evaluated. Potential pairs within all combinations are found by evaluating the ratio
of the smallest and the second smallest distance. If the ratio is smaller than a threshold, then the
pair is assumed to be valid. We used 0.7 as the nearest neighbour threshold as recommended in [20].
Mismatches still remain (compare Figure 7a), although the previous step efficiently identified tie point
pairs. Now, all angles between the y-axis and the tie point pair vector are evaluated. A tie point pair
is excluded if the absolute difference between any angle and the mean angle differs more than 50%
(robust upper two quartiles), related to the mean absolute difference between all angles and the mean
angle. This constraint utilizes the fact that the coarse shifting of step 2.1 already suppressed the impact
of the y-axis boresight, i.e., all angles should be close to 90◦ due to the sensor geometry. The next step
re-evaluates all tie point pairs using RANSAC (the here proposed multi step outlier filtering is used to
stabilize the homography solution as proposed in [22]). It can be considered as an iterative, random
testing of small sets of tie point pairs for minimizing the point error of remaining tie point pairs if
the currently tested polynomial model is applied. In our work, we selected a point error of 1 Pixel as
stopping criterion for 1000 iterations with at least 10 points per random test set. If the point error is
lower than some threshold (we used 1 pixel) the best polynomial model of RANSAC is applied on
VNIRref and RANSAC is applied again with all pairs having a point error lower than the threshold.
This two-step RANSAC approach efficiently filters mismatches and the average point error is used to
evaluate the performance of the assessed geometric model in relation to some threshold (again 1 pixel).
The multi-step outlier removal significantly improves the least squares solution of the polynomial
warping model between VNIR and SWIR and is a necessary step before the successive hyperfine
warping (compare Figure 7a with Figure 7b. After this step is retrieved, which can be considered as
fine co-registered radiance stack of VNIR and SWIR.
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Figure 7. (a) Assigned tie point pairs after SIFT nearest-neighbour filtering between VNIR (left part)
and SWIR (right part), (b) assigned tie point pairs after angle and iterative RANSAC filtering between
VNIR (left part) and SWIR (right part).

2.4.3. Step 2.3: Hyperfine Warping

Subpixel accuracy will be additionally improved after applying the global polynomial model of
the previous step. This is necessary, because within SIFT the subpixel coordinate is assessed in the
distorted image that may consist of global and local distortions. A subpixel precise keystone estimation
technique of Rogass et al. [23] was adapted for spatial distortion estimation, which additionally
minimizes the micro pixel precise phase correlation between local warp and image sample as proposed
in Rogass et al. [24]. This is used to overcome this limitation of SIFT and to improve the subpixel
accuracy. However, the hyperfine warping approach consists of multiple steps, which are schematically
represented in Figure 8.
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First, local affine distortions are estimated around all remaining SIFT points of the previous
filtering step. The image content inside a small window of an arbitrary size (we use 32 × 32 pixels)
centred at the individual tie point position is extracted from the VNIRref and the SWIRref. Then, both
image subsets, in the following named as Warp and Ref, are transformed from the row-column-domain
to the logpolar domain as proposed in Xie et al. [18]. In Xie et al. [18] the affine shift theorem is utilized
by transforming the image content to the logpolar domain. There, the x- and y-shifts in the logpolar
domain are estimated using cross correlation that represents scale and angle, if the assessed logpolar
x-y-shifts are inverted using a logpolar transformation. Then, the angle and the scale distortion
is suppressed using bicubic interpolation and the global linear x- and y-shifts are estimated using
cross correlation.
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In Rogass et al. [24] an approach has been proposed that achieves a significantly higher accuracy
for global shifting estimation than the classic cross correlation. This iterative phase correlation approach
is not limited according to its application domain and, hence, can be also applied in the logpolar
domain to substantially increase the accuracy of this processing step for angle and scale assessment.
This achieves micro pixel accuracy also for local affine distortions. The approach of Foroosh et al. [25]
can be also utilized if processing time is more important than accuracy. After logpolar affine parameter
estimation individual weights are estimated for each tie point, which are then used as a priori weights
of succeeding least squares global affine parameter estimation.
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The modified structural similarity index [26] between the local, SIFT point related VNIR window
and the local, corresponding SIFT point related SWIR window is then estimated and normalized to the
floating point range between 0 and 1 as SIFT point weight.

