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ABSTRACT
Duchenne muscular dystrophy (DMD) is the most common and severe inherited neuromuscular
disorder. DMD is caused by mutations in the gene encoding the dystrophin protein in muscle fibers.
Dystrophin was originally proposed to be a structural protein that protected the sarcolemma from
stresses produced during contractions. However, more recently, experimental evidence has
revealed a far more complicated picture, with the loss of dystrophin causing dysfunction of multiple
muscle signaling pathways, which all contribute to the overall disease pathophysiology. Current
gene-based approaches for DMD are conceptually appealing since they offer the potential to
restore dystrophin to muscles, albeit a partially functional, truncated form of the protein. However,
given the cost and technical challenges facing these genetic approaches, it is important to consider
if relatively inexpensive, clinically used drugs may be repurposed for treating DMD. Here, we discuss
our recent findings showing the potential of simvastatin as a novel therapy for DMD.

KEYWORDS
Duchenne muscular
dystrophy; fibrosis;
inflammation; muscle
function; oxidative stress;
simvastatin

Background and current therapeutic approaches
in DMD

Duchenne muscular dystrophy (DMD) is classified as
a rare (orphan) disease, affecting 1:5000 males world-
wide. However, among inherited neuromuscular dis-
eases, DMD is the most common and severe
disorder. DMD is caused by mutations in the gene
encoding the dystrophin protein, which in most cases
results in no detectable dystrophin expression in
muscle. Dystrophin is a large (427 kDa) sarcolemmal
protein that links the cytoskeleton to a membrane-
bound protein complex, the dystrophin-associated
protein complex (DPC). For a number of years, dys-
trophin was thought to provide a mechanical-stabiliz-
ing role in muscle fibers, by protecting the
sarcolemma from damage during contractions.1

However, particularly over the last decade or so,
experimental evidence has revealed far more complex
and diverse cellular roles for dystrophin. The loss of

dystrophin in DMD and mdx mice (a mouse model
of DMD) leads to perturbations in numerous signal-
ing and homeostatic pathways, which contribute in
various ways to the ongoing muscle damage and
impairment in muscle function.

Despite recent advancements in our understanding
of the mechanisms causing DMD, there is still currently
no effective long-term treatment for DMD. Therefore,
there is an urgent need for finding effective, clinically
approved, therapies in the immediate future. The main-
stay treatment for more than a decade has been cortico-
steroids such as prednisone and deflazacort. These
drugs do provide some improvement in muscle strength
and mobility and delay, by a few years, the time for
patients to require a wheelchair.2 Nevertheless, cortico-
steroids cause significant side-effects, including weight
gain and increased bone fractures3 and therefore are not
an ideal long-term treatment option. More recently,
gene-based approaches designed to generate a truncated
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dystrophin protein in DMD muscles have been devel-
oped and some ‘exon skipping’ oligonucleotides are cur-
rently being tested in clinical trials.4 While these
strategies are conceptually appealing, there will be sev-
eral technical and regulatory hurdles to overcome before
they are readily available for DMD patients.5,6 More-
over, in the case of exon skipping, each oligonucleotide
is designed to target a specific dystrophin mutation and
as such, independent testing on a specific group of
patients harboring that mutation will be required.5 This
will further delay the time taken for the majority of
patients to have access to a potential treatment.

Rationale for evaluating simvastatin as a
therapeutic approach for DMD

We have taken a different approach toward develop-
ing a potential treatment for DMD. We have focused
on repurposing existing pharmacological agents that
target specific signaling pathways known to contribute
to dystrophic disease progression and the loss of mus-
cle function.7,8 In our recent study, we treated mdx
mice with simvastatin, a common statin medication
used by millions of people worldwide to treat high cir-
culating LDL cholesterol levels.9 While lowering LDL
cholesterol is the primary goal of statin treatment, our
rationale for using simvastatin in muscular dystrophy
was based on cholesterol-independent, ‘pleiotropic’
benefits of statins. These benefits include reducing oxi-
dative stress, inflammation and fibrosis,10,11 three key
pathogenic processes in DMD that are major media-
tors of functional impairment. In terms of oxidative
stress, we and others have recently shown that
NADPH oxidase 2 (NOX2) is a major source of reac-
tive oxygen species (ROS) production in mdx mus-
cle.12-15 NOX2 levels are increased in mdx muscle and
during stretched contractions, ROS produced by
NOX2 triggers opening of a stretch-activated channel
(SAC), which causes excessive Ca2C entry into dystro-
phic muscle fibers.15 High levels of ROS and Ca2C pro-
duced by this pathway stimulate increased membrane
permeability, increase muscle damage and reduce
force production.8,16 Since statins are known to reduce
NOX2 expression and ROS production in the cardio-
vascular system,17,18 we were particularly interested to
test if simvastatin could inhibit NOX2 in mdx muscle.
Finally, we chose simvastatin rather than other statins
since it is the most lipophilic, which increases its
uptake by peripheral tissues, including skeletal muscle.

The dystrophin complex is not essential for
substantial improvements in muscle health and
function provided by simvastatin

The results of our study demonstrated that simva-
statin provided substantial improvements in overall
muscle health and function when administered both
short and long-term, and at different stages of the dis-
ease.9 In support of our hypothesis, simvastatin pro-
vided significant protection against muscle damage, as
shown by dramatic reductions in plasma creatine
kinase, inflammation, fibrosis and oxidative stress.
NOX2 levels were reduced to wild type (WT) control
levels in simvastatin-treated mdx mice and this corre-
lated with enhanced muscle force production by the
tibialis anterior (TA) muscle. Together, we propose
that the inhibition of these pathogenic pathways by
simvastatin minimizes muscle damage and enhances
muscle function (Fig. 1).

