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HIGHLIGHTS

� Fluorescence lifetime imaging (FLIm)

allows label-free biochemical visualiza-

tion of atheromas; however, it remains

unknown whether FLIm can characterize

high-risk plaque features in coronary

arteries in a beating heart. Also,

implementation of a novel analytic

methodology is required for multispectral

FLIm because it yields massive biochem-

ical readouts.

� This study first demonstrated a

simultaneous structural and biochemical

assessment of high-risk plaques in the

beating swine coronary arteries using a

fully integrated optical coherence to-

mography-FLIm and a 2.9-F low-profile

dual-modal catheter.

� Biochemical components of

atherosclerotic plaques, including lipids,

macrophages, lipidsDmacrophages, and

fibrotic tissues, had unique fluorescence

lifetime signatures that were clearly

distinguishable using multispectral FLIm.

� Machine learning framework was

successfully integrated with multispectral

FLIm and enabled an automated,

quantitative imaging of multiple key

components associated with plaque

destabilization.
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SUMMARY
AB B
AND ACRONYM S

ch = channel

FL = fluorescence lifetime

FLIm = fluorescence lifetime

imaging

ICC = intraclass correlation

coefficient

IR = intensity ratio

IVUS = intravascular

ultrasound

MV = macrophage

OCT = optical coherence

Th
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Coronary plaque destabilization involves alterations in microstructure and biochemical composition; however,

no imaging approach allows such comprehensive characterization. Herein, the authors demonstrated a simul-

taneous microstructural and biochemical assessment of high-risk plaques in the coronary arteries in a beating

heart using a fully integrated optical coherence tomography and fluorescence lifetime imaging (FLIm). It was

found that plaque components such as lipids, macrophages, lipidsþmacrophages, and fibrotic tissues had

unique fluorescence lifetime signatures that were distinguishable using multispectral FLIm. Because FLIm

yielded massive biochemical readouts, the authors incorporated machine learning framework into FLIm, and

ultimately, their approach enabled an automated, quantitative imaging of multiple key components relevant

for plaque destabilization. (J Am Coll Cardiol Basic Trans Science 2021;6:948–960) © 2021 The Authors.

Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

graphy

= random forest classifier
tomo

RFC
ROI = region of interest

SMC = smooth muscle cell

TCFA = thin-cap fibroatheroma

ultraviolet
C oronary atherosclerosis and its thrombotic
complication (ie, acute coronary syndrome)
are leading causes of death worldwide (1).

A lipid-rich, inflamed core and a thin overlying cap
are proven as hallmark features of high-risk coronary
plaques (2). However, given the highly complex
multifactorial pathophysiology of atherosclerosis (3),
conventional low-resolution anatomical imaging
alone does not provide accurate detection of plaques
at risk for future coronary events (4,5). Multimodal
molecular imaging approaches enable detailed inter-
rogation of plaque composition and molecular activ-
ity, and are thus expected to allow better risk
assessment (6-10). However, the current multimodal
molecular imaging method, albeit extensively stud-
ied and rapidly evolving, has limited clinical applica-
bility because it inherently requires exogenous
imaging agents with potential toxicity risks.

Fluorescence lifetime (FL) imaging (FLIm) is a novel
approach allowing biochemical plaque characteriza-
tion at molecular levels (11,12). FL, the time required
by an excited molecule to return to the ground state
via energy loss, is an intrinsic optical property of in-
dividual molecules (13). By utilizing FL as an endoge-
nous contrast, FLIm allows detailed molecular
component characterization without requiring exog-
enous imaging agents. Our group recently constructed
a combined optical coherence tomography (OCT)-
FLIm system and demonstrated that it could provide
label-free structural-biochemical characterization of
atherosclerotic plaques in vivo in rabbit arteries
(14,15). Although atheroma development involves
detectable alterations in the intrinsic fluorescence
e authors attest they are in compliance with human studies committe

titutions and Food and Drug Administration guidelines, including patien

it the Author Center.

nuscript received June 25, 2021; revised manuscript received October 4,
properties of the arterial wall (15,16), the
ability of the fully integrated OCT-FLIm sys-
tem to accurately characterize both the
morphology and biochemical compositions of

high-risk plaques has not yet been established in the
coronary arteries of the beating heart. Furthermore,
because advancedmultispectral FLIm yields amassive
amount of information (ie, channel-specific fluores-
cence intensity, intensity ratio [IR], and lifetime
values), the immediate assessment of the key features
in plaques is challenging (14).