In a next step the first global affine parameter estimation will be conducted using all local affine
parameters, the corresponding weights and an iterative Powell conjugate minimisation [27]. The
empirical standard deviations of graduated observations (a posteriori residuals of the local affine
parameters) are the weights for the succeeding global polynomial model approximation that is used
to model high order distortions that are not covered by affine models. The best model is selected
by evaluating the empirical standard deviation for different polynomial orders during polynomial
modelling. The polynomial model that performs best is selected for succeeding fine adaption of the
polynomials. For this global factors higher than 1, equal to 1 and lower than one are selected as
starting scaling factors of bisectional polynomial modelling. The same technique is used for keystone
assessment as proposed in [23] and iteratively improves global polynomial modelling. This is necessary
for high order polynomials that tend to overcompensate data trends if outliers are not fully excluded
in the polynomial modelling process. Each iteration of the bisection automatically adapts the three
scaling factors (upper, middle, lower) with regard to assessed trends of in parallel estimated global
shifts [24]. Consequently the model with the lowest remaining shifts is selected as the preliminary
co-registration model, if linear and nonlinear distortions are efficiently reduced due to some threshold.
If the shifts are above the threshold, then the empirical standard deviations of graduated observations
of the models are used as weights for the global affine parameter estimation to iterate again. The final
model for co-registration is applied, VNIR and SWIR are spectrally continuously stacked to L1.6(x, y, λ)

after all previous steps. The final model consists of all three assessments—coarse, fine and hyperfine,
but only one data resampling is applied. All other resampling was only applied temporary.

2.5. Module 3: Reflectance Retrieval

The starting product level for this module is the co-registered radiance that will be transformed
by this module into at-surface or at-object reflectance. At-surface reflectance can be considered as
a ratio between reflected and incident radiation (irradiance) and, hence, is considered to be highly
independent of illumination effects and sensing geometry. This is a necessity for succeeding analyses,
which usually rely on a statistical comparison between unknown pixel spectra and known library
spectra. Several processing steps are necessary, to retrieve reflectance. In a first step a jump correction
is applied to suppress the impact of different quantum efficiencies of the sensors in overlapping
spectral regions and to suppress the influence of the boresight of both sensors. The boresight impact is
significantly higher than the quantum efficiency differences. Due to the imperfect parallel alignment
in the micro pixel scale at sharp object boundaries the line-of-sight (LOS) of one VNIR detector may
cross an edge and its corresponding, co-registered SWIR detector may miss the same edge. This is
perceptible as ‘jump’ in an edge spectrum if VNIR and SWIR were spectrally continuously stacked
beforehand as suggested above.

2.5.1. Step 3.1: Jump Reduction

However, the jump correction can be considered as an approach to provide smooth spectra in
the spectral regions of the detectors which are lowered in their sensitivity (the jump correction is only
necessary for non-flat surfaces). Here, we only want to correct spectra that are from the same target
and may be incorrect due to micro structure shadowing caused by different LOS. Therefore, we have
to select one sensor as reference and the other sensor for correction. In this work the SWIR sensor was
selected, because its average FOV is about four times higher than the average FOV of the VNIR in the
measurement mode ‘ground’ and with lenses for 30, 100 and 300 cm distance. Therefore, it’s more
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likely that the SWIR sensor is affected by shadowing than the VNIR sensor through its coarser spatial
resolution. If we assume the following relation with regard to an adaption of a definition given by [28]:

