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Schizophrenia (SCZ) is a psychiatric disorder of unknown etiology. There is evidence
suggesting that aberrations in neurodevelopment are a significant attribute of
schizophrenia pathogenesis and progression. To identify biologically relevant molecular
abnormalities affecting neurodevelopment in SCZ we used cultured neural progenitor
cells derived from olfactory neuroepithelium (CNON cells). Here, we tested the
hypothesis that variance in gene expression differs between individuals from SCZ and
control groups. In CNON cells, variance in gene expression was significantly higher
in SCZ samples in comparison with control samples. Variance in gene expression was
enriched in five molecular pathways: serine biosynthesis, PI3K-Akt, MAPK, neurotrophin
and focal adhesion. More than 14% of variance in disease status was explained
within the logistic regression model (C-value = 0.70) by predictors accounting for
gene expression in 69 genes from these five pathways. Structural equation modeling
(SEM) was applied to explore how the structure of these five pathways was altered
between SCZ patients and controls. Four out of five pathways showed differences
in the estimated relationships among genes: between KRAS and NF1, and KRAS
and SOS1 in the MAPK pathway; between PSPH and SHMT2 in serine biosynthesis;
between AKT3 and TSC2 in the PI3K-Akt signaling pathway; and between CRK and
RAPGEF1 in the focal adhesion pathway. Our analysis provides evidence that variance
in gene expression is an important characteristic of SCZ, and SEM is a promising
method for uncovering altered relationships between specific genes thus suggesting
affected gene regulation associated with the disease. We identified altered gene-gene
interactions in pathways enriched for genes with increased variance in expression in
SCZ. These pathways and loci were previously implicated in SCZ, providing further
support for the hypothesis that gene expression variance plays important role in the
etiology of SCZ.
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INTRODUCTION

Schizophrenia (SCZ) is a psychiatric disorder with high
heritability; estimates from twin and family-based studies suggest
that the heritability of SCZ may be as high as 81% (Cardno
and Gottesman, 2000; Sullivan et al., 2003; Lichtenstein et al.,
2009; Wray and Gottesman, 2012). However, despite progress
in identifying the genetic basis of the disorder, the molecular
basis of SCZ remains elusive (Arslan, 2018). A recent GWAS
of SCZ (the largest published), involving 36,989 SCZ cases and
113,075 controls, revealed 108 loci associated with the disease
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium et al., 2014), and there are indications that the total
number of loci associated with SCZ is much greater. However,
while the estimated heritability of SCZ is high, the proportion
explained by SNPs is smaller, with the genetic liability explained
by SNPs estimated to be between 20%–35% when considering
SNPs genome-wide (Lee et al., 2012; Cross-Disorder Group of
the Psychiatric Genomics Consortium et al., 2013; Speed et al.,
2017), or 3.4% when considering only SNPs with genome-wide
significance in SCZ GWAS (Schizophrenia Working Group of
the Psychiatric Genomics Consortium et al., 2014). The genetic
component of SCZ is complex; rather than being explained
by relatively few variants of large effect acting as fulcra of
SCZ-associated molecular pathogenesis, the genetic susceptibility
underlying SCZ may be a function of many variants contributing
small effects which together dysregulate pathways and lead to
SCZ. If SCZ is a disorder of pathways (Sullivan, 2012) GWAS
alone is unlikely to offer immediate insight into the molecular
basis of SCZ.

Studying gene expression profiles is a complimentary
approach to GWAS and facilitates understanding the molecular
etiology of SCZ. It allows the investigation of pathways and
molecular networks affected by SCZ. The difficulties in studying
gene expression in human patients with neurological disease
has led to the adoption of relevant cellular models (Evgrafov
et al., 2006) to facilitate understanding of cellular phenotypes.
While post-mortem brain tissue samples are used to study
gene expression changes in neurological diseases like SCZ (e.g.,
Chen et al., 2013; Lanz et al., 2015; Hu et al., 2016), these are
comprised of terminally differentiated neurons and glial cells
of an adult brain which has been subjected to many different
environmental conditions. Because SCZ can be considered
a neurodevelopmental disorder (Weinberger, 1987; Raedler
et al., 1998; Lewis and Levitt, 2002; Alexander-Bloch et al.,
2014), the use of port-mortem samples may not necessarily
accurately capture the alterations in neurodevelopmental
processes important in SCZ, but rather the consequences of
these changes in terminally-differentiated cells. An alternative
is to use cultured patient-derived neural progenitor cells, such
as those derived from olfactory neuroepithelium (CNON;
Wrobel et al., 2013), whereby neurodevelopmental changes
can be modeled; environmental effects that are a component
of post-mortem tissue samples can be reduced; and conditions
can be standardized across samples. We analyzed the gene
expression profiles in CNON cells from SCZ patients and
control individuals to study alterations in gene expression

reflective of the potential neurodevelopmental aspects of the
disease. Recent analysis of this data identified genes differentially
expressed in SCZ that are involved in Wnt and Notch signaling,
and Serine biosynthesis pathways (Evgrafov et al., 2017).