Therefore, to resolve such issues, this study
investigated: 1) whether our dual-modal intravascular
OCT-FLIm system is able to characterize high-risk
coronary plaque features in vivo in a coronary artery
of the beating heart; and 2) whether a machine
learning-based approach can be successfully inte-
grated with multispectral OCT-FLIm for automated,
real-time biochemical characterization to detect high-
risk coronary atheromata.

METHODS

DUAL-MODAL OCT-FLIm SYSTEM. We developed a
dual-modal fiber-optic hybrid rotary joint and a 2.9-F
highly flexible imaging catheter for in vivo intra-
coronary imaging of combined OCT-FLIm
(Supplemental Figure 1) (14,15). This imaging system
allowed rapid image acquisition with a maximum
pullback speed of 40 mm/s and a rotational speed of
up to 100 rotations/s (15). For multispectral FL mea-
surements, returning tissue autofluorescence was
temporally and spectrally resolved into 3 different
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spectral channels (ch) with a wavelength/bandwidth
of 390/40 nm (ch.1), 452/45 nm (ch.2), and 542/50 nm
(ch.3). The IR, a relative fluorescence intensity be-
tween different channels, was quantified to obtain
distance-insensitive autofluorescence information.
The present FLIm based on ultraviolet (UV) light had
a penetration depth of around 200 mm and produced a
total of 3,072 readouts for each frame (3 channel FLs
and 3 IR values per every 4 OCT A-line locations).
Each FL and IR was color-coded and displayed at the
corresponding OCT A-line. In this paper, only ch.2 FL
information is displayed for simplified visualization
(ch.1 FL and IR data are provided in Supplemental
Figures 2 to 4). Ch.3 data were not analyzed,
because the channel’s fluorescence intensity has
insufficient signal-to-noise ratio in the swine arteries
(16). The radiation value was 0.46 mJ/cm2 on the
arterial walls, which is much lower than the
maximum permissible exposure value for the skin
(3.52 mJ/cm2) according to the laser safety guidelines
(American National Standard for Safe Use of Lasers in
Health Care; ANSI Z136.3) (17,18).

ANIMALS, IN VIVO OCT-FLIm, AND HISTOLOGIC

VALIDATION. Four Yucatan minipigs (sex male, age 3
to 5 months, weight 15 to 20 kg; Optipharm) were
used in this study. Three high-fat-diet–fed, diabetic
minipigs were subjected to balloon overstretch injury
at the left anterior descending artery to induce
accelerated coronary atherosclerosis, as previously
described (Supplemental Figure 5) (10). One regular-
chow–fed minipig served as a normal artery model.
After imaging, the coronary arteries were serially
sectioned and immunostained to identify lipids (Oil
Red O), macrophages (MVs; PM-2K), and smooth
muscle cells (SMC; smooth muscle actin [SMA]). The
Institutional Animal Care and Use Committee of Ko-
rea University approved the study (KUIACUC-2017-
0019 and KOREA-2018-0070) (see the Supplemental
Appendix for more details).

FLIm ANALYSES ACCORDING TO DIFFERENT PLAQUE

COMPOSITIONS. For composition-specific FL analysis,
the plaque areas were divided into regions enriched
in fibrotic components, either lipids or MVs, or both
(lipidsþMV), based on the immunohistology findings.
A region of interest (ROI) was drawn for each
component based on the OCT and corresponding
immunohistology findings, and the multispectral FL
measurements at every OCT A-line location included
in the ROI were analyzed.