L1.6,direct =
ρ1

π·(1− S·ρ1)
·
(

τdirect·Edirect·µil + τdi f f use·Edi f f use

)
+ LPath1.6 , (8)

L1.6,diffuse =
ρ1

π·(1− S·ρ1)
· τdi f f use·Edi f f use + LPath1.6 , (9)

lim
d→0

LPath1.6 = 0 , (10)

where L1.6,direct = L1.6,direct(x, y, λ) is the integrated scaled radiance acquired from the VNIR sensor in
band 153 (λ = 967.58 nm), LPath1.6 = LPath1.6(x, y, λ) is the integrated path radiance directly scattered
into the sensor that becomes zero for zero distance d, ρ1 = ρ1(x, y, λ) is the integrated reflectance
of the object in the inspected wavelength range, Edirect = Edirect(x, y, λ) is the integrated direct
irradiance, Edi f f use = Edi f f use(x, y, λ) is the integrated diffusive radiance, τdirect = τdirect(λ) the direct
transmittance, τdi f f use = τdi f f use(λ) is the diffuse transmittance, S is the background albedo (every
possible surface was painted black in the laboratory to have a very small S), µil is the cosine of the
illumination zenith angle (mostly used 45◦ as illumination zenith angle to avoid shadowing by the
cameras and assumed to be constant for small object dimensions) and L1.6,diffuse = L1.6,diffuse(x, y, λ)

is the integrated scaled radiance acquired from the SWIR sensor in band 1 (λ = 967.58 nm) in the
shadow. If we want to reduce the shadow impact on L1,6,diffuse the unknown ρ1·τdirect·Edirect·µil must
be added, which also reduces the impact of the missing hemisphere for diffuse illumination caused by
the shadow casting object. The solution is the multiplication of L1,6,diffuse with the ratio L1.6,direct

L1.6,diffuse
. This

ratio is biased by the geometric impact of the keystone, which is often significantly higher for first and
last bands of one sensor and by the different spectral response functions of spectrally similar VNIR
and SWIR bands that has to be adjusted beforehand [29]. It is recommended to reduce the jumps from
band to band of the sensor to provide a smooth solution. In our work we experienced best results
for three successive bands after stacking—old band 152 to old band 153, then new band 153 to old
band 154 (λ = 973.58 nm) and finally new band 154 to old band 155 (λ = 979.58 nm). Hence, the first
step for reflectance retrieval is the jump reduction. The new band 153 is then removed from the stack
to avoid having two bands centred at 967.58 nm. After jump correction L1.7(x, y, λ) is retrieved as
jump-corrected, co-registered radiance stack.

2.5.2. Step 3.2: ROI Related Irradiance Retrieval

After the jump reduction of step 3.1 the spatial function of the integrated total irradiance Etotal =

Edirect·µil + Edi f f use has to be estimated. In most cases scientific work requires a variety of different
setups. However, this also means that reference plates are not fixed and often placed according to the
individual setup needs. Therefore, it is recommended either to work always with a fixed, or a scenario
setup, or to draw regions of interests (ROI) for masking the plates in the image data cube. A high
degree of freedom was preferred in our applications, which results in the demand for providing a ROI
for each setup. Using a ROI average column spectra of the reference plate can be computed as:

Libirr,1(x, λ) =

((
maskroi(x, y)⊗ 11,1,λ(λ)

)
◦ L1.7(x, y, λ)

)T11,y,1(y)(
maskroi(x, y)⊗ 11,1,λ(λ)

)T11,y,1(y)
, (11)

where Libirr,1(x, λ) is the matrix of the row averaged irradiance on the reference plate, maskroi(x, y) is
the binary mask of the ROI having the same dimensions as one band of L1.7(x, y, λ) that is co-registered
radiance data cube or tensor of 3rd order from the previous jump reduction step, ⊗ is the tensor or
dyadic product, ◦ is the Hadamard product, 11,1,λ(λ) a tensor of 3rd order having the dimensions