Many of the studies on gene expression in diseases have
focused on differences in mean expression between disease
and non-disease groups. Analysis of the variance of gene
expression both within genetically identical populations of cells
or organisms and in genetically diverse populations is an
emerging topic of discussion. It has provided insights in studies
of various biological mechanisms, from evolution to embryonic
development (Rönnegård and Valdar, 2011; Brown et al., 2014;
Hoffman et al., 2014; Wang et al., 2014). There is evidence
that suggests biological variance plays an important part in
determining phenotypes (Ozbudak et al., 2002; Colman-Lerner
et al., 2005; Raser and O’Shea, 2005; Cai et al., 2006; Manolio
et al., 2009). Such variability, particularly in the context of
gene expression, may be indicative of genomic or epigenomic
influences on the function of a given gene or protein (Alemu
et al., 2014). Genes with more constrained expression have
been reported to be more likely to encode products with
‘‘housekeeping’’ functions, whereas genes with more variable
expression tended to be those involved in developmental and
environmental responses and more often associated with disease
(Alemu et al., 2014). Interestingly, many of the SCZ-associated
loci are also enriched for sequences that remained constant
throughout primary evolution but evolved rapidly after the
divergence of humans from chimpanzees (Pollard et al., 2006a).
While these are predominantly noncoding sequences, they are
thought to contain developmental gene regulatory elements
and noncoding genes important in neurocognitive development
(Pollard et al., 2006a,b; Hubisz and Pollard, 2014).

Although it has not been extensively studied, there is evidence
that variance in biological processes is an important aspect of
SCZ. For example, variation in cortical metabolic activity is
elevated in SCZ patients compared to neurologically-healthy
controls and bipolar disorder patients (Yang et al., 2014). In
the context of gene expression, there have been two studies
to date that have directly examined expression variance in
SCZ (Mar et al., 2011; Zhang et al., 2016). In a study of
patient-derived human olfactory neurosphere-derived (hONS)
cells, several signaling pathways were found to have significantly
altered mRNA expression variance in SCZ patient-derived hONS
compared to control and Parkinson’s disease hONS (Mar et al.,
2011). While high and low variance genes were observed in SCZ
CNONs, the overall trend was a reduction in expression variance
genome-wide (Mar et al., 2011). In a separate study, the variance
in mRNA expression in peripheral blood mononuclear cells
was found to be higher in early-onset SCZ patients compared
to controls, and this variance was reduced after a 12-week
treatment with oral antipsychotics (Zhang et al., 2016). These
experiments highlight the apparent importance of biological
variance in SCZ, however they examine different aspects of the
disease, and the findings are somewhat difficult to reconcile.
We therefore decided to examine gene expression variance in
CNON cells between SCZ and controls in greater detail. We
hypothesize that differences in expression variance between SCZ
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and control samples will enable us to detect SCZ-associated
genetic perturbations (Mar et al., 2011; Mason et al., 2014; Zhang
et al., 2016).

A variety of methods have been used to analyze the
variance/covariance structure of gene expression profiles, e.g.,
differentially co-expression analysis (Watson, 2006; Lui et al.,
2015), differential analysis of eigengene networks (Langfelder
and Horvath, 2007), differential variability analysis (Ho et al.,
2008; Jayaswal et al., 2013), PANA (Ponzoni et al., 2014), factor
analysis (Coffman et al., 2005) and structural equation modeling
(SEM). SEM is a multivariate statistical analysis technique based
on Sewell Wright’s path analysis (Wright, 1918, 1921) and widely
used in the fields of economics, psychology and sociology. SEM
models a multiple-gene pathway structure by taking into account
the direction of relationships among genes, allowing for complex
interactions among genes where both mean and covariance
structure of the data are modeled. In contrast, the coexpression
analysis describes only relationships within a pair of genes.
Network reconstruction methods which are based on partial
correlations, describe chains of genes with related expression
but do not account for covariances. SEM models can be built
in an exploratory mode, but unlike other approaches, can also
be deployed using an existing structure. As there are many
already described gene networks (Kanehisa and Goto, 2000),
SEMs provide a robust framework for modeling changes between
environments in complex gene–gene interactions.

Recently, SEM was applied to analyze gene expression
data and infer relationships between genes in gene regulatory
networks (Li et al., 2006; Remington, 2009; Mi et al., 2010;
Nock and Zhang, 2011; Fear et al., 2015). The attraction of
SEM in this area resides in its ability to compare the path
strengths between several nodes. The method was employed
to predict perturbed gene interaction in neurological diseases,
namely frontotemporal lobar degeneration with ubiquitinated
inclusions, multiple sclerosis (Pepe and Grassi, 2014) and
Parkinson’s disease (Pepe and Do, 2015). Moreover, SEM
can be used to identify potential new gene interactions, as
demonstrated in Fear et al. (2015). We use an SEM analysis of
gene expression data in SCZ and controls to identify specific
gene-gene relationships that differ in the context of a given
pathway. Thus, in addition to identification of specific genes
and implying involvement of corresponding pathways in SCZ,
we anticipate identifying edges (gene-gene interactions) that are
affected by SCZ in these pathways.