MACHINE LEARNING–BASED PLAQUE COMPONENT

CHARACTERIZATION. A random forest classifier
(RFC) (19), a machine learning algorithm for
multiclass classification, was harnessed for biochem-
ical plaque characterization and trained to transform
sets of multispectral FLIm data feature maps (ch.1
and ch.2 FLs and IR) into plaque component maps
with 5 different classes: lipids, MVs, lipidsþMV,
fibrotic, and normal wall. We trained the RFC with the
sets of OCT-FLIm ROIs, which were determined on
the basis of the histology as described in the preced-
ing text. A total of 297 ROIs obtained from 3 different
animals (2 atheromatous models and 1 normal artery
model) were used for RFC training and cross-
validation. The classification results were color-
coded as follows: normal wall with bright blue;
fibrotic tissue with green; lipids with yellow; MVs
with bright red; and lipidsþMV with dark red.

RELIABILITY AND REPRODUCIBILITY VALIDATIONS. We
compared 2 repeated imaging datasets to evaluate
whether the current FLIm reliably estimates FLs and
whether the trained RFC classifies plaque compo-
nents in a reproducible manner. Two imaging experts
(S.K. and J.W.S.), blinded to the FLIm data, paired
OCT frames based on the morphological characteris-
tics, such as side branches, intimal neovessels, plaque
shape, and plaque size. The pairing was accomplished
with a high level of interobserver agreement (46 of 49
pairs). The RFC accuracy was further evaluated by
comparing RFC-determined plaque components
versus quantitation from immunohistochemistries.
For this purpose, digitized immunohistochemistry
images were color-decomposed to separate the stain-
positive areas using a digital image analysis algorithm
(20). Each image was then color-coded (lipid with
yellow, MV with red, and SMC with bright blue) and
overlaid together to generate a multiplexed immu-
nohistochemistry image. Considering the FLIm
penetration depth, a 200-mm–depth quadrangular ROI
was drawn at every 1-degree angle interval along the
luminal surface. The densities of each component
within the ROI were morphometrically quantified and
compared with in vivo RFC results. The component
with the highest relative density was regarded as the
representative plaque component of each ROI.

STATISTICAL ANALYSIS. Values are expressed as
mean � SD. Differences in FL measurements were
analyzed via 1-way analysis of variance using Tukey’s
post hoc method for pairwise comparisons or the
Kruskal-Wallis test using Dunn’s post hoc test based
on the normality test results. The multispectral FL
measurements were averaged for each frame (plaque-
type–based FL analysis) or each ROI (component-
specific FL analysis) before comparisons. Agreement
of the multispectral FL measurements or RFC results
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across repeated imaging datasets was evaluated using
Bland-Altman analysis and intraclass correlation co-
efficient (ICC) analysis. All analyses were conducted
using Prism software version 8.0 (GraphPad
Software,) and SPSS software version 20.0 (IBM
SPSS Statistics). Volume-rendered images were
generated using the DICOM viewer, OsiriX (The
OsiriX Foundation).

RESULTS

IN VIVO OCT-FLIm. All rapid intracoronary imagings
(pullback speed 10 to 20 mm/s) were safely performed
in vivo under Dextran 40 solution purge. Along with
high-resolution anatomical imaging via OCT, multi-
spectral FLIm provided coregistered biochemical
readouts from the target plaques (Figure 1, Videos 1
and 2). The dedicated data analysis software pro-
vided real-time display of coregistered OCT-FLIm
images and reconstructed en face FL maps within
seconds (Supplemental Figure 6, Video 3). After
stratifying in vivo OCT-FLIm images based on the
qualitative OCT characteristics (Figure 1) (21,22), sig-
nificant differences in FL signatures were identified
between lipid-rich plaque versus fibrotic
plaque versus normal wall (P < 0.001) (Supplemental
Figure 7) (see the Supplemental Appendix for more
detailed methods and results).