Sensors 2017, 17, 1857 15 of 24

1 × 1 × bands valued with 1, 11,y,1(y) is a tensor of 3rd order having the dimension 1 × row × 1.
A boxcar (moving window) smoothing is applied to suppress outliers as given in the following:

Libirr,2(x, λ) = Libirr,1(x, λ) ∗ f il1, (12)

where Libirr,2(x, λ) is the smoothed matrix of the row averaged irradiance on the reference plate, * the
convolution operator and f il1 a two-dimensional matrix valued with 1/n and having the dimensions
of n × 1 (we used n = 5 in this work). After this the smoothed plate irradiance is normalised with the
absolute reflectance of the reference plate to retrieve absolute reflectance for the whole data cube in
later steps. This is performed like given in the following:

Libirr,3(x, λ) =
Libirr,2(x, λ)(

11,x(x)⊗ ρplate, abs(λ)
)T , (13)

where Libirr,3(x, λ) is the normalised, smoothed plate irradiance, 11,x(x) is a matrix valued with 1 and
having the dimensions 1 × column and ρplate, abs(λ) is the average absolute reflectance spectrum of
the reference plate.

2.5.3. Step 3.3: Assessment of the Spatial Illumination Function

In the next step a smoothed, low order polynomial is found to estimate an irradiance function for
the full swath of the scan that is not covered by the plate ROI in most cases. This is performed using
polynomial regression as given in the following:

Libirr,4(x, λ) = X1

(
X2

TX2

)−1
X2

T (vec (Libirr,3(x, λ)))T , (14)

where Libirr,4(x, λ) is the polynomial fit of Libirr,3(x, λ), X1 is the Vandermonde matrix of the m+1
column products of a row vector that holds all possible column indices and m is the polynomial
fitting degree, X2 is the Vandermonde matrix of the m + 1 column products of a row vector that
holds all possible column indices of the ROI and vec() is the vectorisation function of Libirr,3(x, λ).
An iterative region growing within the reference plate ROI starts that aims on delineating the spatial
extent of the reference plate to improve the assessment of the illumination function in the last step
after the illumination function has been estimated using the equation for Libirr,4(x, λ). For this, the
spectral and spatial low pass LP(x, y, λ) of the co-registered, jump corrected L1.7(x, y, λ) is estimated

as convolution result between L1.7(x, y, λ) and a 3D boxcar filter
(1

n,n,n
)

n3 of size n × n × n as given by
the following equation:

LP(x, y, λ) = L1.7(x, y, λ)⊕
1n,n,n

n3 . (15)

Then, a synthetic panchromatic band is assumed to be estimated as the equivalence of the sum
over bands for hyperspectral instruments (small bandpass) as given by the following relation:

PAN(x, y) =
∫

LP(x, y, λ)·SRFPAN(λ)dλ ∝ ∑
bands

LP(x, y, λ), (16)

where PAN(x, y) is the panchromatic band that covers the full wavelength range of L1.7(x, y, λ) and
SRFPAN(λ) is an estimated Gaussian shaped Spectral Response Function (SRF) that covers the full
wavelength range of L1.7(x, y, λ). It appears that the equivalency of relation (16) holds for all sensors
where the FWHMs of all bands are not significantly higher than the band centre differences. Statistical
tests showed that for a Gaussian shaped FWHM ≤2 bands the mean absolute error does not exceed 1%.
After pan retrieval a region growing [30] is conducted that utilizes the user-given ROI and the PAN. The
maximum and the minimum grey value within the ROI of the PAN are selected as hysteresis threshold.
This is used as a new mask and the spatial illumination function is computed using Equations (11)–(14).
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Missing columnar data of the new mask is substituted with Libirr,4(x, λ) beforehand. This improves
the assessment if data is missing. The final illumination or irradiance function is then denoted as
Libirr,5(x, λ).