MATERIALS AND METHODS

CNON Dataset
RNA-Seq transcriptome expression profiles of CNON cells
from 144 SCZ patients (DSM-IV criteria) and 111 control
individuals (no psychiatric disorders and no family history of
SCZ) were used in this study. The details of biopsy and cell
cultivation were described previously (Evgrafov et al., 2006;
Wrobel et al., 2013). RNA libraries extracted from cells were
prepared and sequenced on HiSeq2000 (Illumina) as previously
described (Evgrafov et al., 2017). Reads were mapped to the
combination of human genome, mtDNA and transcriptome, and

those that were assigned to genes, were quantified by a custom
RNA-Seq alignment pipeline, GT-FAR1. All the experimental
and bioinformatics analysis steps were accompanied by quality
control procedures; more detailed information is described in
the previous study (Evgrafov et al., 2017). The data is available
through dbGaP (Study ID: 26138). We carried out the analysis
on 23,920 expressed genes (out of 59,902 total), normalized and
filtered as in the previous study (Evgrafov et al., 2017).

Selection of Candidate Pathways
In addition to pathways enriched in differentially expressed
genes (Wnt, Notch, Serine biosynthesis; Evgrafov et al., 2017),
we found that PI3K-Akt signaling has been identified as
important in multiple studies of SCZ (Mao et al., 2009;
Panaccione et al., 2013; Singh et al., 2013; Topol et al.,
2015; Mulligan and Cheyette, 2016; Howell et al., 2017; Wang
et al., 2017). Pathway analysis of GWAS data, performed
by The Network and Pathway Analysis Subgroup of the
Psychiatric Genomics Consortium (2015) showed enrichment
of several GO terms, associated with neuron structure and
histone H3-K4 methylation. Analysis of GWAS data (Chang
et al., 2015) resulted in a large list of enriched pathways
(insulin signaling pathway, neurotrophin signaling pathway,
focal adhesion, VEGF signaling pathway, GnRH signaling
pathway, tight junction and regulation of actin cytoskeleton) and
likely candidate pathways directly connected to those enriched
(Wnt signaling pathway, adherens junction, apoptosis, calcium
signaling pathway, PI3K-Akt signaling pathway, leukocyte
transendothelial migration, long-term potentiation, cell cycle and
MAPK signaling pathway). Analysis of GWAS together with
mutation and CNV data (Kotlar et al., 2015) revealed potential
involvement of the ARC signaling complex, NMDAR complex,
VGCC and FMRP target pathways, which play an important role
in long-term potentiation and long-term depression pathway.
These 19 KEGG pathways for which there is support for
involvement with SCZ were the focus of our analysis.

Variance in Gene Expression Between SCZ
Patients and Control Individuals
We calculated the variances of gene expression for SCZ and
control samples separately. Gene expression was estimated as in
Evgrafov et al. (2017). We tested the null hypothesis that the
number of genes with increased variance in the SCZ samples was
equal or less than half of the total number of analyzed genes,
using the sign test (Sheskin, 2006).

The 19 pathways were tested for enrichment for genes with
increased variance in SCZ samples. We considered only genes
annotated in the KEGG database. Using the variances calculated
above, with a simple indicator for whether the variance was
greater in SCZ, we applied an overrepresentation analysis (ORA)
using the EASE score, a modified one-tail Fisher exact p-value
implemented in DAVID (Hosack et al., 2003). We also applied
a node-based ORA method (Gu et al., 2012). The node-based
enrichment score is a sum of nodes containing at least one gene
with increased variance. The null distribution of the enrichment

1https://genomics.isi.edu/gtfar
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score values was approximated by 1,000,000 simulation trials
and the p-value of a pathway’s enrichment was calculated as the
proportion of the trials having more extreme enrichments scores.

We also examined the residual variance after fitting age, sex,
two principal components (PCs) and batch effect (Evgrafov et al.,
2017). Residuals were calculated from DESeq2 tools (Love et al.,
2014), and the null hypothesis that variance of the residuals in
the SCZ group was equal to or less than that in the control group
was tested using Levene’s test for each gene (Levene, 1960). We
ranked the list of genes according to the estimated p-values, and
applied the fast gene set enrichment analysis (FGSEA) method
(available as the Bioconductor package ‘‘fgsea’’; Sergushichev,
2016), for each pathway. We also conducted another Gene
Set Analysis (GSA)–node-based enrichment analysis which
aggregates p-values of Levene’s test by Fisher’s method (Leno-
Colorado et al., 2017).

FDR-corrected p-values were calculated (Benjamini and
Hochberg, 1995) and pathways significantly enriched for
differential variance (FDR p-values < 0.01) were considered for
further analysis.