Of particular interest, we demonstrated that
restoring dystrophin and/or the DPC is not essential
to provide a substantial improvement in dystrophic
muscle health and force production. Simvastatin did
not increase the expression of the dystrophin homo-
log, utrophin, or other DPC proteins including
b-dystroglycan, a-syntrophin and a-dystrobrevin.

Figure 1. Simvastatin inhibits pathogenic pathways that impair
muscle function in dystrophic muscle. Loss of dystrophin
increases inflammation, fibrosis, and oxidative stress by NOX2.
This leads to muscle damage and progressive weakness. Simva-
statin reduces each of these pathways (red arrows), improving
muscle health and function.
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Moreover, the increase in TA specific muscle force
provided by simvastatin (40%) is comparable to that
provided by the most effective mini-dystrophin gene
therapy construct19 and ‘exon skipping’ antisense
oligonucleotides, which lead to the production of a
slightly shorter dystrophin isoform throughout the
mdx TA muscle.20 Our data highlight the point that
drugs such as simvastatin, designed to target specific
pathogenic pathways in dystrophic muscles, can
provide functional improvements that compare
favorably with the most effective gene-based
approaches for DMD.

Simvastatin reverses pre-existing fibrosis in
severely dystrophic muscle

Fibrosis is a major cause of progressive muscle weak-
ness in DMD.21 The replacement of muscle with con-
nective tissue impairs muscle strength and ultimately
limits mobility, leading to loss of ambulation by about
the age of 10.21 Importantly, in terms of choosing the
most efficacious therapies for DMD, recent evidence
has shown that fibrosis begins very early in the disease,
by 1 to 2 y of age, often several years before first diag-
nosis of the disease.22 At this young age, already 15%
of the muscle is comprised of connective tissue as
opposed to 3% in healthy boys.22 For DMD, this value
increases up to 30% by ages 7 to 10.22 Therefore, in
the case of genetic approaches, implementation of
early therapeutic intervention will be critical to maxi-
mize any potential benefits, since these therapies rely
on the presence of viable muscle tissue and are
unlikely to reverse advanced fibrosis in dystrophic
muscles.

In 12 month old mdx mice, the severely dystro-
phic diaphragm muscle has substantial fibrosis and
force loss, which closely recapitulates the pathology
and function of DMD muscles. We showed that
simvastatin reversed pre-existing diaphragm fibrosis
by 50% in these old mdx mice, as quantified by
fibronectin and collagen I levels, and this was
accompanied by a significant 20–30% increase in
diaphragm force production. The reversal of fibrosis
with simvastatin is consistent with results from a
hypertrophic cardiomyopathy animal model, which
also showed regression of fibrosis following simva-
statin treatment.23 Overall, our data suggests that
simvastatin could potentially provide benefits to
both young and older DMD patients. An important

follow up question to these findings is whether the
reversal of fibrosis by simvastatin can also create an
environment conducive to muscle regeneration that
could potentially repopulate the muscle with new
myofibers.

Clinical prospects for simvastatin in DMD

To our knowledge, statins have never been tested as a
therapy for any inherited muscle disease. This is pri-
marily due to the perceived risk of muscle related
symptoms that can occur with statin use. A recent
review of several randomized, placebo controlled stud-
ies showed that the incidence of adverse, statin-related
muscle symptoms was almost identical for statin
treated and placebo control patients.24 This data indi-
cates that the overall incidence of statin-induced mus-
cle complaints is actually quite rare and that a
significant number of patients taking statins have
muscle pain or weakness that is unrelated to statin
use. Importantly, long-term statin treatment for
hypercholesterolemia in pediatric patients, the age
group most relevant for DMD, has been shown to be
effective, in terms of LDL cholesterol lowering, and
safe, with no evidence of muscle-related side effects.25

Therefore, clinical findings to date suggest that statins
are safe for use in the pediatric population.

While statin myopathy is rare, animal studies have
identified some specific mechanisms that are involved,
including increased mitochondrial ROS production26

and activation of the atrogin-1 muscle wasting path-
way.27 Importantly, we showed that simvastatin
decreased oxidative stress in mdx muscle and had no
effect on atrogin-1 levels, which were lower in mdx
compared to normal WT muscle. This is consistent
with findings in DMD muscles, where atrogin-1 levels
are consistently lower than those of control at various
stages of the disease.28 These data suggest that the
underlying disease mechanisms in dystrophic muscle
may be both amenable to simvastatin treatment and
protective against possible side effects. To emphasize
this point, corticosteroids are the most common cause
of drug-induced myopathy and atrophy,29 yet para-
doxically, in DMD patients these drugs improve mus-
cle function, despite causing the other well-known,
metabolism-related steroid side-effects. While it is
true that findings from preclinical, animal studies
often do not translate directly to humans, a large num-
ber of clinical studies using simvastatin and other
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statins have shown that these drugs do provide signifi-
cant clinical benefits in a wide-range of human dis-
eases. Using fibrosis as an example, a recent large,
clinical trial showed a significant reduction in the pro-
gression of liver fibrosis in statin-treated patients with
chronic hepatitis C.30

Conclusion

In summary, we have shown in a preclinical animal
model of DMD that simvastatin, one of the most com-
monly used medications in the world, provides consid-
erable benefits to the overall health and function of
dystrophic muscles. These results highlight the utility of
targeting specific pathogenic pathways, oxidative stress,
inflammation and fibrosis, which are all major causes of
the disease pathophysiology. Given the immediate need
for therapies that are amenable to all DMD patients,
regardless of their age or specific dystrophin mutation,
simvastatin has great potential to provide a cost effec-
tive, readily available therapy for DMD.
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