2.5.4. Step 3.4: Reflectance Retrieval

After irradiance retrieval for the given ROI and the region growing derived ROI the following
equation is used to automatically determine the appropriate irradiance function:

Libirr =

corr
(

Libirr,4(ROIuser), Libirr,5
(

ROIregion growing
))

>threshold, Libirr,5

otherwise, Libirr,4

, (17)

where corr() denotes the correlation coefficient between −1 and 1. If the correlation coefficient between
the mean spectrum of the user ROI and the mean spectrum of the region growing ROI is higher than
some threshold, then either the irradiance function Libirr,5 or Libirr,4 is used for reflectance retrieval
as irradiance. Assuming that the background albedo is close to zero through special laboratory
preparation. The total atmospheric absorption is close to zero and the path radiance does not
significantly contribute within one or two meters distance between sensor and illumination source,
Equation (8) can be simplified to:

ρ(x, y, λ) =
L1.7(x, y, λ)·π

Libirr (x, λ)⊗ 11,y,1(y)
, (18)

where 11,y,1(y) is a row vector of the length of number of rows and valued 1.

3. Results and Discussion

The performance of the proposed approach will be evaluated by different criteria. Those are local
and global parameters for the geometry. The geometric criteria are:

• dx pixel shift,
• dy pixel shift,
• rotation angle,
• scale,
• MSSIM a priori and
• MSSIM a posteri.

The MSSIM as proposed in [31] is the modified structural similarity image measure and can be
considered as an universal image metric to measure the similarity of two images. Although it is not
possible to have a MSSIM of 1 between VNIR and SWIR due to the different physical properties of both
sensors, a MSSIM close to 1 (100% similarity) indicates an equivalent radiometry and geometry. The
spectral part of the processing chain was evaluated using two types of metrics. The first type is objective
and relates processed plate image spectra and NIST calibrated library plate spectra. The second type
is subjective and relates processed sample image spectra and sample spectra of other spectrometers.
Therefore, the following metrics were used to evaluate the quality of the spectral module:

• Correlation coefficient between NIST library plate spectra and processed plate image spectra of
the ROI named as Spectral Deviation Reference Plate ROI.

• Correlation coefficient between NIST library plate spectra and processed plate image spectra of
the region growing derived area names as Spectral Deviation Reference Plate region growing.

• Variation of the processed plate image spectra of the region growing derived area named as
Spectral Variation Reference Plate.
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• Full spectrum correlation coefficients between the sample spectra of ASD and Perkin Elmer
(for overview), between ASD and HySPEX, between Perkin Elmer and HySPEX.

• Continuum removed spectrum correlation coefficients between the sample spectra of ASD and Perkin
Elmer (for overview), between ASD and HySPEX and between Perkin Elmer and HySPEX.

The radiometry is not evaluated, because the number of erroneous pixels for the HySPEX system
were not significant. A miscalibration was not detectable for the GFZ system and the estimation of the
calibration coefficients is not part of the processing chain (only possible in special calibration facilities).

3.1. Geometry

The complexity of the geometric part of the processing chain dominates. This geometric
part is used for the registration of VNIR and SWIR with successive image stacking without any
orthorectification, which is barely required in the laboratory. The SIFT tie points served as evaluation
location. First, a window having a pixel size of 16 × 16 were centred around the SIFT point and the
local image content was extracted from band 152 of the resampled VNIR and band 1 of the SWIR (now
band 153 of the stack). Then, the local angle, scale, dx and dy shifts were estimated using the proposed
hybrid phase correlation approach in the log-polar domain. This is repeated for each SIFT point and the
results are averaged. To suppress the impact of potentially remaining outliers, the 3-sigma confidence
interval was only used for averaging that is given in the following Table 3.

Table 3. Exemplary results for SIFT point residuals.