Logistic Regression Analysis
To determine whether the genes in pathways enriched for
increased variance were also associated with disease status, we
estimated the overall correlational structure among these genes.
Residuals from the DEseq2 model (described above) for all
the genes in these enriched pathways were used in a principle
component analysis. PC’s which explained at least 1% of the
variance among the genes were used as dependent variables in a
logistic regression with SCZ status as the outcome. To assess the
model fit we use the C-index (i.e., area under receiver operating
characteristic curve, ROC) as a measure of goodness-of-fit for
binary outcomes in the model. A value of 0.5 means that the
model is no better in predicting an outcome than random chance
(Freedman, 2009).

SEM Analysis
SEM is a statistical technique that is first proposed by S. Wright
as path analysis (Wright, 1918, 1921). Modern SEM models
contain two distinct parts: structural and measurement models
(Bollen, 1989; Kline, 2011). Structural models reflect the causal
dependencies between endogenous and exogenous variables as
the following system of linear equations:[

y
η

]
= B

[
y
η

]
+ Γ

[
x
ξ

]
+ ζ,

where x and y denote vectors of observed variables (exogenous
and endogenous, respectively), ξ and η are vectors of latent
variables (exogenous and endogenous, respectively), B is a matrix
of coefficients linking endogenous variables, Γ is a matrix of
coefficients relating exogenous variables to endogenous, and ζ is
a vector of structural errors. The measurement model describes
the relations between latent variables and their indicators:

z = Λ

[
η

ξ

]
+ δ,

where z denotes a vector of observed indicators, 3 is a matrix
of factor loadings of the indicators z of a latent variables η

and ξ , and δ is a vector of measurement errors. SEM makes
the following assumptions: the variable ξ in uncorrelated with

the error ζ , the variable
[
η

ξ

]
is uncorrelated with the error

δ, the error ζ is uncorrelated with the error δ, matrix I–B is
nonsingular (where I is the identity matrix). In addition, the
covariance matrixes for ξ , δ and ζ are known. Considering
the structural model and the assumptions, the model-implied
covariance matrix between observed variables, 6 is expressed
as a function of parameter matrices (Bollen, 1989). Parameter
estimation is performed by minimizing the difference between
the model-implied covariance matrix6 and the observed sample
covariance matrix S by the Maximum Likelihood method (Kline,
2011). Here we considered SEM without exogenous latent
variables. We also set covariance between each pair of exogenous
variables to zero. In order to fix the scale of latent variables we
put their variance to 1 and mean to 0 (Reference-Group Method;
Little et al., 2006). Potential non-linear interactions and quadratic
effects were not included in the modeling.

To compare SEM estimates between different subgroups
of the data (SCZ and control samples, here) the multiple
group (multigroup) modeling is applied (Pugesek et al., 2003).
This technique simultaneously assesses parameters of multiple
models and can examine the null hypothesis whether the two
parameters are equal (Rosseel, 2012). Here we examined the
differences between all structural parameters in SCZ and control
groups. The multigroup modeling also allows us to compare
parameters between groups. We considered five covariates—age,
sex, PCs and batch effects. For each observed variable we
constructed a linear equation where the covariates played the
role of explanatory variables. We added these equations to the
model and constrained equation parameters to be equal between
groups. The multigroup SEM analysis was performed with lavaan
tools (Rosseel, 2012). Two scores—Root mean square error of
approximation (RMSEA) and comparative fit index (CFI)–were
used to select the model (Hermida et al., 2015). RMSEA is a
measure of the difference between the fit model and the data.
Low values indicate models that describe the data well. CFI varies
from zero (the proposed model fits no better than the baseline
model) to one—values closer to one indicating a better model fit.
The best model was defined as the one with the highest CFI value
within models with RMSEA< 0.2. We also calculated the Akaike
information criterion (AIC) and Bayesian information criterion
(BIC) values for each model in the multigroup analysis to assess
which group of samples (SCZ or control) is better explained by
the model.

Visualization of path diagrams for SEM models was
performed with DiagrammeR, an R package2.

Construction of SEM Models
Gene networks of interest were constructed based on the KEGG
database and literature data (Supplementary Figure S1). These
networks contained several nodes with more than one gene.
Such a situation may arise when the node genes encode protein
complex subunits or they are members of a multi-gene family.

2http://rich-iannone.github.io/DiagrammeR/
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Moreover, it may happen that a gene encodes several isoforms of
one protein, and either the exact isoform involved is unknown, or
the isoform varies depending on cellular environment (Luo and
Brouwer, 2013; Luo, 2017).

To address the precise configuration of a network,
we generated a collection of structural equation models
corresponding to all possible alternative networks where each
complex node was substituted with one of the constituent genes.
Parameter estimation was performed for each model by multi-
group SEM analysis (Rosseel, 2012). If during the estimation a
model became empirically non-identifiable, it was discarded.
Within the identifiable model set we selected the models that
had a low number of non-significant path coefficients (less or
equal to 3) on the control set of samples and low RMSEA value
(less than 0.2). A model with the highest value of CFI within
the remaining models was defined as the best one and reflected
the precise configuration of the network. The runtime of the
pipeline to select the best model linearly depends on the number
of alternative models.