COMPONENT-SPECIFIC FLIm ANALYSIS. We
analyzed the FL values from the plaque ROIs, which
were classified as 5 different types: fibrotic (n ¼ 79),
lipid-rich (n ¼ 66), MV-abundant (MV, n ¼ 41), lipid-
rich with abundant MVs (lipidsþMV, n ¼ 38), and
normal artery (n ¼ 73) (Figure 2A). The ch.2 FL his-
togram from MVs showed a bimodal distribution,
wherein 1 peak represented lipid-laden MVs residing
superficially at the vessel surface, and the other peak
represented those clustered at the intima–media
interface (Supplemental Figure 8). The mean ch.1
FLs of the compositional types differed significantly,
except for the values between lipidsþMV-rich versus
lipid-rich regions (P > 0.99) and between fibrotic re-
gions versus normal wall (P > 0.99). The mean ch.2
FLs also differed significantly across each other,
except for the values between lipidsþMV-rich versus
lipid-rich regions (P ¼ 0.72) and between MV-rich
versus fibrotic regions (P > 0.99) (Figure 2B).
Although the lipidsþMV-rich and lipid-rich regions
exhibited similar mean ch.1 and ch.2 FLs, there was a
prominent difference in the IR (P < 0.001), impli-
cating that the current multispectral FLIm could
differentiate between them. Similarly, each
biochemical component was distinguishable from one
another by the differences in ch.1, ch.2 FLs, and IR.
The mean ch.1 and ch.2 FLs and IR values as well as
the multiple comparison results across the 5 different
components are shown in Supplemental Tables 1
and 2.

MACHINE LEARNING–BASEDAUTOMATED, QUANTITATIVE

PLAQUE COMPOSITIONAL CHARACTERIZATION. We
evaluated whether a machine learning classifier,
trained with component-labeled multispectral FLIm
datasets, could identify the key biochemical compo-
sitions of high-risk plaques accurately and automati-
cally. A RFC algorithm was successfully applied,
achieving a robust classification performance with an
overall 5-fold cross-validation accuracy of 94.4% and
with high sensitivity (97.0% to 99.1%) and specificity
(92.8% to 98.4%) across the plaque classifications for
the 5 components (Figures 3A and 3B, Supplemental
Table 3). The RFC utilized the high-dimensional
data integrating the ch.1 FL, ch.2 FL, and IR alto-
gether and provided final classification results in real
time (Video 3). The RFC-incorporated FLIm was able
to provide biochemical plaque readouts on a frame-
by-frame basis (Supplemental Figure 9, Video 4) and
also allowed comprehensive compositional charac-
terization of the entire scanned artery itself
(Figure 3C, Video 5). Furthermore, it provided the
quantitative compositional burden index of each
biochemical component, which summarized the
amount of each constituent in the entire scanned
segment on a 0%-to-100% scale (Figure 3C). We
further tested the algorithm in the swine that was
excluded from the training and found that the RFC
was able to consistently classify the plaque compo-
nents with high accuracy (Video 6).

RELIABILITY AND REPRODUCIBILITY ANALYSIS. To
examine the reliability and reproducibility of the
current FLIm approach, we compared 49 pairs of 187
plaque-containing frames from 2 repeated imaging
datasets. The mean ch.1 and ch.2 FLs and IR showed
high agreement across the repeated pullbacks (mean
ch.1 FL: ICC ¼ 0.90; P < 0.001; mean ch.2 FL:
ICC ¼ 0.96; P < 0.001; IR: ICC ¼ 0.99; P < 0.001). In
the Bland-Altman plots (Figure 4A), the data points
were placed within the agreement limits, and no
significant systematic biases were noted. The relative
proportions of RFC-determined plaque components
were highly consistent across the repeated pullbacks
(lipidsþMV: ICC ¼ 0.99; P < 0.001; lipids: ICC ¼ 0.88;
P < 0.001; MV: ICC ¼ 0.87; P < 0.001; fibrotic:
ICC ¼ 0.96; P < 0.001; normal wall: ICC ¼ 0.94;
P < 0.001) (Figure 4B).

MACHINE LEARNING–INCORPORATED FLIm FOR

INFLAMMATION IMAGING. Most OCT bright spots
being generated by the lipid-laden MVs were densely
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FIGURE 1 In Vivo OCT-FLIm Images Obtained From an Atheroma and a Normal Artery

(Upper panel) Three-dimensional longitudinal cutaway-view images color-coded with the ch.2 FL. (Lower panel: a, b, and c) OCT-FLIm cross

sections at the corresponding locations. Boxed areas in a, b, and c are shown in higher magnification in the panels below. Arrowheads (a)

denote typical signal-poor OCT regions of lipid-rich plaques, whereas fibrotic plaque (b) shows homogenous, signal-rich OCT regions. Scale

bars indicate 1 mm. AU ¼ arbitrary units; ch ¼ channel; FL ¼ fluorescence lifetime; FLIm ¼ fluorescence lifetime imaging; OCT ¼ optical

coherence tomography.
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clustered at the interface between the intima and
media (23); however, the plaque MVs exhibited a
highly variable morphology on OCT (eg, typical bright
spots with or without shadowing, or only shadowing
without bright spots) (Figure 5). Moreover, OCT alone
could not effectively characterize focal or minimal
MV infiltrates, whereas our machine learning-
incorporated FLIm was able to precisely localize the