Parameter/
Criterion

Angle
(µrad) Scale (#) Dx (µPixel) Dy (µPixel) MSSIM

a Priori
MSSIM
a Posteri

Mean 3σ 0.0004 1 0.004 0.002 0.78 0.97
σ 0.0006 0 0.003 0.003 - -

Table 3 indicates that the geometric distortion of the local SIFT windows between VNIR and SWIR is
micro-pixel and micro-radiant precise. Additionally, the MSSIM between VNIR and SWIR was improved
from 78% to 97%. A comparison of locally shifted windows for the whole image content is not possible,
because only high contrast regions are usable. The matching around SIFT points was proven as stable in
numerous applications. However, any of the criteria used here for evaluation can be subsequently utilized
after the measurement as a quality control step. Therefore, it is also necessary to provide an image content
covering an overview of potential distortions. For this, all computed distortions were interpolated using
thin plate splines [32] and then visually and subjectively evaluated with regard to potential, dominating
gradients. The results for the interpolation are shown in the following Figure 9.

The subjective evaluation of all Figure 9a–d indicates that there aren’t any extensive, dominating
gradients in the micro-unit scale. It is concluded that the SIFT algorithm robustly selects high contrast
regions that supports the assessments of local distortions. The number of outliers appears to be low.
It also appears that the impact of the albedo on the fitting is low as long as the local contrast is high
enough. As given by Figure 6c potential SIFT points were found everywhere in the images if the
image SNR is high enough. The image SNR is impacted by a variety of factors. The most important
factors are the temporal stabilities of the light source and of the sensor sensitivity. As those factors
may non-linearly vary the estimation of the image SNR is not trivial and can be considered as an own
subject of research. However, we applied a straightforward, simplified approach to retrieve the image
SNR similar to the approach proposed by Gao et al. [33]. First, a copy of the image is smoothed using
a 9× 9 boxcar filter (moving average). Then, the local image content of a 16× 16 pixel moving window
is extracted from the smoothed and original image content. The averages of each window of the
smoothed image and the standard deviations of each window of the difference between the smoothed
and original image are computed. Then, the ratios between the averages and standard deviations are
computed. The result is given in Figure 10.
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This was performed for band 152 of the VNIR. The results for the SWIR are equivalent and have
a MSSIM similarity of about 99% to those of the VNIR. Comparing the SIFT point distribution of the
Figure 6c) with the SNR map of Figure 10 shows that SIFT point location is not primarily bound to
the image SNR if the image SNR and the contrast are high enough. It was not possible in this work to
estimate the minimum required SNR for SIFT based matching. However, the SNR map of Figure 10
reveals some other interesting details. The SNR of bright to dark powder samples is on average higher
than the background. The highest SNR is retrieved on the reference plate. There is a slight SNR
increase from the left to the right that might be caused by volume scattering from the reference plate as
low variant albedo superimposition. The SNR on the reference plate is about twice the SNR of the low
reflecting background. In summary the geometric module provides high precision for this exemplary
setup and enables a variety of applications.

3.2. Spectrometry

The analysis quality highly depends on the quality of the at-surface reflectance retrieval, because
often a statistical comparison between unknown image spectra and a known library is used as the basis
for analyses, which requires a foregoing, efficient suppression of illumination and sensing geometry
related signal variation. Two types of reflectance can be selected as the basis for comparison —absolute
and relative reflectance. Relative reflectance can be retrieved if the reflectance retrieval utilizes
a wavelength independent, averaged reflection coefficient of the reference plates for the irradiance
estimation. Absolute reflectance can be retrieved if the full absolute reflectance spectrum of the
reference plate is used for the irradiance estimation. It depends on the application, which mode should
be selected. In this work, we use absolute reflectance, because its logarithmic inverse—absorbance—can
be related to geochemically assessed concentrations with regard to the Beer-Lambert law. Therefore,
the absolute reflectances of the spectral library of the reference plates were not averaged to relative
reflectance. However, the following Table 4 clearly shows that the reflectance spectra of the ROI was
highly precise derived.