RESULTS

Analysis of Heterogeneity of Gene
Expression Variance Between SCZ and
Control Samples
We analyzed variance in gene expression profiles of CNON
cells of 144 SCZ patients and 111 control individuals with
no psychiatric disorders or family history of SCZ. All the
experimental and bioinformatics pre-processing steps are
previously described (Evgrafov et al., 2017). We analyzed
23,920 expressed genes and tested the null hypothesis that
variance of the SCZ group was less than or equal to the control
groups. We found significantly more genes with increased
variance in the SCZ group (sign test, p-value < 0.01). In
total, 16,434 genes had an increased variance amongst the SCZ
group, and 7486 genes had a higher variance amongst controls
(S1 Supporting Information).

Two Over Representation Analyses (ORA) and two Gene Set
Analyses (GSA) were applied to 19 pathways (Table 1). Five
pathways showed a higher than expected (FDR p-value < 0.01)
number of genes with increased variance in the SCZ group
according to the node-based ORA (Table 1). In addition, two
pathways were significantly enriched for genes with increased
expression variance using node-based GSA method (based on
the Levene’s test and Fisher’s method) on the residuals (FDR
p-values< 0.01; Table 1). These two sets were merged into
one set of five unique pathways for further analysis—serine
biosynthesis, PI3K-Akt, MAPK, neurotrophin signaling and
focal adhesion (Table 1).

The Logistic Regression Fit for Disease
Status
Serine biosynthesis, PI3K-Akt, MAPK, neurotrophin and focal
adhesion signaling pathways include 69 unique genes; several of
these genes are shared between these five pathways. PC analysis
on residuals for 69 genes identified 15 PCs which individually

explained at least 14% of variance. The logistic regression fit
for disease status (SCZ vs. control) with these 15 PCs as factors
revealed three PCs with p-value < 0.05 and six PCs with
p-value< 0.1. The C-index of the fit was equal to 0.70 indicating
that variance among genes in these five pathways is associated
with disease status in individuals (coefficient of determination,
R2 = 0.14).

Identification of Important Regulatory
Relationships Using SEM
Five pathways enriched for genes with increased expression
variance in SCZ samples (serine biosynthesis, PI3K-Akt, MAPK,
neurotrophin signaling and focal adhesion pathways) were
modeled with SEM. Under model identification constraints
(Supplementary Text S1) the number of nodes in a network for
modeling was limited to 14 nodes, and therefore we reduced
the five KEGG pathways to only the key interactions in these
pathways (Table 2). The reduced networks of Serine biosynthesis,
PI3K-Akt, MAPK, neurotrophin signaling and focal adhesion
pathways were denoted as initial, consisted of 5, 11, 11, 9 and
11 nodes and included 5, 17, 20, 11 and 27 genes, respectively
(see Table 2 and Supplementary Figure S1). The number
of genes was higher that the number of nodes as several
nodes were complex (i.e., contained more than one-member
gene).

We generated alternative structural equation models
substituting complex nodes within initial networks with each
member gene. One, 12, 192, 3 and 1296 alternative models
for serine biosynthesis, PI3K-Akt, MAPK, neurotrophin
signaling and focal adhesion signaling pathways were generated,
respectively. The multigroup SEM fit was then performed
for each alternative model, and the best model for each
pathway was identified using three characteristics: number of
non-significant path coefficients, RMSEA and CFI. Models that
were empirically non-identifiable or contained more than three
non-significant path coefficients in the estimation on control
set or showed RMSEA values more than 0.2 were discarded.
The best model for each pathway was selected by the highest
CFI index value among the models with RMSEA 0.2 or less.
For each of the five pathways the values of both AIC and BIC
criteria were higher in model fits for SCZ samples compared
to controls indicating that the gene expression data in control
group of samples were better explained by the structures of
pathways.

In four out of the five pathways, we found statistically
significant differences in path coefficients (p-value < 0.05;
Table 3). These coefficients reflect the strength of causal
interactions between NF1, SOS2 and RASA2 with KRAS
in MAPK pathway; between PSPH and SHMT2 in serine
biosynthesis; between AKT3 and TSC2 in PI3K-Akt signaling
pathway; and between CRK and RAPGEF1 in the focal
adhesion pathways (Figure 1). SEM fit of neuroptrophin
signaling pathway is shown in Supplementary Figure S2.
The path coefficient represents the relationship between two
genes, in the context of the entire pathway. A significant
difference in a path coefficient between the two environments
indicates that the relationship between the two genes is
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TABLE 1 | The enrichment of signaling pathways with genes that have increased variances in Schizophrenia (SCZ) samples.