FIGURE 2 Component-Specific FLIm Analyses

(A) FLIm signatures according to the different plaque components. Each column consists of original and higher-magnified OCT-FLIm images

and corresponding immunohistologies. Boxed areas in the top panels are shown in higher magnification in the panels immediately below.

Scale bars indicate 1 mm, unless otherwise specified. Yellow arrowheads denote typical signal-poor, lipid-rich regions on OCT. Red arrow-

heads denote typical OCT bright spots, suggesting macrophage accumulation. (B) Comparisons of multispectral FLIm measurements ac-

cording to the plaque components (*P < 0.001 by the Kruskal-Wallis test). Boxplot center lines indicate the medians; box edges represent

the interquartile ranges; and whiskers extend to the first or third quartile plus 1.5 times the interquartile range. The multiple comparison

results all yielded P < 0.001, unless otherwise specified or indicated as nonsignificant (ns). MV ¼ macrophage; ORO ¼ Oil Red O stain; other

abbreviations as in Figure 1.
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MV accumulations regardless of their appearance on
OCT (Figure 5).

EX VIVO QUANTITATIVE IMMUNOHISTOCHEMISTRY

VALIDATION. The trained RFC accurately identified
high-risk features, such as the lipid-rich, highly
inflamed region (lipidsþMV: dark red) at the plaque
shoulder, leading to thinning of the overlying fibrotic
layer (Figure 6B, Supplemental Figure 10). The RFC-
determined in vivo OCT-FLIm composition

https://doi.org/10.1016/j.jacbts.2021.10.005


FIGURE 3 Machine Learning–Based Automated Biochemical Characterization

(A) Dataset was assembled by obtaining biochemical FLIm readouts from the predetermined regions of interest (ROIs, arrowheads) labeled with the 5 different classes.

In the training phase, each random forest classifier (RFC) decision tree was formulated using a randomly sampled training subset. (B) The trained classifier performance

was evaluated using the confusion matrix and multiclass receiver operation characteristic curve analysis based on five-fold cross-validation. (C) Cross sections and

volume-rendered images of the RFC-applied OCT-FLIm. This imaging approach enables intuitive visualization of the structural-biochemical characteristics of target

plaques and quantitative composition analysis of the 5 different biochemical components. Abbreviations as in Figures 1 and 2.
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corresponded well with the quantitated immunohis-
tology findings (Figure 6B). In the plaque section ob-
tained from the swine not utilized for RFC training,
the RFC accurately detected lipid accumulations
within a grossly fibrotic intima (at 12 to 1 o’clock) and
MV infiltrates (at 3 to 4 o’clock) (Figure 6C). Consis-
tently, the RFC-determined biochemical composi-
tions corresponded well with the quantitation from
the multiplexed immunohistochemistries (Figure 6C).

DISCUSSION

In the present study, we constructed a fully inte-
grated, high-speed OCT-FLIm system and a low-
profile dual-modal catheter, which is able to provide
both clinical-grade OCT plaque images and its cor-
egistered compositional multispectral FLIm informa-
tion in the beating coronary arteries. Through
rigorous histological validations, we demonstrated
that the key biochemical plaque components, such as
lipids, MVs, and SMC-rich fibrous tissues, had
unique, multispectrally distinguishable FL signa-
tures, suggesting that our cutting-edge intravascular
OCT-FLIm has the capability to simultaneously char-
acterize them in vivo in a label-free manner. Because
FLIm yields massive multispectral readouts that are
not intuitively recognizable, we incorporated the
machine learning algorithm to FLIm; ultimately, our
OCT-FLIm could allow an automated and quantitative
characterization of high-risk plaque components in a
highly reproducible manner.