Table 4. Objective evaluation of the spectral performance.

Parameter/Criterion Spectral Deviation
Reference Plate ROI (%)

Spectral Deviation Reference
Plate Region Growing (%)

Spectral Variation
Reference Plate (%)

Mean 3σ 0.015 1.023 2.125
σ 0.019 1.446 1.191

The region growing improves the numerical modelling of the spatial illumination in general,
because a spatially broader image extent is used for polynomial modelling. At the same time the
spectral deviation of the reference plate increases that may have a negative impact on the spectral
normalisation. This could be caused by several factors and may vary per scan. Potential factors are
spectral superimposition of the plate border spectra by the spatially adjacent neighbourhood, increased
contribution of noise, micro shadowing effects of the plate surface, dust, particles etc. However, the
error is still low and around 1% which is highly acceptable for most applications. The third objective
measure is the spectral variation which increases if any illumination trends remain, plates were not
perfectly ‘spectrally’ clean and adjacency effects have occurred. The achieved variation of 2% clearly
shows that there are still signal impacts, but this might be also insignificant for the most applications.
In sum, all three measures show a high quality.

The subjective measures relate the spectra of different mineral standards measured with 3 different
spectrometers—point spectrometer ASD, the imaging spectrometer HySPEX and the laboratory
spectrometer Perkin Elmer. The results are given in the following Table 5.

With regard to the results of Table 6 the overall accuracy between the spectrometers significantly
varies and depends on the individual physical reflection properties of the sample. Additionally, all
spectrometers utilize completely different spectroscopic techniques that must provide different results
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(ASD bare fiber optics, HySPEX push broom scanning and Perkin Elmer integrating sphere), although
this is an ongoing discussion in remote sensing. However, the overall accuracy for the full spectrum
is relatively high except for calcite and pyrophyllite. Therefore, both minerals have special optical
properties, which leads to different spectra. The reason is unknown and shall be investigated in further
research. If the similarity is ranked as performed in the last row of Table 6, then the ASD and the
HySPEX provide more equivalent spectra then the ASD and the Perkin Elmer or the HySPEX and the
Perkin Elmer. This shows that point or single spot spectrometers like the ASD and the Perkin Elmer
can provide significantly differing spectra and that spectra should be only compared if they originate
from the same device. Advanced spatially and spectrally adaptation or cross-calibration can lead to
comparable sensor responses [34]. However, different spectroscopic measurements provide different
results for the same sample. Most analysis approaches only utilize spectral absorption features, which
require a foregoing continuum removal. This was also performed and the evaluation was repeated
using continuum removed absorption features. The results are given in the following Table 6.

Table 5. Subjective evaluation of the spectral performance for the full spectrum.

Sample/Criterion
Spectral Deviation
between ASD and
Perkin Elmer (%)

Spectral Deviation
between ASD and

HySPEX (%)

Spectral Deviation
between Perkin Elmer

and HySPEX (%)

Epidote 0.107 0.785 0.723
Hornblende 0.097 0.375 0.477

Chlorite 0.129 0.536 0.545
Dolomite 0.036 0.450 0.409

Illite 0.127 0.555 0.599
Goethite 0.567 2.648 5.350

Pyrophyllite 3.039 7.859 6.466
Calcite 25.01 12.24 31.07

Reference plate 0.024
Mean 3.64 2.83 5.71
σ 8.13 4.06 9.86

Similarity rank 2 1 3

Table 6. Subjective evaluation of the spectral performance for the continuum removed spectrum.