Pathways FDR p-values of enrichment analyses

Over representation analysis (ORA) Gene set analysis (GSA)

EASE Node-based ORA FGSEA Node-based GSA

Adherens junction 0.9344 0.4462 0.9968 0.2723
Apoptosis 0.7972 0.4462 0.7917 0.4384
Calcium signaling pathway 0.7972 0.9725 0.4222 0.3028

Cell cycle 0.8938 0.8266 0.0191 0.0266

Focal adhesion 0.3268 0.0076 0.9968 0.4384

GnRH signaling pathway 0.7972 0.3230 0.9934 0.2443
Insulin signaling pathway 0.3268 0.2629 0.9934 0.3028

Leukocyte transendothelial migration 0.7972 0.4462 0.9968 0.0266

Long-term depression 0.8938 0.9725 0.9968 0.8573
Long-term potentiation 0.8938 0.9009 0.9968 0.2724

MAPK signaling pathway 0.7972 0.0044 0.7916 0.2724

Neurotrophin signaling pathway 0.3268 0.0019 0.9968 0.7527

Notch signaling pathway 0.9344 0.4578 0.7302 0.0133

PI3K-Akt signaling pathway 0.8765 0.0076 0.9968 0.0057

Regulation of actin cytoskeleton 0.9534 0.4462 0.7302 0.2541

Serine biosynthesis 0.9229 0.0019 0.1345 0.0011

Tight junction 0.8938 0.1080 0.7916 0.4384
VEGF signaling pathway 0.7972 0.2619 0.9968 0.4384

Wnt signaling pathway 0.9344 0.6271 0.9968 0.0147

FDR p-values of four enrichment analyses (two ORA and two GSA) is presented. Green color marks pathways, which were significantly enriched (FDR p-value < 0.01)
for genes with increased expression variance in at least one analysis. Gray color marks pathways, which were not significantly enriched, but demonstrated FDR
p-values < 0.05.

TABLE 2 | List of genes included in the initial networks.

Pathway Genes Number of genes Number of nodes

Serine biosynthesis PHGDH, PSAT1, PSPH, SHMT1, SHMT2 5 5
PI3K-AKT IRS1, PIK3CA, PIK3CB, PIK3CD, PIK3R1, PIK3R2, PIK3R3, PTK2, PDPK1, PTEN, AKT3,

nCRTC2, FOXO3, BAD, GSK3B, TSC1, TSC2
17 11

MAPK SOS1, SOS2, MRAS, HRAS, KRAS, NRAS, RASA2, NF1, RAPGEF2, PRKCA, PRKCB,
PRKCG, RAF1, BRAF, MAP2K1, MAP2K2, MAPK1, MAPK3, RAP1A, RAP1B

20 11

Neurotrophin NGFR, TRAF6, RAC1, MAP3K1, MAP2K7, MAP8, MAP9, MAP10, TP73, TP53, JUN 11 9
Focal adhesion PTK2, BCAR1, CRKL, CRK, DOCK1, PIK3CA, PIK3CB, PIK3CD, PIK3R1, PIK3R2,

PIK3R3, VAV2, VAV1, VAV3, RAC1, RAC2, RAC3, PAK1, PAK2, PAK3, PAK4, PAK5,
PAK6, RAPGEF1, RAP1B, RAP1A, PTEN

27 11

altered in the disease compared to the non-disease. All
calculations were implemented in R. The link to the
GitHub repository containing R scripts is provided in the
Supplementary Material.

TABLE 3 | The gene interactions with statistically significant differences in path
coefficients between SCZ and control samples.

Interaction Pathway Significance

PSPH→ SHMT2 Serine biosynthesis p-value < 0.01
SOS1→ KRAS MAPK signaling p-value < 0.001
NF1→ KRAS MAPK signaling p-value < 0.01
RASA2→ KRAS MAPK signaling p-value < 0.05
AKT3→ TSC2 PI3K-Akt signaling p-value < 0.05
CRK→ RAPGEF1 Focal adhesion p-value < 0.01

DISCUSSION

SCZ is highly heritable severe mental disorder with clinically
heterogeneous symptoms (Picardi et al., 2012; Takahashi, 2013)
and different risk factors (Mäki et al., 2005; Serafini et al.,
2012). Several lines of evidence point to neurodevelopment as
playing a primary role in etiology of the disease (Weinberger,
1987; Raedler et al., 1998; Lewis and Levitt, 2002). To elucidate
neurodevelopmental aspects of SCZ mechanisms we studied gene
expression profiles in CNON cells derived from SCZ patients and
healthy individuals, a suitable experimental model to analyze the
neurodevelopment processes (Evgrafov et al., 2006, 2017; Wrobel
et al., 2013). SCZ-related genes that differ between SCZ and
control groups in the mean expression levels have been identified
from these data (Evgrafov et al., 2017). Here, we hypothesized
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FIGURE 1 | Structural equation modeling (SEM) fits for four gene networks representing serine biosynthesis, PI3K-Akt, MAPK and focal adhesion signaling. Each
arrow contains three-line text information: the first line is the estimation of a path coefficient on control set of samples (and the standard error); the second line is the
estimation of a path coefficient on Schizophrenia (SCZ) set; the third line shows the significance of difference between the estimates. p-values higher than 0.05 are
marked by “ns” and blue color (non-significant), less than 0.05–by (∗) and yellow color less than 0.01–by (∗∗) and red color less than 0.001–by (∗∗∗) and dark red color.

that variance in gene expression is altered in SCZ CNON cells
and found that SCZ CNON cells showed higher variance in
expression than the control cells.