Atherosclerotic plaque progression involves
intimal SMC recruitment in response to lipoprotein
accumulation and related immune activation (3,24).
SMCs produce collagen- and proteoglycan-rich extra-
cellular matrices pivotal to plaque stabilization (25),
whereas excessive, maladaptive inflammatory re-
sponses by MVs degrade the supporting framework,
leading to cap thinning and rupture (26). Thus, the
assessment of these key biochemical components of-
fers quantitative measures for stratifying individual
plaque risks. Indeed, recent studies using combined
intravascular ultrasound (IVUS) and near-infrared
spectroscopy have shown that the acquisition of
additional biochemical information, albeit a stand-
alone lipid chemogram, could not only enhance
diagnostic accuracy in determining high-risk plaques
(27), but also allow identification of patients and
arterial segments at risk for developing future adverse
events (28).



FIGURE 4 Reliability and Reproducibility Validations

(A) Scatter and Bland–Altman plots showing correlations of the multispectral FLIm measurements between the repeated imaging datasets.

Bland-Altman graph: The differences between the repeated imaging datasets were plotted against their mean, and the 95% limits of

agreement (dashed line) were calculated as the average difference � 1.96 SD. (B) (Upper panel) Representative images of the paired frames

showing similar classification results. (Lower panel) Stacked bar graphs showing the relative proportions of the RFC-determined plaque

components. Each vertical bar along the horizontal axis represents a frame. Scale bars indicate 1 mm. ICC ¼ intraclass correlation coef-

ficient; IR ¼ intensity ratio; other abbreviations as in Figures 1 to 3.
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In addition to lipids, MV is a key component that
participates in every stage of atherosclerosis, from
initiation to eventual plaque destabilization; thus,
in vivo assessment of these cellular activities is crit-
ical for enhancing our understanding of plaque
behavior and, more importantly, for preventing its
lethal complications (3,26,29). However, there has
been a lack of imaging modality that enables quanti-
tative inflammation imaging of a small coronary pla-
que. Although previous studies have shown the
feasibility of OCT in identifying MVs (30,31), its
practicability remains controversial (23). Plaque MVs
exhibited highly variable OCT features, hindering
reliable detection and quantitation of plaque inflam-
mation. The present FLIm provided not only a highly
sensitive and reliable readout of MV infiltrates, but
also quantitative indices of key components,
including MVs, lipids, and fibrosis. This OCT-FLIm
enabling quantitative imaging of multiple biochem-
ical characteristics in the context of plaque
morphology will offer a more sophisticated measure
for assessing plaque behavior and monitoring the ef-
ficacy of therapeutic modulation.

Among various pathological characteristics of
coronary atherosclerotic plaques, fibrous cap thick-
ness was found to have the highest hierarchical
importance in determining plaque vulnerability (2).
Although OCT is the sole imaging modality with
sufficient resolution to characterize thin-cap fibroa-
theromas (TCFAs) (21), false identification of TCFAs
using standalone OCT has been reported (32,33).
Plaque components that scatter light to create false
TCFA images varies widely: MVs, hemosiderin,
fibrin, microcalcification, proteoglycan-rich loose
connective tissue, and even densely packed SMCs
themselves (32,33). FLIm yields quantitative
biochemical readouts irrespective of light scattering
or absorption (13) and thus should aid in accurate
TCFA diagnosis. The utility of OCT in differentiating
lipid pools with necrotic cores is limited because



FIGURE 5 Macrophages Showing Various Morphological Features on OCT

Yellow arrowheads indicate typical OCT bright spots without shadows; white arrowheads indicate only shadows in the absence of bright

spots; and red arrowheads show typical OCT bright spots with shadowing. Boxed areas in the top panels are shown in higher magnification in

the panels immediately below. The RFC-applied FLIm allowed highly sensitive and accurate detection of macrophage infiltrates. Scale bars

indicate 1 mm. MV ¼ macrophage; other abbreviations as in Figures 1, 2, and 3.
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light attenuation is commonly seen in both lipid
pools and MV-rich necrotic lesions (22). FLIm
allowed differentiation between plaques infiltrated
with lipids only versus those enriched in both lipids
and MVs, demonstrating its capability to further
characterize plaque cores. FLIm identification of MV

clusters beneath the fibrotic layer also implies its
potential for assessing cap inflammation.