Sample/Criterion
Spectral Deviation
between ASD and
Perkin Elmer (%)

Spectral Deviation
between ASD and

HySPEX (%)

Spectral Deviation
between Perkin Elmer

and HySPEX (%)

Epidote 7.018 5.679 1.903
Hornblende 32.90 4.027 45.46

Chlorite 6.406 9.923 2.255
Dolomite 4.601 1.312 6.604

Illite 19.85 4.084 34.28
Goethite 3.408 1.121 6.238

Pyrophyllite 4.588 11.24 11.11
Calcite 59.18 20.30 28.20

Reference plate 1.879
Mean 17.24 6.62 17.01
σ 18.52 5.91 15.56

Similarity rank 3 1 2

Although the similarity rank for the ASD and the Perkin Elmer changed the ASD and the HySPEX
achieve the highest rank again. The overall accuracy significantly decreased and even more underlines
that different spectrometers provide different results. This is also valid for the reference plate. Calcite
shows the highest deviation which supports the foregoing optical property assumption. It follows
from this that if any spectral analysis is performed the incorporation of spectra from the same sensor
may provide better results than from a different sensor. A realization of this is not state-of-the-art
in remote sensing and, hence, may lead to varying results. Nevertheless, the HySPEX scan was also
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analysed with the EnGeoMAP approach of Mielke et al. [1] using a spectrally resampled ASD mineral
standard library. The classification and sample spectra results are given in the Figure 11.

The results of Figure 11 clearly indicate for the selected example that the whole processing chain
gives high quality results. The classification result for the dolomite sample contains false-positive
identifications of calcite which is spectrally similar. The spectra of Figure 11 show that the imaging
spectra is also similar to those derived from field and lab spectrometers. However, there are remaining
differences which primarily originate from the different measurement principles. The difference
between the spatial HySPEX average (green line) and the spectrally smoothed HySPEX spectrum
(band isotropic Gaussian filter, black) is significant.
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Figure 11. (a) False colour HySPEX image (Red 2210.02 nm, Green 800.295 nm, Blue 651.19 nm) overlain
with classification of EnGeoMAP [1], (b) Epidote spectra from different spectrometers—‘HySPEX’
spectrum as spatial average of 10 × 10 pixel spectra, ‘HySPEX smoothed’ Gaussian smoothed
spectrum (black).

This difference in the spectrum may originate from the micro-shadows of the homogenized, not
compacted powder sample, the sample holder material, variation of the grain illumination angle.
However, the Gaussian smoothing preserves the absorption features better than the spatial binning.
The preservation is a function of the filter type, filter width and filter strength. We selected in our
tests an isotropic Gaussian filter with a FWHM of two bands for which we experienced overall good
results in all laboratory applications if smoothing is necessary. This can be necessary if the selected
integration time is relatively low compared to the optimal integration time for dark materials and the
sample consists of both very dark and very bright materials such as Banded Iron Formations (BIF).
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4. Concluding Remarks

The proposed approach can be utilized for a broad set of applications and is not limited to the
HySPEX sensor. The overall geometric and spectral performance is constantly high and might be good
enough for geoscientific applications. The achieved results clearly show that different sensors provide
different spectra of the same material due to different sensing principles and related signal impacts.
Therefore, a direct comparison is limited. Contrary, the low deviation between the ASD and the
HySPEX measurements of the reference plate as a Lambertian diffuser indicate that the proposed chain
is highly precise and that imaging spectrometers can provide highly qualitative spectra compared
to established points spectrometers as those from ASD or Perkin Elmer. The capacity of imaging
spectrometers to measure a high quantity of samples in a short time compared to field or laboratory
spectrometers offers more applications. Additionally, spectra from imaging spectrometers are ‘more
similar’ to those derived from airborne campaigns using the same system than those derived from
field spectrometers. This may lead to better results for successive airborne image spectra adjustments
like the broadly applied Empirical Line approach. Therefore, cross-calibration campaigns of the same
sensor improve the overall accuracy and lead to better results, but not in the case of different sensors
and/or sensing principles.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/8/1857/s1.
The geo-corrected at-surface reflectance is enclosed as compressed ENVI BSQ zip file.
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