Of the 19 pathways related to neurodevelopment and
associated with SCZ-associated tested, five pathways (serine
biosynthesis, PI3K-Akt, MAPK, neurotrophin and focal adhesion
signaling pathways) were enriched for genes with increased
variance among the SCZ samples. There were 69 genes in these
five pathways. Residuals from individual models that account
for covariates were used to estimate the covariance among these
genes in a PCs model. PC’s explained 14% of the variance
in disease status, suggesting that the co-variance in expression
among these genes and pathways are potential predictors of
SCZ. Several edges (gene-gene interactions) are altered: NF1,
SOS2 and RASA2 with KRAS in MAPK pathway; between PSPH
and SHMT2 in serine biosynthesis; between AKT3 and TSC2 in
PI3K-Akt signaling pathway; and between CRK and RAPGEF1 in
the focal adhesion pathways.

Previous examination of gene expression variance in SCZ
has been somewhat contradictory. In an earlier study involving
patient-derived hONS cells (which resemble CNON cells),
variance in gene expression was found to be more constrained
genome-wide in SCZ cases than in controls or Parkinson’s
disease (Mar et al., 2011), whereas in blood, expression variance
tended to be higher in SCZ than in controls (Zhang et al., 2016).
It should be noted that both of these studies had relatively small
sample sizes, and therefore may not have captured the entire
breadth of expression variance in SCZ. Similarly, in the earlier
CNON study, although the authors did not analyze variance in
expression of all genes, it was noted that there were genes with
high expression variance in SCZs in some of the same pathways
that we examined in this study (Evgrafov et al., 2017).

There is support in the literature for the interactions
highlighted in our study in SCZ and, more broadly, other
neurodevelopmental disorders. Interactions of both NF1 and
SOS1 genes with NRAS (homolog of KRAS) gene in MAPK
pathway have been previously associated with Noonan
syndrome (Baralle et al., 2003; Longoni et al., 2010), a
multisystem developmental disorder that includes perturbed
neurodevelopment (Noonan, 2005; Roelofs et al., 2016), and
RASA2 mutations have also been reported in individuals with
Noonan syndrome (Chen et al., 2014). While Noonan syndrome
has a large array of physiological abnormalities, and that we did
not explicitly examine interactions with NRAS (having collapsed
the corresponding, RAS family node of the MAPK pathway to
KRAS), this suggests that changes in how NF1 and SOS1 interact
with the RAS genes contribute towards neurodevelopmental
disorders (like SCZ and Noonan syndrome), possibly through
altered coordination of signaling to the RAS/RAF component of
the MAPK pathway. Under normal conditions, SOS1 activates
RAS proteins (including KRAS) by removal of bound GDP from
RAS, thus freeing RAS to bind GTP and activate downstream
components of MAPK signaling (Boriack-Sjodin et al., 1998).
In contrast, NF1 inhibits RAS activity by hydrolyzing bound
GTP (Bollag et al., 1996; Corral et al., 2003), and RASA2 also
suppresses RAS activation by enhancing RAS’s GTPase activity
(Gaul et al., 1992; Maekawa et al., 1994; Arafeh et al., 2015). In our
analysis, we found that the path coefficients the RASA2–KRAS
and NF1–KRAS interactions were smaller in SZ than in controls,
potentially indicating that the relationship between these genes
in terms of gene expression is weaker in SCZ, particularly for
the NF1–KRAS which shows a large difference between SCZ
and controls. However, the most pronounced change is in the
SOS1-KRAS interaction, where the path coefficient changes
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direction indicating a dramatic shift in the gene expression
relationship between these two genes. The alterations in
SOS1–KRAS, NF1–KRAS and RASA2–KRAS interactions reflect
transcriptional dysregulation of MAPK signaling, centered on
a specific mechanism (i.e., RAS activation/inhibition). RAS
activation is a tightly-regulated process, and its overactivation
leads to oncogenesis and various developmental syndromes
(Bos, 1989; Rajalingam et al., 2007; Tidyman and Rauen, 2009).
It is possible that the changes in how the expression of these
genes relate to one another might explain the differences we
observed in our analysis of the MAPK pathway, by perturbing the
regulation of RAS activation/inhibition. We also note that paths
downstream of KRAS are not significantly different between
SCZ and controls, indicating that the downstream components
of the MAPK pathway are unperturbed in SCZ. This taken with
regulation of RAS activation by SOS1, NR1 and RASAS2 suggests
that dysregulation RAS activation may contribute towards SCZ
risk. This could also potentially explain abnormal MAPK activity
previously reported in SCZ. SCZ-associated abnormalities in
regulation of RAS/MEK/ERK pathway have been reported
upstream of RAS family proteins, as the product of the SCZ risk
gene, Disrupted in SCZ 1 (DISC1), interacts with RASSF7 in
the brain (Wang et al., 2016), consistent with our findings.
Other components of the MAPK signaling pathway such as
RAS-related guanine exchange factors are also implicated in
SCZ risk (Xu et al., 2008, 2009; Levy et al., 2015). These guanine
exchange factors activate RAS by exchanging bound GDP for
free GTP (Rebhun et al., 2000; Feig, 2011) and are important in
the development of cortical neurons and regulation of neuronal
function (Maeta et al., 2016). Taken all together and given that
SOS1, NR1 and RASA2 regulate RAS activation by controlling
its GTPase activity, this highlights the dysregulation of RAS
activation as a possible mechanism in SCZ development.