To our knowledge, this is the first intracoronary
demonstration of OCT-FLIm for detecting plaque
components associated with high-risk human pla-
ques, which is successfully integrated with a ma-
chine learning framework. A recent study using
combined IVUS and FLIm reported in vivo imaging
results obtained from healthy and stented swine
coronary arteries (16); however, the clinical appli-
cability of IVUS-FLIm remains controversial. Given
the inherent limitation of FLIm requiring blood
elimination, rapid image acquisition is essential to
reduce the risk of myocardial ischemia. However,
with the current IVUS technology, rapid imaging at
sufficient frame rates to achieve reasonable luminal
sampling is challenging. Although a novel high-
frequency (>60 MHz) IVUS was reported to offer a
more rapid image acquisition at 60 frames/s and a
more rapid pullback speed of up to 10 mm/s (34), it
is still below the level of contemporary OCT.
Essentially, such combination undermines the
foremost merit of IVUS, that is, the capability to
visualize blood-filled vessels.



FIGURE 6 Comparison Between the RFC-Determined Plaque Components and Those Quantitated From Immunohistochemistries

(A) Flowchart describing the process of the immunohistochemistry (IHC) multiplexing. Inset (a higher-magnification image of the dashed-line

boxed area), each green rectangle denotes the 200-mm–depth quadrangular ROI for morphometric quantitation. (B) Focal plaque showing

extensive macrophage infiltration and thinning of the overlying SMC layer at the plaque shoulder (arrowheads, also refer to Supplemental

Figure 10). (C) Comparison result of an atheroma section obtained from the animal whose imaging data were not used for RFC training.

Boxed areas are displayed in high-magnification in neighboring images, accordingly. SMA ¼ smooth muscle actin; SMC ¼ smooth muscle

cells; other abbreviations as in Figures 1, 2, and 3.
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The present dual-modal imaging system has
several additional advantages that can facilitate its
translation into catheterization laboratories. The
dual-modal imaging probe has favorable catheter
profiles comparable to those of clinical OCT. This
fluorescence imaging approach, exploiting FL as an
endogenous contrast, only requires additional UV
radiation at levels far below the maximum

https://doi.org/10.1016/j.jacbts.2021.10.005
https://doi.org/10.1016/j.jacbts.2021.10.005


Kim et al J A C C : B A S I C T O T R A N S L A T I O N A L S C I E N C E V O L . 6 , N O . 1 2 , 2 0 2 1

Machine Learning OCT-FLIm D E C E M B E R 2 0 2 1 : 9 4 8 – 9 6 0

958
permissible exposure limit. Moreover, as the current
FLIm system was established on the basis of a novel
high-speed FL measurement methodology (14), its
imaging speed, albeit already at a clinical level, can
be extended by simply increasing the pulse repeti-
tion rate of the light source. Furthermore, as the
dedicated analysis software offers rapid data pro-
cessing and real-time presentation of multispectral
imaging data including RFC results, we believe that
the present OCT-FLIm system is ready for clinical
translation.

The current FLIm based on UV light has a limited
penetration depth of around 200 mm and lacks depth-
resolved imaging capability. Fluorescence imaging
techniques, such as confocal and multiphoton exci-
tation microscopy, are known to provide depth-
resolved images (35,36). However, time-consuming
depth scanning may greatly reduce the image acqui-
sition speed; thus, it is challenging to apply these
techniques to OCT-based multimodal imaging, which
acquires images via a rapidly rotating probe while
eliminating the coronary blood flow. Nevertheless,
key high-risk plaque features, including thin cap
(<65 mm), lipid or necrotic core abutting to the lumen,
cap inflammation, superficial calcium, and healed
thrombus, are certainly within the limit of FLIm
penetration (37,38). A recent study has shown the
feasibility of simultaneously acquiring OCT, IVUS,
and fluorescence data using a trimodality imaging
probe (39). The integration of FLIm into a high-speed
trimodality catheter approach will be promising, as it
can assess both superficial and deeper plaque struc-
tures as well as multiple biochemical characteristics
associated with high-risk plaques.

The RFC is an ensemble-supervised machine
learning technique that combines a large number of
decision trees and makes its final decision by
obtaining the majority voting of individual classifiers
(19). It shows robust performance with a low risk of
overfitting even on noisy data (19), which is an un-
avoidable pitfall in medical imaging. Accurate and
comprehensive training datasets are critical for the
performance of any machine learning–based
approach. We conducted a considerable histologic
work to achieve good accuracy of the training dataset
and to support the authenticity of RFC-based plaque
characterization. Qualitative OCT plaque character-
ization also played an important role in determining
the ROIs for training samples. From a translational
perspective, the high resolving power and well-
established plaque characterization methodology of
OCT will be useful for procuring appropriate training
samples in humans, which inevitably relies greatly on
in vivo imaging data.
Elevated lipoprotein levels have been established
as a major driver of atherosclerosis (40). However,
despite the enhanced knowledge of atherosclerosis
biology and intense lipid-lowering treatment, there
remains a significant residual risk (41). Recent trials
have provided convincing evidence that the in-
terventions targeting residual inflammatory burden
could further reduce the cardiovascular risk (42,43).
Given the increasing recognition that plaque desta-
bilization is a consequence of local imbalance be-
tween proinflammatory and proresolving immune
pathways, novel therapeutics targeting inflammation
resolution are currently being investigated
(29,44,45). Our approach allowing simultaneous
characterization of both lipids and MVs may offer
valuable imaging insights into the complex interplay
between lipids and atherogenic immune responses.
This technique will be a promising imaging modality
in the upcoming era of cardiovascular therapeutics
targeting immune pathways on top of lipid-lowering
therapy.

STUDY LIMITATIONS. This study is limited by the
small number of animals included. Our findings based
on swine models require validation to confirm
whether human plaque components also have mul-
tispectrally distinguishable FL signatures. In this
study, the component classification relied on 2 spec-
tral data because the swine coronary artery exhibited
weak fluorescence intensity in ch.3, similar to a pre-
vious study (16). Although we found significant dif-
ferences in multiple or at least 1 FLIm parameter (ch.1
FL, ch.2 FL, or IR) across the 5 different components
(Supplemental Table 2), substantial overlaps of the FL
histograms in the absence of ch.3 data yielded a
relatively low precision confusion matrix in the lip-
idsþMV-rich and MV-rich regions. Given the previous
autopsy study demonstrating strong ch.3 intensity
and the role of the ch.3 FL in detecting plaque MVs
(16,38), it is highly anticipated that the machine
learning approach based on integrated information
from all 3 spectral channels (ie, ch.1 FL, ch.2 FL, ch.3
FL, IR1 [ch.1/2], IR2 [ch.2/3], and IR3 [ch.3/1])
will enable a more sophisticated and accurate
component characterization in humans. The thin-
walled normal artery might be misclassified as
fibrotic or lipidic, owing to the interference from the
nearby myocardium or adipose tissue. Further vali-
dation and performance assessment of the current
automated FLIm classification approach are needed
for the detection of human atherosclerosis, which
exhibits greater complexity and volume. Clinical
studies are warranted to determine whether OCT-
FLIm will provide value beyond standalone OCT

https://doi.org/10.1016/j.jacbts.2021.10.005


PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Coronary plaque

destabilization involves alterations in microstructure and

biochemical composition; however, no imaging approach allows

such comprehensive characterization. Herein, we demonstrated a

simultaneous microstructural and biochemical assessment of

high-risk plaques in coronary arteries in the beating heart using

dual-modal OCT-FLIm. Furthermore, our machine learning–based
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or IVUS or near-infrared spectroscopy-IVUS for
improving risk prediction.

CONCLUSIONS

Coronary atherosclerosis is a highly complex, multi-
faceted disease process in which risk prediction has
been challenging (4). Nevertheless, a recent progress
in intravascular imaging has witnessed that the
acquisition of additional biochemical information
could allow identification of patients and arterial
segments at risk for future coronary events (28). The
present OCT-FLIm with machine learning–based
analysis, allowing accurate characterization of both
plaque morphology and biochemical components, is
expected to open new avenues for high-risk plaque
assessment.
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