In serine biosynthesis we found one interaction (between
PSPH and SHMT2) altered between SCZ and controls. In the
previous DE analysis, PSPH gene showed tendency to be more
highly expressed in SCZ compared to controls, while another
member of the same pathway, PSAT1, was a differentially
expressed gene after FDR correction (Evgrafov et al., 2017).
Moreover, samples with the lowest expression level of these genes
were also from SCZ group. The observation that the highest and
lowest expression levels of these genes were observed among SCZ
samples in this study supports our hypothesis of increased gene
expression variance in SCZ. Mutations in PSAT1, which regulates
PSPH, affect neurodevelopment (Tabatabaie et al., 2010). There
is also evidence that the gene is implicated in SCZ based on
a study of gene expression in a family with a chromosomal
translocation near PSAT1 associated with SCZ and schizotypal
personality disorder (Ozekia et al., 2012). The second gene in
the interaction, SHMT2, demonstrated the overexpression and
regulatory function (suppression and promotion) in migration
and proliferation in carcinoma cells (Wu et al., 2016).

The altered interaction in the PI3K-Akt signaling pathways
identified in the current study involves AKT3, an excellent SCZ
candidate gene. GWAS studies identified several SNPs with
genome-wide significance inside or in the vicinity of this gene,
suggesting that AKT3 is a good positional candidate. AKT3

encodes for serine/threonine kinase, a regulator of cell signaling
in response to insulin and growth factors. Such a central position
in an interrelated network of intracellular signaling implies
a role in many cellular and organismal processes, including
development. Multiple functional and genetic studies (Howell
et al., 2017) clearly indicate the important role of this gene in
brain development and suggest involvement in SCZ, and deletion
of the gene in mice results in a phenotype reminiscent of a
psychiatric manifestation (Bergeron et al., 2017). In addition, the
RP11–370K11.1 gene, one of the differentially-expressed genes
identified in the same dataset (Evgrafov et al., 2017), is located
within AKT3 gene, and one of the SNPs strongly associated with
SCZ resides within RP11–370K11.1. Another component of the
interaction found to be altered between SCZ and controls is
TSC2, and genetic variation in the TSC2 locus is associated with
SCZ risk (The International Schizophrenia Consortium et al.,
2009).

Finally, the focal adhesion pathways contained one
interaction (between CRK and RAPGEF1 genes) that has a
significantly different path coefficient between SCZ and control
SEM models. Both CRK and RAPGEF1 genes are included
in the SZGR2.0 database (Jia et al., 2017) as related to SCZ
risk. Remarkably, dynamics of focal adhesion is altered in
neural stem/progenitor cell cultures derived from olfactory
neuroepithelium of SCZ patients (Féron et al., 1999; Fan
et al., 2013), a cellular model similar to CNON cells. Focal
adhesion controls motility (Mitra et al., 2005) is also affected
in neural stem/progenitor cells derived from SCZ patients
(Tee et al., 2017). Involvement of focal adhesion in etiology of
SCZ is plausible if not expected as it mechanistically explains
aberrations in brain development through affected control of
proper migration of neural progenitor cells.

As expected, our variance-based analysis results are overall
consistent with the differential gene expression (DEX) analysis
of mean expression (Evgrafov et al., 2017), and identification of
serine biosynthesis pathways in both analyses is a clear example.
However, there are also substantial differences. First, in the
current study, we identified five pathways disturbed in SCZ,
while simple overrepresentation test of DEX results does not
return any significant KEGG pathways. Second, SEM method is
specifically designed to identify disturbed relationships between
genes, and, in wider terms, affected pathways and networks.
Thus, SEM could be especially helpful in deciphering molecular
etiology of the disease. As we found, both approaches can identify
the same genes, when, for example, the increased variance is
explained mostly by a difference in mean between groups of
samples. However, there are certainly cases when mean is not
changed significantly, while SCZ samples are characterized by
higher gene expression. We consider these approaches as mostly
complementary and suggest that a combination of both methods
should be used to find differences in cell regulation associated
with SCZ.

In summary, our analysis provides evidence that variance and
covariance in gene expression is an important characteristic of
SCZ etiology. The application of SEM identified five interactions
between genes in serine biosynthesis, PI3K-Akt, MAPK and focal
adhesion pathways that were altered in SCZ neural progenitor
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cells, suggesting that these interactions are important in the
molecular etiology of SCZ. The association of these interactions
with SCZ is well supported by literature data that allows us
to consider them as good candidates for further downstream
analysis.
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